Research Statement
Yang Zhou

I am a systems researcher spanning the areas of networking, operating systems, and distributed systems, focusing
on datacenter environments. A datacenter centralizes hundreds of thousands of machines with high-speed networks,
enables computations over huge amounts of data, and hosts popular applications (e.g., Google search, Netflix streaming,
ChatGPT) that impact billions of people’s lives.

In the era of massive-scale data and computations, networking plays a critical role in supporting scale-out datacenter
applications running across multiple machines. Ideally, the underlying datacenter infrastructure should be efficient
to maintain steady cloud revenues while meeting high user expectations, and be evolvable to handle the increasingly
diverse and performance-hungry applications as well as heterogeneous hardware. However, there is a growing mismatch
between what networking stacks (involving NICs, kernels, transport layers, and threading) provide and what applications
need, causing severe efficiency and evolvability problems. For example, the most widely used kernel networking
stack prioritizes security and isolation with separated kernel and user contexts, incurring prohibitive CPU overheads;
meanwhile, emerging in-memory applications demand ultra-low latency and high throughput, preferring coalescing
different contexts but losing isolation. Even though the networking stacks keep evolving, e.g., the modern kernel-bypass
RDMA stacks, applications tend to be network-unaware and take networking resources for granted and unlimited, easily
causing resource depletion. Such mismatch gets largely exacerbated in large-scale datacenters where networking stacks
and applications are usually developed and maintained by disjoint groups of engineers, i.e., network vs. application
engineers (due to their growing complexities and industrial organizational structures). This fundamental mismatch
causes less efficient use of datacenter resources and hinders the scaling-out of diverse datacenter applications.

My research has focused on bridging the mismatch by codesigning low-level networking stacks and high-level
datacenter applications from a systems perspective. My codesign aims to realize high efficiency and agile evolvability
for datacenter infrastructure, and it innovates in two directions: (1) application-aware networking by restructuring
networking stacks based on application needs, and (2) network-aware applications by redesigning applications to be
network-efficient. They have borne fruit for many important datacenter applications, including existing ones (e.g.,
consensus, distributed transactions) and emerging ones (e.g., far memory over networks, microsecond-scale RPCs). My
Electrode [1], Dint [2], and Mew [3] safely inject Paxos, transactions, and RPC load balancing logics into the kernel
networking stack respectively via eBPE. This not only achieves remarkable performance improvements (by avoiding
kernel overheads) but also allows customizing and evolving the kernel stack based on application needs. My Carbink [4]
enables network-aware fault tolerance for far memory with high network and memory efficiency, making it practically
usable in datacenters with failures being the norm; it also results in a joint patent with Google. Specific to evolvability,
my PCAT [5] helps Facebook design an evolvable telemetry system to handle frequent changes in production networks.

My research methodology has been empiricism-guided measuring, tailoring, and fitting to analyze, optimize, and
implement real-world systems—just like how tailors made clothes in the old times. First, I thoroughly measure to
reason through the performance characteristics of various networking stack primitives and complex applications; I also
draw on my two-year experiences in Google’s networking and system teams to uncover critical feature requirements
in production systems. Second, I aggressively tailor unnecessary or overlapping operations in networking stacks and
applications to optimize for high efficiency. Third, I strategically partition and fit applications to the right networking
stack primitives to efficiently implement the entire system. This focus on full-stack optimizations defines my niche as
a systems researcher.

Previous Work

CPU efficient distributed protocols with evolvable kernel networking via eBPF. In-memory distributed protocols
such as consensus and distributed transactions are important building blocks for datacenter applications. They require
intensive network IOs, while the widely-used kernel networking stack gives low IO performance due to high per-
IO CPU overhead. Such mismatch has fostered a popular belief that kernel-bypass is the necessary key to high
performance for these protocols. However, kernel-bypass is not a panacea: it essentially trades security, isolation,
protection, maintainability, and debuggability for performance; it also burns one or more CPU cores for busy-polling
even at low loads, which is usually hard to adopt in public cloud deployments due to per-core pricing [6]. As such,

1of5

I revisit the above popular belief and ask: is the current kernel networking stack really ill-suited for CPU-efficient
distributed protocols, especially given many kernel advancements over decades?

I first measure the source of the high overhead for kernel networking stacks. When running a prior well-designed
transaction protocol under a recent Linux kernel networking stack, I find that networking stack traversing dominates the
overhead (64% vs. 16% on context switching and 12% on interrupt handling). This motivates me to aggressively tailor
unnecessary components of the stack for specific distributed protocols, trading slight genericity loss for performance
boosts. For example, the reliable transport along with complex queue disciplines, which incurs costly sk_buff mainte-
nance and packet copies, could be cut; this is because (1) distributed protocols themselves can recover from packet loss
with application-level timeouts, and (2) packet loss happens rarely within today’s well-engineered datacenter networks.
To realize such tailoring, I leverage eBPF to safely offload protocol-specific request processing logic into the early stages
of the kernel stack; this avoids going through the full stack and user space, removing most of the kernel overheads.

However, offloading complex distributed protocols into the kernel is challenging, because eBPF has a constrained
programming model for kernel safety and liveness. To address this challenge, I strategically partition the distributed
protocols to fit frequent critical paths into the kernel for high performance while complex rare paths into the user
space for full functionalities. Take the classic Multi-Paxos protocol as an example. Electrode [1] offloads failure-free
Multi-Paxos operations of broadcasting, acknowledging, and waiting-on-quorums into the kernel via eBPF; when failure
happens, it runs complex failure-handling operations in the user space. I implement such partitioning for Multi-Paxos
and two transaction protocols (version-based and lock-based) atop unmodified Linux kernels, and achieve remarkable
performance boosts. For instance, Dint [2] for transaction offloading achieves up to 23 x higher throughput than
kernel networking stacks, and 2.6 x higher than a recent DPDK-based kernel-bypass stack [7] (as the eBPF offloads
directly work on raw ethernet packets, bypassing any socket connections). Owing to the kernel-friendliness and high
performance, my eBPF offloading work has sparked interest in both industry (e.g., Meta, Intel) and academia (e.g.,
University of Washington, University of Michigan, NYU).

Looking further out, future kernel networking stacks should be evolvable in order to efficiently tackle increasingly
diverse applications and heterogeneous hardware. My Electrode and Dint projects already demonstrate that eBPF can
provide significant evolvability to kernel networking stacks for specific applications. I am now working on an evolvable
generic RPC framework by implementing a reliable RPC transport in eBPF; it leverages efficient AF_XDP sockets to
direct RPC requests to user-space applications for processing. The evolvability of this RPC framework manifests into
three aspects: (1) customizing network transport protocols based on application types (e.g., video), (2) customizing the
locations of transport layer offloads ranging from host kernels to SmartNICs (many SmartNICs directly support eBPF),
and (3) application-informed request load balancing among CPU cores.

Network and memory efficient fault-tolerant far memory. In a datacenter, matching a particular application to
just enough memory and CPUs is hard. A commodity server tightly couples memory and compute, hosting a fixed
number of CPUs and RAM modules that are unlikely to exactly match the computational requirements of any particular
application. Even if a datacenter contains a heterogeneous mix of server configurations, the load on each server (and
thus the amount of available resources for a new application) changes dynamically as old applications exit and new
applications arrive. Thus, even state-of-the-art cluster schedulers struggle to efficiently bin-pack a datacenter’s aggregate
collection of CPUs and RAM. For example, Google [8] and Alibaba [9] report that the average server has only 60%
memory utilization, with substantial variance across machines.

Disaggregated datacenter memory is a promising solution. It pairs a CPU with an arbitrary set of possibly-remote
RAM modules, with a fast network interconnect keeping access latencies to far memory small. Much of the prior work
in this space [10, 11] has a common limitation: a lack of fault tolerance. Unfortunately, in a datacenter containing
hundreds of thousands of machines, faults are pervasive. Without fault tolerance, the failure rate of an application using
far memory will be much higher than the failure rate of an application that only uses local memory; the reason is that
the use of far memory increases the set of machines whose failure can impact an application.

Achieving both network and memory efficient fault-tolerant far memory is challenging. Conventional memory-
efficient fault tolerance scheme applies erasure coding, and stripes a single memory page across multiple remote nodes
with RMA-based swapping. For brevity, I use span to denote “memory page”. Assuming Reed-Solomon code with
4 data chunks and 2 parity chunks, the conventional scheme requires 6 RMAs per span swap-out and 4 RMAs per
swap-in, incurring excessive network IO pressure on the networking stack. In Carbink, I tailor the excessive network
I0s by eschewing the span-granularity erasure coding, and instead erasure code at the spanset granularity. A spanset
consists of multiple spans with the same size, i.e., 4 data spans and 2 parity spans in our example, and gets swapped
out together in a batch. This only requires averagely (44 2)/4 = 1.5 RMAs per span swap-out and a single RMA per
swap-in, significantly improving network efficiency.

20f5

However, spanset-granularity erasure coding inevitably incurs memory fragmentation. This is because each span
lives in exactly one place (either local memory or far memory), and swapping a span inside a spanset from far memory to
local memory creates dead space (and thus fragmentation) in far memory. To address this problem, I design a pauseless
defragmentation mechanism running off the swapping critical path, asynchronously reclaiming dead space for later
swap-outs in the background. In contrast to the simple span swapping via RMA, this background defragmentation
has complex two-phase commit procedures to guarantee crash consistency; therefore, I choose to implement it using
more expressive RPCs. Carbink is implemented and evaluated atop Google’s datacenter infrastructure. Compared to
a state-of-the-art fault-tolerant design that uses span-granularity erasure coding, Carbink has 29% lower tail latency
and 48% higher application performance, with at most 35% higher far memory usage (due to asynchronous memory
defragmentation). Carbink also results in a joint patent with Google.

CPU efficient load balancing for microsecond-scale RPCs. Datacenter applications are evolving into microservice
architectures, with many small services connected via RPCs to serve user requests. To ensure responsiveness, these
services require high throughput and low tail latency, reaching millions of operations/sec per server and microsecond-
scale latency respectively. This creates a mismatch between existing RPC frameworks and application demands, in
terms of efficiently load balancing microsecond-scale RPCs. Conventional Power-of-Two load balancing probes servers’
load too often (i.e., probing before each RPC) and hurts application throughput, as a load probing consumes comparable
server CPUs as a microsecond-scale RPC. My measurement shows that it reduces the goodput (i.e., maximum throughput
under tail latency SLO) by half compared to naively dispatching RPCs at random. On the other hand, probing too
infrequently will result in stale estimates of load, resulting in suboptimal load balancing, the emergence of hot spots, and
violated SLOs. To break this dilemma, Mew [3] tailors unnecessary load probings to just fulfill the staleness requirement
that does not degrade tail latency. To do so, Mew performs probing statistically following an optimal probing frequency,
obtained by running a gradient descent algorithm on the probing frequency vs. tail latency space.

However, there are more challenges in how to efficiently fit RPC load balancing into RPC frameworks. The first is
what load signal to use that is general enough to capture different load levels of servers, and is strongly correlated to
future RPC’s tail latency. Instead of using the conventional signal of CPU utilization, I use the low-level thread and
packet queueing delay, because the former cannot differentiate between the ideal case of exactly-saturated CPUs and
the bad case of overloaded CPUs. The second challenge is how to efficiently implement load probing, especially for
kernel networking stacks with high overhead. My solution is leveraging eBPF to directly return load signal values in the
kernel, without going through the full kernel stack or user space. With all the above designs, Mew is able to reduce RPC
tail latency by 2 x, while achieving 1.7 x higher goodput, over a state-of-the-art solution.

Other datacenter infrastructure research:

Evolvable and memory efficient network telemetry. As modern datacenter networks get larger and more complex,
operators must rely on network telemetry systems for continuous monitoring, alerting, failure troubleshooting, etc.
However, changes happen frequently in production networks (e.g., modifications to monitoring intent, advances of
device APIs), impacting the reliability of network telemetry systems. To handle various changes, I helped Facebook
develop their evolvable network telemetry system PCAT [5]. PCAT proposes to use a change cube abstraction to
systematically track changes, and an intent-based layering design to confine and track changes. The overall result of
PCAT is a change-aware network telemetry system that supports fast-evolving datacenter networks at Facebook.
Network telemetry also requires high efficiency for memory. Telemetry data must be stored in memory, at least
temporarily, but memory is a precious resource. Network devices (e.g., NICs, switches) often have less than 100MB of
memory; server memory is more plentiful, but should be mostly devoted to applications. My Cold Filter [12], Elastic
Sketch [13], Pyramid Sketch [14], and more [15, 16, 17] design memory-efficient probabilistic data structures that can
be updated at line rate, have low memory footprints, and high accuracy. At the time of this writing, Elastic Sketch
is cited over 400 times by follow-up work across many academic research groups (e.g., CMU, Princeton, University
of Pennsylvania, Technion, KTH). Some of them try to further optimize its memory usage, speed, or accuracy; some
re-purpose its design for more telemetry tasks; and some leverage its implementation for P4 compiler research.

Secure hardware architecture for SmartNICs. Cloud providers are deploying various SmartNICs with wimpy-yet-
power-efficient RISC cores to offload simple network functions such as network virtualization and traffic scheduling.
Unfortunately, vast cloud tenants are barred from the efficiency benefits of SmartNICs, because they are not allowed to
run their own customized functions on SmartNICs. The root cause is that modern SmartNICs provide little isolation
between the network functions belonging to different tenants; these NICs also do not protect network functions from
the datacenter-provided management OS running on the NIC. My S-NIC [18] project proposes minimal changes to

3of5

SmartNIC hardware, so that datacenters can provide offloaded functions with strong isolation, while preserving most of
the total-cost-of-ownership benefits with minimal performance degradations. S-NIC’s designs target various commodity
multi-core SmartNICs, and explicitly isolate their IO subsystems and on-NIC accelerators.

Future Research

Building on my past experiences in networking, memory management, OS kernels, and datacenter applications, [am
excited to apply my full-stack optimization approach with cross-layer codesign to the following problems.

Deployment-friendly approaches to memory efficiency via malloc queueing. Previous work on increasing memory
efficiency is mostly not deployment-friendly, requiring modifying either OS kernels [10] or application code and
third-party libraries [11]. In search of deployment-friendly approaches, I have a preliminary insight around separating
the provisioning of average memory usage and bursty usage: application’s peak memory usage is usually dominated by
bursty, large memory allocations (e.g., temporarily loading a large file into memory); if one can time-interleave such
allocations from different applications to avoid their memory peaks coinciding with each other, the overall memory
provisioning can be reduced, thus improving memory efficiency. One way to implement time-interleaving is overwriting
the Malloc () function to strategically delay memory allocations, which I believe is far more deployment-friendly than
previous work. I call this approach malloc queueing, and it would mostly target batch processing applications whose
performance is not sensitive to the incurred memory allocation delays.

eBPF for accelerators and more. eBPF programming language features verified safety and liveness, and has been
widely applied to packet processing in kernels and SmartNICs. I intend to extend eBPF to manage heterogeneous
hardware accelerators, and build a generic and easy-to-use programming interface between accelerators and application
developers. Example accelerators include GPU and FPGA for massively parallel computing, and U2F (Universal
2nd Factor) keys for security. Through verification, this interface would enable strong safety and liveness guarantees
for computations running on these accelerators. Besides hardware, I believe eBPF can shed light on more software
applications. I intend to explore the following ones: (1) fast task scheduling (e.g., work stealing) for distributed
computation framework like Ray [19], and (2) generic shared logs to support various distributed data structures [20].
Both applications would benefit from the efficient network 1Os via kernel offloads, and require addressing challenges
from the constrained programming model in eBPF.

Resource efficient machine learning. Machine learning (ML) workloads such as the training and inference of Large
Language Models (LLMs) are extremely resource-hungry, requiring expensive accelerators like GPUs. I intend to
take a full-stack approach to improve the resource efficiency of ML workloads, covering GPU memory efficiency and
compute efficiency. One direction is applying far memory techniques to LLM training and inference by swapping to
CPU memory. For performance, I plan to codesign far memory swapping with the memory access patterns of LLM
weights and key-value cache, e.g., different access frequencies for different weights due to the attention mechanism in
LLMs. Another direction is developing a unified GPU memory abstraction that allows easily accessing remote GPU
memory over high-speed networks such as NVLink; this kind of GPU memory pooling would help reduce memory
stranding and fragmentation caused by dynamic memory allocations in ML workloads. For performance, I plan to
codesign such memory pooling with ML workload characteristics, e.g., allowing relaxed consistency. Finally, I am
interested in fine-grained GPU kernel scheduling at the microsecond scale possibly with preemption; the goal is to
efficiently multiplex GPU compute resources among multiple jobs without losing performance.

Datacenter-scale distributed runtime. A long-term goal of my research is to build a datacenter-scale distributed
runtime to not only simplify application development but also increase the whole datacenter efficiency and evolvability.
This distributed runtime sits between applications and datacenter resources: (1) for applications, it provides generic
and stable interfaces to use compute, memory, storage, and accelerators, and customizable fault tolerance and recovery
schemes based on application needs; (2) for resources, it eschews the conventional reservation-based provisioning
strategy, and instead provisions resources in a best-effort manner to achieve high resource efficiency.

Today’s datacenters have already provisioned network resources in a best-effort manner, and I plan to expand this
strategy to cover more resources like compute, memory, storage, and accelerators. For these new best-effort resources,
many networking techniques like congestion control can be applied to enable efficient fair sharing. However, unlike the
network resources that are delay-tolerable for applications, other resources especially the memory are not (think of
out-of-memory errors). To address this challenge, I intend to leverage techniques like far memory and malloc queueing
to create a delay-tolerable memory abstraction, at the cost of lower resource utility than normal memory.

4 of 5

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(171

(18]

(19]

[20]

Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. Electrode: Accelerating Distributed Protocols with
eBPF. In Proceedings of USENIX NSDI, 2023.

Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya Dharanipragada, and Minlan Yu. DINT: Fast In-Kernel Distributed
Transactions with eBPF. In Proceedings of USENIX NSDI, 2024.

Yang Zhou, Hassan Wassel, James Mickens, Minlan Yu, and Amin Vahdat. Mew: Efficient Inter-Server Load Balancing for
Microsecond-Scale RPCs. Under submission.

Yang Zhou, Hassan Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Minlan Yu, Chris Kennelly, Paul Turner, David Culler,
Hank Levy, and Amin Vahdat. Carbink: Fault-Tolerant Far Memory. In Proceedings of USENIX OSDI, 2022.

Yang Zhou, Ying Zhang, Minlan Yu, Guangyu Wang, Dexter Cao, Eric Sung, and Starsky Wong. Evolvable Network Telemetry
at Facebook. In Proceedings of USENIX NSDI, 2022.

William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. Revisiting the Open vSwitch Dataplane Ten Years Later. In
Proceedings of ACM SIGCOMM, 2021.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan: Mitigating Interference at Microsecond Timescales.
In Proceedings of USENIX OSDI, 2020.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and John
Wilkes. Borg: the Next Generation. In Proceedings of ACM EuroSys, 2020.

Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin Bai. Imbalance in the Cloud: An Analysis on Alibaba
Cluster Trace. In IEEE International Conference on Big Data (Big Data), 2017.

Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia
Ratnasamy, and Scott Shenker. Can Far Memory Improve Job Throughput? In Proceedings of ACM EuroSys, 2020.

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam Belay. AIFM: High-Performance, Application-Integrated
Far Memory. In Proceedings of USENIX OSDI, 2020.

Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig. Cold Filter: A Meta-Framework for
Faster and More Accurate Stream Processing. In Proceedings of ACM SIGMOD, 2018.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic
Sketch: Adaptive and Fast Network-Wide Measurements. In Proceedings of ACM SIGCOMM, 2018.

Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. Pyramid Sketch: A Sketch Framework for Frequency
Estimation of Data Streams. Proceedings of the VLDB Endowment, 2017.

Yang Zhou, Omid Alipourfard, Minlan Yu, and Tong Yang. Accelerating Network Measurement in Software. ACM SIGCOMM
Computer Communication Review, 2018.

Omid Alipourfard, Masoud Moshref, Yang Zhou, Tong Yang, and Minlan Yu. A Comparison of Performance and Accuracy of
Measurement Algorithms in Software. In Proceedings of ACM Symposium on SDN Research (SOSR), 2018.

Zhuochen Fan, Gang Wen, Zhipeng Huang, Yang Zhou, Qiaobin Fu, Tong Yang, Alex X Liu, and Bin Cui. On the Evolutionary
of Bloom Filter False Positives - An Information Theoretical Approach to Optimizing Bloom Filter Parameters. IEEE
Transactions on Knowledge & Data Engineering, 2022.

Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu. SmartNIC Security Isolation in the Cloud with S-NIC. Under
submission.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang,
William Paul, Michael I. Jordan, and Ion Stoica. Ray: A Distributed Framework for Emerging Al Applications. In Proceedings
of USENIX OSDI, 2018.

Mabhesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael Wei, John D Davis, Sriram Rao,
Tao Zou, and Aviad Zuck. Tango: Distributed Data Structures Over a Shared Log. In Proceedings of ACM SOSP, 2013.

S5of5

