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yangzhou@g.harvard.edu ⋄ +1 617 599 8532
150 Western Ave, SEC 4.429, Allston, MA 02134, USA

RESEARCH INTERESTS

Networked systems, operating systems, distributed systems, networking stacks, and network telemetry.

EDUCATION

Harvard University, Cambridge, MA, USA
Ph.D. in Computer Science (Expected) June 2024
M.S. in Computer Science November 2021
Thesis title: Codesigning Networking Stacks and Datacenter Applications for High Efficiency and Evolvability
Advisors: Minlan Yu and James Mickens

Peking University, Beijing, China
B.S. in Computer Science July 2018
Thesis title: Towards Faster and More Accurate Data Stream Processing
Advisors: Tong Yang

WORK EXPERIENCE

Harvard University, Research Assistant August 2018–Present
• Kernel offloads: Designed eBPF-based kernel offloads for distributed system protocols including Paxos (Electrode [2])

and serializable transactions (DINT [1]) to reduce kernel networking stack overhead. Implemented and evaluated atop
unmodified Linux OSes, and achieved kernel-bypass-like throughput and latency.

• µs-scale RPCs: Designed an efficient inter-server load balancing scheme for µs-scale RPCs to achieve low tail latency
and high goodput (Mew [12]). Implemented and evaluated for both kernel-bypass and kernel-based networking stacks.

• SmartNIC architecture: Designed and prototyped SGX-like trusted execution environments for network functions in
SmartNICs under multi-tenant cloud environments (S-NIC [13]).

Google NetInfra Group and System Research Group, Student Researcher June 2021–May 2023
• Far memory: Designed an efficient far memory system that leverages erasure-coding, remote memory compaction,

one-sided RMAs, and offloadable parity calculations to achieve fast, storage-efficient fault tolerance (Carbink [3]).
Implemented and evaluated using production networking stack.

• Distributed runtime: Designed an efficient fault-tolerant distributed runtime based on tasks and actors by leveraging
the Chandy–Lamport consistent checkpointing algorithm and causal logging mechanism.

• µs-scale RPCs: Identified and motivated the inter-server scheduling problem for µs-scale RPCs (leading to Mew).

VMware Research, Research Intern July 2020–September 2020
• Geo-distributed data analytics: Applied traffic redundancy elimination (TRE) technique to accelerate geo-distributed

data analytics and save WAN traffic cost. Implemented atop Alluxio, an in-memory data cache system for analytics.

Facebook, Research Collaborator November 2019–May 2020
• Network telemetry: Conducted extensive measurement and analysis on Facebook’s network telemetry system. Identi-

fied the importance of being evolvable and handling changes. Proposed a change cube abstraction to systematically
track changes, and an intent-based layering design to confine and track changes (PCAT [4]).

SenseTime, Software Engineering Intern March 2018–May 2018
• Distributed storage: Worked on Ceph storage setup, testing, maintenance, monitoring, and alerting.

Peking University, Research Assistant April 2016–July 2018
• Network telemetry: Designed and implemented novel probabilistic data structures (e.g., sketches and Bloom filters)

to optimize the memory usage, speed, and accuracy of network telemetry tasks (Cold Filter [5], Elastic Sketch [6],
Pyramid Sketch [9], and more [7][15][19]).
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PUBLICATIONS

Total 780 citations till November 2024 based on Google Scholar.

Conference Publications
[1] Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya Dharanipragada, and Minlan Yu.

DINT: Fast In-Kernel Distributed Transactions with eBPF. [link]
USENIX NSDI 2024.

[2] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu.
Electrode: Accelerating Distributed Protocols with eBPF. [link]
USENIX NSDI 2023.

[3] Yang Zhou, Hassan Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Minlan Yu, Chris Kennelly, Paul Turner, David
Culler, Hank Levy, and Amin Vahdat.
Carbink: Fault-Tolerant Far Memory. [link]
USENIX OSDI 2022.

[4] Yang Zhou, Ying Zhang, Minlan Yu, Guangyu Wang, Dexter Cao, Eric Sung, and Starsky Wong.
Evolvable Network Telemetry at Facebook. [link]
USENIX NSDI 2022.

[5] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig.
Cold Filter: A Meta-Framework for Faster and More Accurate Stream. Processing [link]
ACM SIGMOD 2018.

[6] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig.
Elastic Sketch: Adaptive and Fast Network-Wide Measurements. [link]
ACM SIGCOMM 2018.

[7] Omid Alipourfard, Masoud Moshref, Yang Zhou, Tong Yang, and Minlan Yu.
A Comparison of Performance and Accuracy of Measurement Algorithms in Software. [link]
ACM Symposium on SDN Research (SOSR) 2018.

[8] Xiangyang Gou, Chenxingyu Zhao, Tong Yang, Lei Zou, Yang Zhou, Yibo Yan, Xiaoming Li, and Bin Cui.
Single Hash: Use One Hash Function to Build Faster Hash Based Data Structures. [link]
IEEE International Conference on Big Data and Smart Computing (BigComp) 2018.

[9] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li.
Pyramid Sketch: A Sketch Framework for Frequency Estimation of Data Streams. [link]
VLDB 2017.

[10] Yang Zhou, Peng Liu, Hao Jin, Tong Yang, Shoujiang Dang, and Xiaoming Li.
One Memory Access Sketch: A More Accurate and Faster Sketch for Per-Flow Measurement. [link]
IEEE Global Communications Conference (Globecom) 2017.

[11] Junzhi Gong, Tong Yang, Yang Zhou, Dongsheng Yang, Shigang Chen, Bin Cui, and Xiaoming Li.
ABC: A Practicable Sketch Framework for Non-Uniform Multisets. [link]
IEEE International Conference on Big Data (BigData) 2017.

Papers Under Reviews
[12] Yang Zhou, Hassan Wassel, James Mickens, Minlan Yu, and Amin Vahdat.

Mew: Efficient Inter-Server Load Balancing for Microsecond-Scale RPCs. [link]
September 2023.

[13] Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu.
SmartNIC Security Isolation in the Cloud with S-NIC. [link]
October 2023.

Workshop and Demo Publications
[14] Yang Zhou, Hao Jin, Peng Liu, Haowei Zhang, Tong Yang, and Xiaoming Li.

Accurate Per-Flow Measurement with Bloom Sketch. [link]
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IEEE International Conference on Computer Communications Workshops (INFOCOM WKSHPS) 2018.

Journal Publications
[15] Zhuochen Fan, Gang Wen, Zhipeng Huang, Yang Zhou, Qiaobin Fu, Tong Yang, Alex X Liu, and Bin Cui.

On the Evolutionary of Bloom Filter False Positives - An Information Theoretical Approach to Optimizing Bloom
Filter Parameters. [link]
IEEE Transactions on Knowledge & Data Engineering 2022.

[16] Yuanpeng Li, Xiang Yu, Yilong Yang, Yang Zhou, Tong Yang, Zhuo Ma, and Shigang Chen.
Pyramid Family: Generic Frameworks for Accurate and Fast Flow Size Measurement. [link]
IEEE/ACM Transactions on Networking 2021.

[17] Tong Yang, Jie Jiang, Yang Zhou, Long He, Jinyang Li, Bin Cui, Steve Uhlig, and Xiaoming Li.
Fast and Accurate Stream Processing by Filtering the Cold. [link]
The VLDB Journal 2019.

[18] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig.
Adaptive Measurements Using One Elastic Sketch. [link]
IEEE/ACM Transactions on Networking 2019.

[19] Yang Zhou, Omid Alipourfard, Minlan Yu, and Tong Yang.
Accelerating Network Measurement in Software. [link]
ACM SIGCOMM Computer Communication Review 2018.

TALKS

• Electrode: Accelerating Distributed Protocols with eBPF
Duke University, ACE Center for Evolvable Computing, Google, USENIX NSDI April 2023
Columbia University March 2023

• Carbink: Fault-Tolerant Far Memory
Cornell University November 2023
WORDS workshop November 2022
Microsoft Research Redmond, USENIX OSDI July 2022
Google March & June 2022

• Evolvable Network Telemetry at Facebook
USENIX NSDI April 2022
Boston University, Meta March 2022

• Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing
Harvard University October 2018

MENTORING EXPERIENCE

• Matt Kiley, Harvard College undergraduate 2023
Accelerating distributed transactions using eBPF (NSDI 2024, [1]); AF_XDP-based RPC systems.

• Yunxi Shen, Tsinghua University undergraduate 2023
Resource-efficient job scheduling in data centers.

• Xingyu Xiang, Peking University undergraduate 2023
Accelerating distributed transactions using eBPF (NSDI 2024, [1]).

• Zezhou Wang, Peking University undergraduate → University of Washington PhD 2022
Accelerating Paxos using eBPF (NSDI 2023, [2]).

TEACHING EXPERIENCE

• Guest Lecture on far memory, CS294-252: Architectures and Systems for Warehouse-Scale Computers, UC Berkeley
Nov 2023
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• Teaching Assistant for Prof. Minlan Yu, CS145: Networking at Scale, Harvard University Spring 2021
• Teaching Assistant for Prof. Tong Yang, Algorithm Design and Analysis, Peking University Fall 2018

PATENTS

• Yang Zhou, Hassan Wassel, Minlan Yu, Hank Levy, David Culler, and Amin Vahdat. “Fault Tolerant Disaggregated
Memory”. Pending (US20230185666A1), filed by Google in December 2022.

ACADEMIC HONORS

• Google Ph.D. Fellowship in Systems and Networking 2022
• Finalist, Meta Ph.D. Fellowship in Networking 2022
• Graduate Fellowship, Harvard University 2018
• Excellent Bachelor Thesis (10/327), School of EECS, Peking University 2018
• New Academic Star Award (1/193), School of EECS, Peking University 2018
• Arawana Scholarship (2/193), Peking University 2017
• Pinyou Hudong Scholarship, School of EECS, Peking University 2016
• May Fourth Scholarship, Peking University 2015

PROFESSIONAL ACTIVITIES

• PC Member: ACM SIGCOMM Poster/Demo 2023, IEEE INFOCOM Workshop on Networking Algorithms 2020.
• Reviewer (Conferences): ACM SIGKDD 2023.
• Reviewer (Journals): ACM Transactions on Modeling and Performance Evaluation of Computing Systems, IEEE/ACM

Transactions on Networking, IEEE Journal on Selected Areas in Communications.
• Panelist: “Getting started with systems research” at Students@Systems 2022.

REFERENCES

Prof. Minlan Yu
Department of Computer Science
Harvard University
150 Western Ave, SEC 4.415
Allston, MA 02134, USA
+1 617 495 3986
minlanyu@g.harvard.edu

Dr. Amin Vahdat
Google Fellow and Vice President of Engineering
Google LLC
1600 Amphitheatre Parkway
Mountain View, CA 94042, USA
+1 650 390 7073
vahdat@google.com

Dr. Ying Zhang
Senior Engineering Manager
Meta Platforms, Inc.
1 Hacker Way
Menlo Park, CA 94025, USA
+1 408 250 9961
zhangying@meta.com

Prof. James Mickens
Department of Computer Science
Harvard University
150 Western Ave, SEC 4.416
Allston, MA 02134, USA
+1 617 384 8132
mickens@seas.harvard.edu

Prof. Adam Belay
MIT CSAIL
32 Vassar St, 32-G996
Cambridge, MA 02139, USA
+1 617 253 0004
abelay@mit.edu
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Research Statement
Yang Zhou

I am a systems researcher spanning the areas of networking, operating systems, and distributed systems, focusing
on datacenter environments. A datacenter centralizes hundreds of thousands of machines with high-speed networks,
enables computations over huge amounts of data, and hosts popular applications (e.g., Google search, Netflix streaming,
ChatGPT) that impact billions of people’s lives.

In the era of massive-scale data and computations, networking plays a critical role in supporting scale-out datacenter
applications running across multiple machines. Ideally, the underlying datacenter infrastructure should be efficient
to maintain steady cloud revenues while meeting high user expectations, and be evolvable to handle the increasingly
diverse and performance-hungry applications as well as heterogeneous hardware. However, there is a growing mismatch
between what networking stacks (involving NICs, kernels, transport layers, and threading) provide and what applications
need, causing severe efficiency and evolvability problems. For example, the most widely used kernel networking
stack prioritizes security and isolation with separated kernel and user contexts, incurring prohibitive CPU overheads;
meanwhile, emerging in-memory applications demand ultra-low latency and high throughput, preferring coalescing
different contexts but losing isolation. Even though the networking stacks keep evolving, e.g., the modern kernel-bypass
RDMA stacks, applications tend to be network-unaware and take networking resources for granted and unlimited, easily
causing resource depletion. Such mismatch gets largely exacerbated in large-scale datacenters where networking stacks
and applications are usually developed and maintained by disjoint groups of engineers, i.e., network vs. application
engineers (due to their growing complexities and industrial organizational structures). This fundamental mismatch
causes less efficient use of datacenter resources and hinders the scaling-out of diverse datacenter applications.

My research has focused on bridging the mismatch by codesigning low-level networking stacks and high-level
datacenter applications from a systems perspective. My codesign aims to realize high efficiency and agile evolvability
for datacenter infrastructure, and it innovates in two directions: (1) application-aware networking by restructuring
networking stacks based on application needs, and (2) network-aware applications by redesigning applications to be
network-efficient. They have borne fruit for many important datacenter applications, including existing ones (e.g.,
consensus, distributed transactions) and emerging ones (e.g., far memory over networks, microsecond-scale RPCs). My
Electrode [1], Dint [2], and Mew [3] safely inject Paxos, transactions, and RPC load balancing logics into the kernel
networking stack respectively via eBPF. This not only achieves remarkable performance improvements (by avoiding
kernel overheads) but also allows customizing and evolving the kernel stack based on application needs. My Carbink [4]
enables network-aware fault tolerance for far memory with high network and memory efficiency, making it practically
usable in datacenters with failures being the norm; it also results in a joint patent with Google. Specific to evolvability,
my PCAT [5] helps Facebook design an evolvable telemetry system to handle frequent changes in production networks.

My research methodology has been empiricism-guided measuring, tailoring, and fitting to analyze, optimize, and
implement real-world systems—just like how tailors made clothes in the old times. First, I thoroughly measure to
reason through the performance characteristics of various networking stack primitives and complex applications; I also
draw on my two-year experiences in Google’s networking and system teams to uncover critical feature requirements
in production systems. Second, I aggressively tailor unnecessary or overlapping operations in networking stacks and
applications to optimize for high efficiency. Third, I strategically partition and fit applications to the right networking
stack primitives to efficiently implement the entire system. This focus on full-stack optimizations defines my niche as
a systems researcher.

Previous Work
CPU efficient distributed protocols with evolvable kernel networking via eBPF. In-memory distributed protocols
such as consensus and distributed transactions are important building blocks for datacenter applications. They require
intensive network IOs, while the widely-used kernel networking stack gives low IO performance due to high per-
IO CPU overhead. Such mismatch has fostered a popular belief that kernel-bypass is the necessary key to high
performance for these protocols. However, kernel-bypass is not a panacea: it essentially trades security, isolation,
protection, maintainability, and debuggability for performance; it also burns one or more CPU cores for busy-polling
even at low loads, which is usually hard to adopt in public cloud deployments due to per-core pricing [6]. As such,
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I revisit the above popular belief and ask: is the current kernel networking stack really ill-suited for CPU-efficient
distributed protocols, especially given many kernel advancements over decades?

I first measure the source of the high overhead for kernel networking stacks. When running a prior well-designed
transaction protocol under a recent Linux kernel networking stack, I find that networking stack traversing dominates the
overhead (64% vs. 16% on context switching and 12% on interrupt handling). This motivates me to aggressively tailor
unnecessary components of the stack for specific distributed protocols, trading slight genericity loss for performance
boosts. For example, the reliable transport along with complex queue disciplines, which incurs costly sk_buff mainte-
nance and packet copies, could be cut; this is because (1) distributed protocols themselves can recover from packet loss
with application-level timeouts, and (2) packet loss happens rarely within today’s well-engineered datacenter networks.
To realize such tailoring, I leverage eBPF to safely offload protocol-specific request processing logic into the early stages
of the kernel stack; this avoids going through the full stack and user space, removing most of the kernel overheads.

However, offloading complex distributed protocols into the kernel is challenging, because eBPF has a constrained
programming model for kernel safety and liveness. To address this challenge, I strategically partition the distributed
protocols to fit frequent critical paths into the kernel for high performance while complex rare paths into the user
space for full functionalities. Take the classic Multi-Paxos protocol as an example. Electrode [1] offloads failure-free
Multi-Paxos operations of broadcasting, acknowledging, and waiting-on-quorums into the kernel via eBPF; when failure
happens, it runs complex failure-handling operations in the user space. I implement such partitioning for Multi-Paxos
and two transaction protocols (version-based and lock-based) atop unmodified Linux kernels, and achieve remarkable
performance boosts. For instance, Dint [2] for transaction offloading achieves up to 23× higher throughput than
kernel networking stacks, and 2.6× higher than a recent DPDK-based kernel-bypass stack [7] (as the eBPF offloads
directly work on raw ethernet packets, bypassing any socket connections). Owing to the kernel-friendliness and high
performance, my eBPF offloading work has sparked interest in both industry (e.g., Meta, Intel) and academia (e.g.,
University of Washington, University of Michigan, NYU).

Looking further out, future kernel networking stacks should be evolvable in order to efficiently tackle increasingly
diverse applications and heterogeneous hardware. My Electrode and Dint projects already demonstrate that eBPF can
provide significant evolvability to kernel networking stacks for specific applications. I am now working on an evolvable
generic RPC framework by implementing a reliable RPC transport in eBPF; it leverages efficient AF_XDP sockets to
direct RPC requests to user-space applications for processing. The evolvability of this RPC framework manifests into
three aspects: (1) customizing network transport protocols based on application types (e.g., video), (2) customizing the
locations of transport layer offloads ranging from host kernels to SmartNICs (many SmartNICs directly support eBPF),
and (3) application-informed request load balancing among CPU cores.

Network and memory efficient fault-tolerant far memory. In a datacenter, matching a particular application to
just enough memory and CPUs is hard. A commodity server tightly couples memory and compute, hosting a fixed
number of CPUs and RAM modules that are unlikely to exactly match the computational requirements of any particular
application. Even if a datacenter contains a heterogeneous mix of server configurations, the load on each server (and
thus the amount of available resources for a new application) changes dynamically as old applications exit and new
applications arrive. Thus, even state-of-the-art cluster schedulers struggle to efficiently bin-pack a datacenter’s aggregate
collection of CPUs and RAM. For example, Google [8] and Alibaba [9] report that the average server has only 60%
memory utilization, with substantial variance across machines.

Disaggregated datacenter memory is a promising solution. It pairs a CPU with an arbitrary set of possibly-remote
RAM modules, with a fast network interconnect keeping access latencies to far memory small. Much of the prior work
in this space [10, 11] has a common limitation: a lack of fault tolerance. Unfortunately, in a datacenter containing
hundreds of thousands of machines, faults are pervasive. Without fault tolerance, the failure rate of an application using
far memory will be much higher than the failure rate of an application that only uses local memory; the reason is that
the use of far memory increases the set of machines whose failure can impact an application.

Achieving both network and memory efficient fault-tolerant far memory is challenging. Conventional memory-
efficient fault tolerance scheme applies erasure coding, and stripes a single memory page across multiple remote nodes
with RMA-based swapping. For brevity, I use span to denote “memory page”. Assuming Reed-Solomon code with
4 data chunks and 2 parity chunks, the conventional scheme requires 6 RMAs per span swap-out and 4 RMAs per
swap-in, incurring excessive network IO pressure on the networking stack. In Carbink, I tailor the excessive network
IOs by eschewing the span-granularity erasure coding, and instead erasure code at the spanset granularity. A spanset
consists of multiple spans with the same size, i.e., 4 data spans and 2 parity spans in our example, and gets swapped
out together in a batch. This only requires averagely (4+2)/4 = 1.5 RMAs per span swap-out and a single RMA per
swap-in, significantly improving network efficiency.
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However, spanset-granularity erasure coding inevitably incurs memory fragmentation. This is because each span
lives in exactly one place (either local memory or far memory), and swapping a span inside a spanset from far memory to
local memory creates dead space (and thus fragmentation) in far memory. To address this problem, I design a pauseless
defragmentation mechanism running off the swapping critical path, asynchronously reclaiming dead space for later
swap-outs in the background. In contrast to the simple span swapping via RMA, this background defragmentation
has complex two-phase commit procedures to guarantee crash consistency; therefore, I choose to implement it using
more expressive RPCs. Carbink is implemented and evaluated atop Google’s datacenter infrastructure. Compared to
a state-of-the-art fault-tolerant design that uses span-granularity erasure coding, Carbink has 29% lower tail latency
and 48% higher application performance, with at most 35% higher far memory usage (due to asynchronous memory
defragmentation). Carbink also results in a joint patent with Google.

CPU efficient load balancing for microsecond-scale RPCs. Datacenter applications are evolving into microservice
architectures, with many small services connected via RPCs to serve user requests. To ensure responsiveness, these
services require high throughput and low tail latency, reaching millions of operations/sec per server and microsecond-
scale latency respectively. This creates a mismatch between existing RPC frameworks and application demands, in
terms of efficiently load balancing microsecond-scale RPCs. Conventional Power-of-Two load balancing probes servers’
load too often (i.e., probing before each RPC) and hurts application throughput, as a load probing consumes comparable
server CPUs as a microsecond-scale RPC. My measurement shows that it reduces the goodput (i.e., maximum throughput
under tail latency SLO) by half compared to naively dispatching RPCs at random. On the other hand, probing too
infrequently will result in stale estimates of load, resulting in suboptimal load balancing, the emergence of hot spots, and
violated SLOs. To break this dilemma, Mew [3] tailors unnecessary load probings to just fulfill the staleness requirement
that does not degrade tail latency. To do so, Mew performs probing statistically following an optimal probing frequency,
obtained by running a gradient descent algorithm on the probing frequency vs. tail latency space.

However, there are more challenges in how to efficiently fit RPC load balancing into RPC frameworks. The first is
what load signal to use that is general enough to capture different load levels of servers, and is strongly correlated to
future RPC’s tail latency. Instead of using the conventional signal of CPU utilization, I use the low-level thread and
packet queueing delay, because the former cannot differentiate between the ideal case of exactly-saturated CPUs and
the bad case of overloaded CPUs. The second challenge is how to efficiently implement load probing, especially for
kernel networking stacks with high overhead. My solution is leveraging eBPF to directly return load signal values in the
kernel, without going through the full kernel stack or user space. With all the above designs, Mew is able to reduce RPC
tail latency by 2×, while achieving 1.7× higher goodput, over a state-of-the-art solution.

Other datacenter infrastructure research:
Evolvable and memory efficient network telemetry. As modern datacenter networks get larger and more complex,
operators must rely on network telemetry systems for continuous monitoring, alerting, failure troubleshooting, etc.
However, changes happen frequently in production networks (e.g., modifications to monitoring intent, advances of
device APIs), impacting the reliability of network telemetry systems. To handle various changes, I helped Facebook
develop their evolvable network telemetry system PCAT [5]. PCAT proposes to use a change cube abstraction to
systematically track changes, and an intent-based layering design to confine and track changes. The overall result of
PCAT is a change-aware network telemetry system that supports fast-evolving datacenter networks at Facebook.

Network telemetry also requires high efficiency for memory. Telemetry data must be stored in memory, at least
temporarily, but memory is a precious resource. Network devices (e.g., NICs, switches) often have less than 100MB of
memory; server memory is more plentiful, but should be mostly devoted to applications. My Cold Filter [12], Elastic
Sketch [13], Pyramid Sketch [14], and more [15, 16, 17] design memory-efficient probabilistic data structures that can
be updated at line rate, have low memory footprints, and high accuracy. At the time of this writing, Elastic Sketch
is cited over 400 times by follow-up work across many academic research groups (e.g., CMU, Princeton, University
of Pennsylvania, Technion, KTH). Some of them try to further optimize its memory usage, speed, or accuracy; some
re-purpose its design for more telemetry tasks; and some leverage its implementation for P4 compiler research.

Secure hardware architecture for SmartNICs. Cloud providers are deploying various SmartNICs with wimpy-yet-
power-efficient RISC cores to offload simple network functions such as network virtualization and traffic scheduling.
Unfortunately, vast cloud tenants are barred from the efficiency benefits of SmartNICs, because they are not allowed to
run their own customized functions on SmartNICs. The root cause is that modern SmartNICs provide little isolation
between the network functions belonging to different tenants; these NICs also do not protect network functions from
the datacenter-provided management OS running on the NIC. My S-NIC [18] project proposes minimal changes to
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SmartNIC hardware, so that datacenters can provide offloaded functions with strong isolation, while preserving most of
the total-cost-of-ownership benefits with minimal performance degradations. S-NIC’s designs target various commodity
multi-core SmartNICs, and explicitly isolate their IO subsystems and on-NIC accelerators.

Future Research
Building on my past experiences in networking, memory management, OS kernels, and datacenter applications, I am
excited to apply my full-stack optimization approach with cross-layer codesign to the following problems.

Deployment-friendly approaches to memory efficiency via malloc queueing. Previous work on increasing memory
efficiency is mostly not deployment-friendly, requiring modifying either OS kernels [10] or application code and
third-party libraries [11]. In search of deployment-friendly approaches, I have a preliminary insight around separating
the provisioning of average memory usage and bursty usage: application’s peak memory usage is usually dominated by
bursty, large memory allocations (e.g., temporarily loading a large file into memory); if one can time-interleave such
allocations from different applications to avoid their memory peaks coinciding with each other, the overall memory
provisioning can be reduced, thus improving memory efficiency. One way to implement time-interleaving is overwriting
the Malloc() function to strategically delay memory allocations, which I believe is far more deployment-friendly than
previous work. I call this approach malloc queueing, and it would mostly target batch processing applications whose
performance is not sensitive to the incurred memory allocation delays.

eBPF for accelerators and more. eBPF programming language features verified safety and liveness, and has been
widely applied to packet processing in kernels and SmartNICs. I intend to extend eBPF to manage heterogeneous
hardware accelerators, and build a generic and easy-to-use programming interface between accelerators and application
developers. Example accelerators include GPU and FPGA for massively parallel computing, and U2F (Universal
2nd Factor) keys for security. Through verification, this interface would enable strong safety and liveness guarantees
for computations running on these accelerators. Besides hardware, I believe eBPF can shed light on more software
applications. I intend to explore the following ones: (1) fast task scheduling (e.g., work stealing) for distributed
computation framework like Ray [19], and (2) generic shared logs to support various distributed data structures [20].
Both applications would benefit from the efficient network IOs via kernel offloads, and require addressing challenges
from the constrained programming model in eBPF.

Resource efficient machine learning. Machine learning (ML) workloads such as the training and inference of Large
Language Models (LLMs) are extremely resource-hungry, requiring expensive accelerators like GPUs. I intend to
take a full-stack approach to improve the resource efficiency of ML workloads, covering GPU memory efficiency and
compute efficiency. One direction is applying far memory techniques to LLM training and inference by swapping to
CPU memory. For performance, I plan to codesign far memory swapping with the memory access patterns of LLM
weights and key-value cache, e.g., different access frequencies for different weights due to the attention mechanism in
LLMs. Another direction is developing a unified GPU memory abstraction that allows easily accessing remote GPU
memory over high-speed networks such as NVLink; this kind of GPU memory pooling would help reduce memory
stranding and fragmentation caused by dynamic memory allocations in ML workloads. For performance, I plan to
codesign such memory pooling with ML workload characteristics, e.g., allowing relaxed consistency. Finally, I am
interested in fine-grained GPU kernel scheduling at the microsecond scale possibly with preemption; the goal is to
efficiently multiplex GPU compute resources among multiple jobs without losing performance.

Datacenter-scale distributed runtime. A long-term goal of my research is to build a datacenter-scale distributed
runtime to not only simplify application development but also increase the whole datacenter efficiency and evolvability.
This distributed runtime sits between applications and datacenter resources: (1) for applications, it provides generic
and stable interfaces to use compute, memory, storage, and accelerators, and customizable fault tolerance and recovery
schemes based on application needs; (2) for resources, it eschews the conventional reservation-based provisioning
strategy, and instead provisions resources in a best-effort manner to achieve high resource efficiency.

Today’s datacenters have already provisioned network resources in a best-effort manner, and I plan to expand this
strategy to cover more resources like compute, memory, storage, and accelerators. For these new best-effort resources,
many networking techniques like congestion control can be applied to enable efficient fair sharing. However, unlike the
network resources that are delay-tolerable for applications, other resources especially the memory are not (think of
out-of-memory errors). To address this challenge, I intend to leverage techniques like far memory and malloc queueing
to create a delay-tolerable memory abstraction, at the cost of lower resource utility than normal memory.
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Teaching Statement
Yang Zhou

I greatly enjoy the rewards of teaching and mentoring students. For me, the rewards consist of two significant parts:
(1) the pride and fulfillment when my teaching helps students carry out their studies smoothly and when my mentored
students grow into independent researchers, and (2) the interesting future research directions inspired or confirmed
during teaching and mentoring. Driven by these rewards, I have taught as a teaching assistant and as a small-group
“supervisor”, and mentored four undergraduates and five junior PhD students in their research. Based on my research
background, I am qualified to teach undergraduate courses of computer networks, operating systems, distributed systems,
and algorithms and data structures, and graduate courses of data center networking and dataplane operating systems
(detailed later).

Mentoring Experience and Methodology
I have mentored four undergraduates on system research, and informally mentored five junior PhDs on their research
ideas, internship applications, and study experience at Harvard. Among the four undergraduates, one (Zezhou Wang)
published an NSDI’23 paper with me and went to University of Washington (UW) as a system PhD; two of them
(Xingyu Xiang and Matt Kiley) co-authored an NSDI’24 submission with me, and are about to apply for system PhDs
as well as the rest one. Such mentoring brings me enormous pride, e.g., seeing Zezhou gets into the UW PhD program.
It inspires my future research—working with Zezhou on eBPF sparks two follow-up projects: one has become the
NSDI’24 submission, and another is showing promising results. Below I summarize my mentoring methodology:

• Building students’ confidence. It is well-known that confidence is crucial for students, but how to build their
confidence is challenging. One way I find helpful is respecting students’ thoughts by giving them enough freedom
to try their thoughts while keeping an eye on the big agendas and goals. Another way is connecting them to experts
upon entering a new field, avoiding the steep learning curves overwhelming or destroying their confidence. The
experts, who could be the mentors themselves, would point out the proper materials or steps for quick ramp-ups.

• Encouraging students to form their own opinions and tastes. I encourage and anticipate students to form their
own opinions about systems, develop their own tastes on promising research problems, and stick with them. I do
not worry too much about if students’ opinions/tastes are wrong, as once they go deep into specific directions
they believe, they will learn extensive experiences and insights to refine their previous opinions/tastes.

• Collaborating widely. Wide collaboration across industry and academia is especially beneficial for practical
system research, and mentors should play the important role in connecting students with proper researchers
in the wild. For example, my fault-tolerant far memory project Carbink was collaborated with Google via my
co-advisor’s connections, and then inspired by Google’s desire for high availability. However, collaborating with
industry usually requires teasing out real research challenges, while not being misled by massive engineering
details; advisors should leverage their experience to help students (especially junior PhDs) navigate efficiently
in this space. For another example, my eBPF-for-Paxos project Electrode would not be possible without the
collaboration with Sowmya Dharanipragada who is a distributed system PhD at Cornell. Going forward, I would
like to expand collaborations to theory, machine learning, architecture, programming languages, etc.

Teaching Experience and Philosophy
System course teaching: I was the teaching assistant (TA) for a computer system course, the Harvard CS145 Networking
at Scale, along with an undergraduate TA. This course features eight P4-switch related projects, three of which are
designed and developed by me including detailed guides and skeleton code. I held three one-hour sections covering
network programming, background knowledge for projects, and handy tools for developing and debugging. Other duties
include holding weekly office hours, answering students’ questions on forums, and grading projects. In addition to TA,
I also had a guest lecture experience at UC Berkeley on far memory techniques in data centers, mainly facing junior
graduate students from architecture areas. I started from common and accessible facts like resource utilization and
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DRAM prices, then explained why data center operators have an interest in far memory, and finally discussed my work
in this space.

Algorithm course teaching: I was the small-group supervisor for the Algorithm Design and Analysis course at Peking
University as an undergraduate. This role requires supervising around 14 students in small classes, giving recitations,
teaching advanced algorithms and data structures, preparing new problem sets and quizzes, and grading, all on a weekly
basis. I extensively introduced non-textbook topics related to my undergraduate research of probabilistic data structures.
Although time-consuming, being such a supervisor is truly gratifying, especially when students understand my research
and try various optimizations as their final course projects. One student (Yicheng Jin) in my small class is now pursuing
a computer science PhD at Duke University.

Introductory teaching: I taught non-CS audiences about the Internet from a computer science perspective during the
English Language Program at Harvard. It was a slightly difficult yet fun experience especially when I told the audience
that Internet data is transmitted in small packets: they were shocked and immediately asked why, and then I gave them
detailed yet understandable explanations until they grasped the design philosophy behind it. This experience gave me a
good sense of how to teach introductory courses in the future. Below I summarize my teaching philosophy:

• Building safe and inclusive environments. Students in the same class usually have different prior knowledge; thus
it is important to create safe and inclusive environments to make students feel they are welcome to ask both the
simplest questions and challenging ones. I got such first-hand experiences when I took my co-advisor James
Mickens’ CS263 System Security course: it has the most open class environment I have ever seen because of
James’ unique humor, and students ask so many interesting questions during the class. As a result, I personally
learned so much security knowledge, though my research is on networked systems.

• Focusing on hands-on experiences. I believe the best way to learn computer systems is through reading, running,
debugging, and hacking well-written codebases in a hands-on manner. My personal experience in learning
dataplane operating systems exactly follows this pattern: after reading relevant papers, I could not understand how
specific designs get implemented and contributed to the final performance; then I decided to read the codebase of
a dataplane OS called Caladan [1], and run and debug it; finally, I built my own research prototype atop it. After
the process, my understanding of dataplane OSes became much clearer, and I gradually began appreciating the
merits of various designs in this space. For future system courses I teach, I would like to incorporate well-written
teaching systems, such as the WeensyOS [2], into my agenda to help students gain hands-on experiences.

• Promoting critical thinking on the pros and cons of techniques. I learned this from the Harvard CS260r Projects
and Close Readings in Software Systems—Serverless Computing by Eddie Kohler, where he discussed serverless
computing research from a traditional system research perspective. He showed impressive critical thinking on the
pros and cons of serverless computing, and helped us grasp the real novel components of this paradigm without
deifying any new terms. I plan to apply a similar philosophy to my teaching, encouraging students to critically
think about new techniques around us, such as the emerging LLM techniques.

Course plans: In addition to the aforementioned undergraduate courses based on textbook knowledge, I would like to
hold two advanced graduate courses and a seminar course based on my research:

• Data center networking: I will discuss how modern data centers design and build high-performance network
fabrics including topology, routing, congestion control, fault tolerance, load balancing, etc.

• Dataplane operating systems: I will discuss how the OS evolves to keep up with the fast hardware in data centers,
including user-space networking, efficient threading, light-weight isolation, etc.

• System seminar course: I will invite a broad set of system researchers from both academia and industry to give
talks on various system research topics, and foster potential collaborations with students.

References
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Diversity Statement
Yang Zhou

I view DEI as the basic soil for growing humanity and excellence in society, including the academic community; it
is about the daily respect for people regardless of their self-identifications, and self-introspection on “whether I want to
be treated like what I treat others”. Everyone has the duty to foster DEI in her/his surroundings, because that eventually
determines how the society will treat them in one day. Here, I would like to sample my and my family’s experiences of
being underrepresented due to educational background, language, political affiliation, and ethnic origin, to motivate
how I grow awareness of the challenges faced by underrepresented populations and the importance of DEI, and possible
ways to foster DEI—some I have adopted and some I plan to do.

I am a first-generation college student, so my parents could hardly give me advice on how to succeed in college and
in my PhD studies. However, I was lucky to receive tremendous emotional support from them. I was also fortunate
to receive academic mentorship from a variety of professors and student peers. Thus, I am proud to be a faculty job
applicant today, and I look forward to creating a sharing and inclusive environment in the classroom and in my research
group.

As a first-generation immigrant to the US, one of the first challenges that I faced was mastering the English
language. At Harvard, I greatly benefited from the university’s English Language Program (ELP), which offered weekly
lectures by experienced English teachers, and recruited native English speakers from the university to serve as language
partners. The ELP experience showed me how community building is a critical aspect of helping students integrate into
challenging environments. As a professor, I hope to make students aware of programs like the ELP that target specific
barriers to students’ success (e.g., language issues, or a lack of adequate high school preparation for college-level
classes).

Fifty years ago, my uncle was denied admission to his dream civil aviation university, despite his excellent academic
performance and physical fitness. He was rejected because his father (my grandfather) was a combat medic for the
Chinese Nationalist Party–the party who had fought with the Communist Party of China that founded the People’s
Republic of China. Such political discrimination prevented a whole generation of my uncles from participating in
activities that were even slightly related to military service. I was told this experience at a very young age; thus, I have
always known that the political environment of the past can influence personal outcomes in the present.

My mother and her family are Hui Chinese, one of the ethnic minorities that comprises 0.79% of the total Chinese
population. Being an ethnic minority in China often results in discrimination by the majority Han population. For
example, a popular stereotype is that Hui Chinese are thieves. Fortunately, my parents always taught me to not treat
people by their ethnicity, race, or religion. As a result, I am always conscious of potential biases that may impact my
interactions with others, and I hope to support DEI principles as a professor.

My Past Contributions to Advancing DEI
I have participated in various activities that supported DEI via mentoring and teaching.

Mentoring: During the summers of 2022 and 2023, I mentored four undergraduate students for research internships at
Harvard: three came from non-US schools, with two being in the US for the first time. To help the students get familiar
with systems research (and life in the US), I held weekly meetings with each student, talking about not only research
but also various cultural acclimation challenges that I had experienced during my own PhD. At the time of this writing,
one of them has co-authored a paper with me that was published at a premier system conference. This student was
also accepted to the University of Washington as a computer science PhD student. The other three students have also
decided to apply to systems PhD programs, including one that was hesitating for a long time before working with me. I
also consistently (monthly) shared my research and internship experiences with five junior PhD students over the past
two years. All of them are non-native English speakers and are non-white.

Occasionally, I received email inquiries from PhDs who are in other research areas or from underrepresented
minorities; I often scheduled one-to-one meetings to learn about their difficulties or puzzles. For example, Jessica
Quaye, originally from the Republic of Ghana in West Africa, was interested in system research though she is in an
architecture research group. I had long meetings with her both in person and online, and introduced her to my co-advisor
Minlan Yu to identify potential opportunities for collaboration and advising.
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Besides one-to-one mentoring, I also participate in one-to-many panels to share my research experience with junior
system PhDs. For example, I was a panelist for the “Getting started with systems research” panel [1] organized by
Students@Systems in 2022. The video recording for the panel is freely accessible online to help systems PhD students
regardless of their university or physical location.

Talking: Academic networking (e.g., talking to peer researchers at conferences) is crucial to the success of a PhD
student. However, junior graduate students are often afraid of professional networking, e.g., due to fears about having
little experience or being from less prodigious schools. However, I vividly remember how, at a conference, James
Mickens (one of my co-advisers) stood in front of the door of a breakout room and publicly said “I am James, a Professor
at Harvard, and you are welcome to talk to me!” This event inspired me to proactively interact with junior students
during conferences, to talk about mutual research interests and identify potential collaboration opportunities. I also like
to encourage poster presenters for their research, especially when there are no people who are currently engaging with
their posters.

I also talk to undergraduates and high school students regarding computer science research. For example, in October
2022, I gave a research talk at a Harvard AM/CS/EE PhD recruitment event (accessible to all US universities) which
targeted students “that hold membership in an underrepresented and/or historically minoritized group in STEM.” In
2022, I also gave talks at the Harvard SEAS Undergraduate Research Open House and the SEAS Research Showcase,
targeting Harvard freshman and sophomore undergraduates. These talks were well-received, with several undergraduates
in the audience later contacting my research lab to learn more about participation opportunities; I still mentor one of
these undergraduates. Going back to the time when I was an undergraduate, I had the privilege to talk to juniors in my
alma mater high school on why a computer science major is a good college major. Some of these students still contact
me for advice.

Teaching: I make an explicit effort to help students with little prior exposure to computer science, and I try to promote
inclusiveness during teaching. When I was the small-group “supervisor” for the Algorithm Design and Analysis course
at Peking University, I realized that some students lacked high school experience with programming contests; these
students often found it hard to catch up with peers who did have this experience. To help them, I wrote step-by-step,
thorough explanations for the algorithms discussed in class, and I handed out these explanations after class. When
TA’ing a course at Harvard University, I answered all questions that appeared in the Ed forum, no matter whether the
questions were anonymous or not, to keep everyone’s learning progress on track.

My Future Plans for Fostering DEI
Going forward, as a faculty member, I plan to take the following actions:

• Advising: Actively recruiting underrepresented students, being attentive to any anti-DEI atmosphere in my
research group, and explicitly adopting counter-measures to foster DEI with affirmative actions.

• Connecting: Reducing the barriers of students finding research opportunities by organizing mutual-connecting
programs like UCB DARE [2]—matching students with faculty members for research.

• Teaching: Being attentive to any students with weaker prior knowledge in my classes, and helping them build
confidence with support on a case-by-case basis.

• Daily life: Being kind to people I meet, no matter their age, color, disability, gender, ethnicity, politics, religion,
education, language, and more. I believe “kindness is the ultimate nobility” [3].

References
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Abstract
Serializable distributed in-memory transactions are important
building blocks for data center applications. To achieve high
throughput and low latency, existing distributed transaction
systems eschew the kernel networking stack and rely heavily
on kernel-bypass networking techniques such as RDMA and
DPDK. However, kernel-bypass networking techniques gener-
ally suffer from security, isolation, protection, maintainability,
and debuggability issues, while the kernel networking stack
supports these properties well, but performs poorly.

We present DINT, a kernel networking stack-based dis-
tributed transaction system that achieves kernel-bypass-like
throughput and latency. To gain the performance back under
the kernel stack, DINT offloads frequent-path transaction op-
erations directly into the kernel via eBPF techniques without
kernel modifications or customized kernel modules, avoiding
most of the kernel stack overheads. DINT does not lose the
good properties of the kernel stack, as eBPF is a kernel-native
technique on modern OSes. On typical transaction workloads,
DINT even achieves up to 2.6× higher throughput than us-
ing a DPDK-based kernel-bypass stack, while only adding at
most 7%/16% average/99th-tail unloaded latency.
1 Introduction
Serializable distributed transactions are important program-
ming abstractions and building blocks for distributed data
center applications, such as object store and online transac-
tion processing (OLTP) systems. With the advance of battery-
backed DRAM [14] and fast NVRAM [10], the bottleneck
of distributed in-memory transactions shifts from the stor-
age to the networking. This has spurred extensive research
on how to implement fast distributed in-memory transac-
tions using kernel-bypass networking techniques, such as
RDMA [14, 29, 80] and DPDK [6, 28]. One of the key as-
sumptions for these works is that kernel-bypass is the key to
realizing fast distributed in-memory transactions that match
the underlying hardware speed.

However, kernel-bypass is not a panacea—it essentially
trades security [68], isolation [37,38], protection [3,62], main-
tainability [52,77], and debuggability [69,77] for performance.
In addition to these issues, kernel-bypass techniques such as
DPDK usually burn one or more CPU cores for busy-polling
even at low loads; this is usually non-acceptable in public
cloud deployments due to per-core pricing [78]. These issues
collectively have led to the well-known Open vSwitch giving
up DPDK-based dataplane designs recently [77].

∗Equal contribution

Instead, we choose to embrace the kernel networking
stack with interrupt-driven packet processing. The kernel
networking stack provides nice properties of good security,
isolation, protection, maintainability, debuggability, and load-
aware CPU scaling—but not performance. Its poor perfor-
mance mainly comes from three sources: heavy-weight net-
working stack traversing [19, 87], user-kernel context switch-
ing [87], and interrupt handling.

This paper therefore asks: can we remove such kernel stack
overheads while keeping all of its nice properties for dis-
tributed in-memory transactions? To this end, we follow a
decade-old methodology called extensible kernels [4], and
realize it in modern OS kernels without any kernel code modi-
fications or customized kernel modules. The key enabler is the
eBPF technique that allows users to run customized functions
easily, safely, and efficiently inside the kernel networking
stack at run time. With eBPF, we can run transaction process-
ing logic at the early stage of the kernel networking datapath
without going to the user space, avoiding most of the kernel
networking stack functions and user-kernel context switching.
For the overhead of interrupt handling, it could be amortized
by adaptive batching [3] that the kernel networking stack
NAPI [33] already did. Besides the potential performance
benefit, eBPF is a kernel-native technique shipped with and
well-maintained by each release of modern Linux kernels.
Due to its safety and kernel-native nature, it has been rapidly
adopted by applications and cloud vendors [2, 16, 54]. For
example, Meta runs over 40 eBPF programs on every server
with ∼100 loaded on demand [74].

We introduce DINT1, which accelerates distributed transac-
tion systems using eBPF. DINT handles as many transactions
as possible in the kernel to improve their critical path per-
formance. In distributed transaction systems, a transaction
usually involves three components in its critical path: it first
acquires various locks from a lock manager, then reads rele-
vant key-values from a key-value store and does local updates,
next logs key-value updates to a log manager, and finally com-
mits key-value updates to the key-value store. Offloading the
three components to eBPF is challenging because eBPF has
a constrained programming model (for kernel safety).

To address this challenge, our key idea is to redesign
transaction-related data structures following the principle of
kernel-offloading for frequent critical paths to guarantee high
performance, and use user space programs as backups for
rare paths to support full functionalities.

1DINT as a noun is an archaic word, meaning force and power.
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First, the lock manager normally maintains many locks with
efficient indexing and complex locking operations. However,
it is hard for eBPF to handle hash collision during indexing,
because eBPF only allows statically-bounded loops. Further, it
is also hard to maintain shared lock states because eBPF does
not support common synchronization primitives like Mutex.
To address these issues, the DINT lock manager embraces
lock sharing to avoid the slow and complex hash collision
handling, and directly leverages low-level eBPF atomics to
implement transaction locking.

Second, the key-value store normally stores a large num-
ber of key-values with different sizes, and requires frequent
lookups and updates. However, eBPF does not support dy-
namic memory allocations, causing low memory efficiency
for the key-values. To address these issues, the DINT key-
value store directly stores small key-values, which dominate
in transaction workloads [12, 46, 75], in kernel memory us-
ing a set-associative cache, while leaving large key-values
to the user space, avoiding dynamic memory allocations in
eBPF. DINT further designs a write-back mechanism with
Bloom filters [5] to efficiently handle most key-value lookups
and updates in the kernel, while guaranteeing the key-value
consistency across the user and kernel.

Third, for the log manager, DINT designs efficient per-CPU
log buffers to record logs directly in eBPF, while supporting
log replaying from the user space during failure recovery.

We evaluate DINT on two OLTP workloads: a read-
intensive TATP workload [46] and a write-intensive Small-
Bank workload [75]. DINT achieves up to 2.6× higher
throughput than using a recent well-engineered kernel-bypass
stack based on DPDK (i.e., Caladan [17]), while only adding
at most 7% and 16% unloaded latency for the average and
99th-tail respectively. We achieve even higher throughput
mainly because the kernel-bypass baseline builds a high-level
abstraction for packets and uses a (user-space) threading-
based programming model, leaving some performance on the
table, while DINT works directly on raw packets in an event-
driven way. DINT’s designs are also generic to transaction
protocols to some extent—it easily supports an OCC (oppor-
tunistic concurrency control) protocol for the read-intensive
workload and a 2PL (two-phase locking) protocol for the
write-intensive workload.

In summary, this paper makes three contributions:
• We design and implement a high-performance distributed

transaction system under the widely-deployed kernel net-
working stack and the widely-available common commod-
ity NICs, with the key idea of kernel offloading via eBPF.

• We are the first to experimentally show that a distributed
transaction system under the kernel networking stack can
achieve kernel-bypass-like performance and latency.

• We identify a series of open problems for networking stack,
transaction protocols, and eBPF research (§6).

Coordinator

P1
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B1b

P2
B2a
B2b

1. Read + lock 2. Validate 3. Log 4. Commit 
backup

[Replicated]
Log manager

Shard 2

Shard 1

5. Commit 
primary

Figure 1: The FaSST [29] transaction protocol with two data shards
and three-way replication. P = primary and B = backup. This exam-
ple transaction reads from the shard 1 and writes to the shard 2.

2 Background
2.1 Distributed Transactions
We focus on serializable distributed transactions over a repli-
cated sharded in-memory key-value store with replicated log-
ging to handle failures. Along with recent works [14, 29, 71,
80] in this space, we assume logging into fast persistent stor-
age like battery-backed DRAM or NVRAM (instead of disks)
to match in-memory transaction speed, and having a sepa-
rate fault-tolerance configuration manager to handle machine
failures off the critical path of transaction processing. These
works usually employ transaction protocols consisting of opti-
mistic concurrency control (OCC) and two-phase commit for
distributed atomic commit, and primary-backup replication
to support high availability. Below, we briefly go through the
critical path of one of such protocols from FaSST [29].

In the FaSST transaction protocol, each transaction has
a set of keys to read (i.e., read-set) and a set of key-values
to write (i.e., write-set), and a transaction coordinator issues
transaction requests to finish each transaction. As shown in
Figure 1, the primary in each shard runs a lock manager; both
the primary and backups run a replicated key-value store; a set
of servers run a replicated log manager (could just be on the
primary and backups). To finish a transaction, the transaction
coordinator executes the following phases:
1) Read+lock: the coordinator reads all values + locks +

versions for the read-set and locks all key-values for the
write-set. If any key-value in the two sets is already locked,
the transaction aborts. The coordinator buffers key-value
writes/updates locally.

2) Validate: the coordinator reads again all locks + versions
in the read-set, and checks if any read-set value has been
changed or locked since the first phase. If so, the transac-
tion aborts.

3) Log: the coordinator writes a transaction record contain-
ing the write-set’s key-values and their versions into the
replicated log manager.

4) Commit backup: the coordinator updates the write-set
values to corresponding backup replicas.

5) Commit primary: the coordinator updates the write-set
values to corresponding primary replicas, increments key-
value versions, and unlocks key-values.
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Besides the OCC, there are many more concurrency control
protocols for serializable distributed transactions. Another
well-known one is two-phase locking (2PL) used in Span-
ner [9]; it locks before each read and write, and is suitable for
write-intensive workloads. More advanced protocols include
MDCC [39], Tapir [85], Janus [57], ROCOCO [56], which
reduces the number of transaction phases by co-designing
concurrency control and replication, and allows more concur-
rency by tracking fine-grained transaction dependencies.

Distributed transactions inside a data center typically have
bottlenecks on the networking stack. For example, when we
run the above transaction protocol using a typical OLTP work-
load under the kernel UDP stack (see §5.2 for a detailed
setup), we observe 64% of CPU time is spent on traversing
the kernel networking stack, 16% is on the user-kernel context
switching, and 12% is on the interrupt handling. This further
motivates the huge performance benefits of kernel offloading
by avoiding kernel stack overheads.

2.2 eBPF in Kernel Networking Stack
eBPF basics: eBPF (extended Berkeley Packet Filter) is a
kernel-native mechanism to let users write safe, customized
programs that run inside the OS kernel without kernel code
modifications or customized kernel modules. Users typically
write a high-level C-like eBPF program that gets compiled
into low-level eBPF bytecode by Clang/LLVM. Users can
then load the eBPF bytecode to predefined attachment points
or the so-called eBPF hooks in the kernel. Upon loading, the
kernel will first verify if the eBPF bytecode meets the safety
(e.g., no out-of-bounds memory accesses) and liveness (i.e.,
it will always terminate in finite steps) requirements. If so,
the kernel will compile the eBPF bytecode to native machine
code, and run it in a kernel-embedded virtual machine in an
event-driven manner; otherwise, the kernel will reject it.

The Linux kernel networking stack has two main eBPF
hooks: XDP (eXpress Data Path) [21, 66] and TC (Traffic
Control) [49]. The XDP hook only works for ingress pack-
ets, and triggers the eBPF program immediately after the
NIC driver receives the packet upon NIC interrupts, before
sk_buff [34] creation. The TC hook works for both ingress
and egress packets, and triggers the eBPF program between
the NIC driver layer and UDP/TCP layers. For ethernet packet
forwarding, TC has lower performance than XDP, as it has
run more kernel networking stack functions.
eBPF maps: eBPF programs are event-driven, therefore
program states that cross different invocations must be stored
in a global heap-like memory region—eBPF maps are exactly
for this purpose. eBPF maps are a variety of built-in data
structures in the kernel to maintain eBPF program states with
various eBPF helper functions. An eBPF map could contain
up to 232−1 elements each with maximum 232−1 bytes, with
total size bounded by the server memory; it must be declared
and created statically with a fixed size. Typical eBPF maps
include arrays, per-CPU arrays, stacks, and queues [48], with
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Figure 2: DINT’s high-level architecture.

lookup and update functions [32]. The power of eBPF maps
is that they can be shared among different eBPF programs
and user-space processes. For example, the eBPF program
attached to XDP can share an eBPF map with another program
on TC and even with a user-space process.
eBPF programming constraints: Due to the safety and
liveness verification by the kernel, eBPF programming has
some constraints. Perhaps the most important one is not sup-
porting dynamic memory allocations, as correctly handling
memory allocation failure and verifying no memory leaks are
challenging for eBPF. The second constraint is that eBPF only
supports statically-determined bounded loops to ensure live-
ness. Finally, eBPF lacks high-level thread synchronization
primitives such as Mutex. This is because eBPF code runs
inside the kernel, and arbitrary/unexpected kernel sleeping
by Mutex is dangerous. Instead, eBPF only supports spinlock
(i.e., bpf_spin_lock [47]) with deep constraints that make
it less useful: one cannot call any functions (including built-
in eBPF helper functions) while holding the lock, and must
release the lock before forwarding/dropping the packet.

3 DINT Design
Figure 2 shows the high-level architecture of DINT. DINT
assumes an asymmetric transaction model or the so-called
client-side transaction model, similar to [41, 55, 59, 85]. In
this model, each transaction client, as the transaction coor-
dinator, sends transaction requests to transaction servers to
finish locking, key-value, and logging operations, and then re-
ceives responses. As described in Section 6, DINT could also
support the symmetric model used in [14, 29, 80]. Like prior
works, DINT shards transactions states (i.e., locks, key-values,
and logs) among servers, and uses three-way replication and
logging for high availability. DINT is generic to a variety
of transaction protocols, and currently supports two differ-
ent ones: a 2PL-based protocol and an OCC-based protocol
similar to FaSST [29].
Offloading request frequent path to kernel: To achieve
high-performance transaction processing, DINT offloads
frequent-path states and operations into the kernel, avoiding
kernel stack overheads. Each DINT transaction server main-
tains most of its transaction states in the kernel memory via
eBPF maps, and serves most of its transaction requests di-
rectly in the kernel via an eBPF program attached to the XDP
hook. Since eBPF programs cannot generate new packets by
themselves, DINT reuses the request packet by modifying its
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payload to carry the response message, and forwards it back
to clients as the response.
Userspace as backups: To support the full functionalities of
transaction processing, DINT handles rare-path states and op-
erations in the user space. Each DINT transaction server runs
a user-space process listening on UDP sockets to receive and
handle a small portion of transaction requests that cannot be
served directly in the kernel. Transaction responses returned
from the user-space process will go through a bookkeeping
eBPF program attached to the TC hook, which helps maintain
transaction states in eBPF maps, e.g., releasing some internal
locks (not transaction locks).

DINT uses UDP protocol between transaction clients and
servers to allow easy parsing of transaction requests and re-
sponses in eBPF programs. While UDP protocol is lossy,
packet losses happen rarely in modern data centers as shown
by prior works [28, 29, 64]. When packet losses happen dur-
ing severe network hardware failures, DINT would detect
such losses using coarse-grained client-side timeouts and han-
dle them by the transaction protocols, similar to FaSST [29].
DINT targets accelerating the handling of transaction request-
s/responses that can fit into one ethernet packet, i.e., up to
9KB for jumbo frames. This works well for transactions with
mostly small key-values, which are quite common in many
transaction processing workloads [12,29,46,75,80]. For large
key-values, DINT could just pass them to the user-space pro-
cess to handle, at the cost of lower throughput.

3.1 DINT Lock Manager
The DINT lock manager is responsible for the transaction con-
currency control, i.e., controlling how multiple transaction
clients concurrently access individual key-values. Such con-
currency control mainly involves quickly indexing lock states
by lock IDs and maintaining the shared lock states. These two
operations are challenging for the constrained programming
model in eBPF that lacks dynamic memory allocations, only
supports bounded loops, and has nearly no high-level thread
synchronization primitives like Mutex (§2.2). For example,
lock state indexing usually requires implementing a hash table
in eBPF; however, handling hash collisions is nearly impos-
sible or very inefficient in eBPF for either open hashing that
requires dynamically allocating a new hash table entry or
closed hashing that may require unbounded loops.

To support efficient lock state indexing and shared lock
state maintenance in eBPF, DINT leverages two techniques:
• lock sharing to avoid handling hash collisions. Lock sharing

means two lock IDs may get mapped to and use the same
lock state. DINT further designs a mechanism to avoid
possible deadlocks during lock sharing.

• leveraging low-level eBPF atomics [23] to carefully syn-
chronize shared states operations.

Lock sharing: DINT leverages eBPF array maps (i.e.,
BPF_MAP_TYPE_ARRAY [32]) to implement static tables of
lock states in the kernel space. Typical lock states include

lock status bits, sharer counters (for read-write locks), etc.
Each lock ID gets mapped to one shared lock state in the
table via a hash function, and later lock acquiring/releasing
operations just work on this lock state. Lock sharing avoids
handling tricky hash collisions, at the cost of slightly increas-
ing the failure probability when acquiring locks.

However, deadlocks could happen if a transaction client
tries to acquire two locks that get mapped to the same lock
state (assuming exclusive locking). This is because: the first
acquiring operation succeeds, while the second acquiring fail-
s/blocks; however, the first acquiring will not release the lock
until the transaction finishes, while the second acquiring al-
ways blocks the transaction progress. To resolve such possible
deadlocks, DINT lets the lock manager check if any two ex-
clusive lock acquiring operations on the same lock state come
from the same transaction client, by maintaining a holder
client ID (e.g., IP and port pair) for each exclusive lock; if so,
the lock manager directly returns a locking success message.

By leveraging low-level eBPF atomics, DINT supports
a variety of locking mechanisms for concurrency control
protocols, including the basic read-write locking for 2PL
and version-based locking for OCC, in a fail-and-retry man-
ner [8,18,81]. Supporting more advanced concurrency control
protocols [39, 56, 57, 85] is also possible in DINT, as they are
essentially underpinned by the two basic locking mechanisms;
we discuss further in Section 6.
Read-write locking: This locking mechanism includes two
types of locks: exclusive locks and shared locks. Transaction
clients send lock acquiring/releasing requests with lock IDs
to the lock manager, and the manager responds with either
success or failure. Lock acquiring requests may receive fail-
ure responses, while lock releasing requests always receive
success responses. If a client receives a failure response, it
will re-send the lock acquiring request again after an optional
period of time, until receiving the success response (i.e., fail-
and-retry).

To implement the read-write locking, the DINT log man-
ager maintains a per-lock status bit indicating if this lock is
held exclusively, and a per-lock counter that counts how many
sharers hold the lock. Upon receiving an exclusive lock acquir-
ing request, the lock manager looks up the corresponding lock
status bit and executes eBPF atomics to check if it can acquire
the lock. It runs the __sync_val_compare_and_swap()
function inside eBPF to atomically test-and-set the lock sta-
tus bit. This function gets compiled into corresponding ISA-
specific operations and is equally efficient as in the user space.
If the lock test-and-set succeeds, which means the lock has not
been acquired by other transaction clients, the load manager
will return a success response; otherwise, a failure response
is returned to let the client retry. Handling the exclusive lock
releasing and shared lock operations involves similar atomic
operations.
Version-based locking: Version-based locking is widely
used in recent high-performance distributed transactions sys-

4



Bucket 
lock

Bloom 
filter Keys Versions Valid

bits
Dirty 
bitsValues

Bucket

Overflow buckets
in user space

Kernel buckets
(an eBPF map)

…

Figure 3: The layout of the key-value store in DINT (assume using
the version-based locking).

tems [14, 29, 80], together with the OCC protocol to avoid
locking operations for key-value reads. It involves version
checking to make sure the read key-values used in a transac-
tion are not stale (see §2.1).

To implement version-based locking, DINT maintains a
table for the lock status bit indexed by the lock ID, and main-
tains a per-key-value version counter in a key-value store that
we discuss in the next Section. Every read operation directly
reads the key-value and corresponding version from the key-
value store. Every write operation tries to test-and-set the lock
status bit (i.e., exclusive lock); if test-and-set fails, the transac-
tion aborts. After acquiring all write locks and then finishing
all transaction writes locally, the transaction coordinator reads
the key-value versions again and compares them with the old
versions. If the two version vectors do not change, the coor-
dinator can successfully log and commit the transaction, and
increment the versions; otherwise, the transaction aborts.

3.2 DINT Key-Value Store
The DINT key-value store maintains the mapping between
keys and values, and supports various operations like GET,
INSERT, UPDATE, and DELETE. Conventional user-space
key-value store [53, 70] would normally maintain a hash in-
dex that maps keys to dynamically-allocated values. Unfortu-
nately, this design does not work for eBPF that lacks dynamic
memory allocations.

Figure 3 illustrates how DINT addresses this challenge
by storing key-values into an in-kernel set-associative cache
backed by a fixed-size eBPF map, while spilling overflowed
key-values (includes corresponding versions) into the user
space. The eBPF map contains many kernel buckets indexed
by the key via a hash function, and each bucket stores multiple
key-values and valid bits (denoting whether a key-value field
stores object data)2. Inside each kernel bucket, DINT stores
keys contiguously for better cache locality during lookups;
DINT provisions each value field with a fixed size that can
cover most of the transaction objects (e.g., dozens of bytes in
TPC-C and SmallBank workloads [80, Table 3]). Any kernel
bucket that gets too many key-values will spill some key-
values into the user space (putting into the overflow buckets);
any key-value that cannot fit into the fixed value field in the
kernel bucket will also spill into the user space.

A kernel bucket contains a bucket-level lock implemented

2Maintaining the valid bit for each key-value should be straightforward;
for conciseness, we do not explicitly describe it unless necessary.

using eBPF atomics to synchronize concurrent key-value op-
erations on the same bucket. We note that this lock is different
from the transaction locks in Section 3.1. Each key-value
operation will first try acquiring the bucket lock before touch-
ing the bucket data, in a fail-and-retry manner. Most of the
time, the key-value operation finishes directly in eBPF and
returns the response to clients, before which it releases the
bucket lock. In rare cases where its interested key-value is
in the user space, the operation needs to pass the operation
request/packet to the user-space process via the UDP sockets.
Under such cases, the operation still holds the bucket lock
when going to the user space, and only releases the lock when
it returns to eBPF. By “returns to eBPF”, we mean that the
response packet sent back by the user-space process will trig-
ger an eBPF program attached to the TC egress hook, which
releases the bucket lock.

However, to support high-performance key-value opera-
tions in this kernel-user-hybrid key-value store, we must ad-
dress two additional challenges:
• How to efficiently perform INSERT and UPDATE opera-

tions while maintaining read-all-write consistency? Prior
eBPF-offloaded key-value store BMC [19] adopts a simple
write-through cache design and performs well when all op-
erations are GETs. However, in workloads like TATP [46]
where 20% of transactions involve INSERTs/UPDATEs,
BMC would perform poorly because every such operation
will go to the user space.

• How to minimize the chance of going to the user space,
especially when clients issue many GET requests for non-
existing keys? Non-existing key lookups would require
enumerating all keys mapped to the kernel bucket includ-
ing those spilled into the user space, incurring high kernel
stack overheads. Such lookups are common in transaction
workloads; e.g., 68.75% of GETs for TATP’s largest table
target non-existing keys.

To this end, DINT designs a write-back mechanism that lazily
and efficiently maintains the read-after-write consistency, and
leverages a per-kernel-bucket Bloom filter to avoid frequently
going to the user space for non-existing key lookups.

3.2.1 Write-Back Key-Value Store in eBPF

As shown in Figure 3, a kernel bucket contains a dirty bit for
each stored key-value, indicating whether the value is different
from the user space; a key-value that only exists in eBPF will
always have the dirty bit set. Below, we go through how DINT
efficiently realizes each of the key-value operations across
eBPF and the user space. A recurring theme in the design of
each operation is that: DINT tries to support the majority of
key-value operations directly in eBPF by leveraging the dirty
bit, while maintaining consistency.
GET (Figure 4a): For simplicity, we assume the looked-up
key exists in the key-value store; we describe the non-existing
case in the next Section. In the frequent path (a) where the
GET operation finds the key in the kernel bucket, DINT di-

5



Kernel 
bucket

User 
bucket

(a) Hit: return 
KV

(b) Miss: carry 
an evicted/dirty 
KV [optional]

(b) Fill KV in 
kernel

UDP

(a) GET.

Kernel 
bucket

User 
bucket

(a) Free slot: 
set KV and 

dirty bit

(b) Full: evict 
a dirty KV 

or 

non-dirty KV
UDP

(b) INSERT.

Kernel 
bucket

User 
bucket

(a) Hit: update 
KV; set dirty 

bit

(b) Miss: evict 
a dirty KV 

or non-dirty
(b) update 
version in 

kernel 

UDP

(c) UPDATE.

Kernel 
bucket

User 
bucket

(a) Hit: clear 
valid bit

(b) Miss: clear 
valid bit; 

reconstruct BF

(b) Fill KV and 
BF in kernel 

(b) Carry a KV 
[optional] and 

BF
UDP

(d) DELETE.

Figure 4: DINT key-value store operations. Solid thick lines indicate frequent paths, while dotted thin lines mean rare paths. BF = Bloom Filter.

rectly returns the requested value to the client. In the rare
path (b) where the GET operation does not find the key: if the
kernel bucket is full, DINT chooses one existing key-value to
evict following a certain policy (described later) to make a
space for the looked-up key-value; otherwise, DINT chooses
one dirty key-value (if any) for lazily writing back to the user
space. DINT then optionally piggybacks the chosen key-value
on the packet and forwards it to the user-space process; DINT
uses the bpf_xdp_adjust_tail() function [47] to increase
the packet size for piggybacking. Once the process receives
the request packet, it will look up the key-value in the over-
flow buckets, and send back the response packet to the client
via the UDP sockets. For the piggybacked key-value, the user-
space process will update it into the overflow buckets. Finally,
the response packet goes through the TC egress eBPF pro-
gram, which clears the dirty bit of the piggybacked key-value
(if any), and fills the requested key-value into an empty or
non-dirty key-value field in the kernel bucket.
INSERT (Figure 4b): For simplicity, we assume the to-be-
inserted or the incoming key-value does not exist in the key-
value store 3. In the frequent path (a) where the INSERT oper-
ation finds an empty slot in the kernel bucket, DINT directly
writes the incoming key-value there, sets an initial version
and the dirty bit, and returns to the client. In the rare path
(b) where there is no empty slot in the kernel bucket, DINT
chooses a key-value to evict. Then there will be two cases:
• If the to-be-evicted key-value is not dirty, DINT will directly

replace it by the incoming key-value with a set dirty bit and
an initial version, and return to the client. DINT can directly
return as the to-be-evicted key-value has the same copy in
the user space, so there is no need to write it back. Since
the incoming key-value is marked dirty, a later eviction will
lazily write it back to the user space.

• If the to-be-evicted key-value is dirty, DINT will piggyback
it on the request packet, replace the bucket’s to-be-evicted
key-value by the incoming key-value with a clear dirty bit
and an initial version, then pass the request packet to the
user space. The user-space process will then update both
the evicted key-value and the incoming key-value into the
overflow buckets, and send back a response packet to the
client via the UDP sockets.

UPDATE (Figure 4c): For simplicity, we assume the to-be-
updated or the incoming key-value exists in the key-value

3If the to-be-inserted key-value already exists, this INSERT operation is
functionally equivalent to an UPDATE operation. Similar equivalence also
applies to the UPDATE operation in a reverse way.

store. In the frequent path (a) where the key-value is found
in the kernel bucket, DINT directly updates the key-value
there with a set dirty bit, increments the version counter, and
returns to the client. In the rare path (b) where the key-value
is not found, DINT chooses a key-value to evict. No matter
whether the to-be-evicted key-value is dirty or not, DINT
always needs to go to the user space, in order to fetch (and
increment) the version counter corresponding to the incoming
key-value. Therefore, DINT will piggyback the to-be-evicted
key-value on the request packet, replace the bucket’s to-be-
evicted key-value by the incoming key-value with a clear dirty
bit and an undefined version, then pass the request packet
to the user space. The user-space process will then update
both the evicted key-value and the incoming key-value into
the overflow buckets, increment the version counter of the
incoming key-value, and send back a response packet to the
client via the UDP sockets. More importantly, this response
packet will piggyback the updated version of the incoming
key-value, so that the TC egress eBPF program can update
the bucket’s undefined version to the updated one.
Eviction policy: DINT currently uses a simple eviction pol-
icy: it tries to evict the first non-dirty key-value when enu-
merating the bucket; if all the key-values are dirty, it then
evicts a random key-value. Prioritizing evicting non-dirty
key-value avoids going to the user space as much as possible
(especially under INSERT operations). Randomly choosing a
key-value if all is dirty minimizes the compute for selecting
a victim key-value. Implementing a more complex eviction
policy, e.g., based on key-value accessing frequency, might
help further reduce the chance of going to the space. But such
policy should be compute-light; otherwise, it may incur per-
formance drops [19]. Recent fast cache eviction algorithms
such as QD-LP-FIFO [82] may shed light on this space, and
we leave such exploration as future work.
Remark: So far, DINT carefully leverages the dirty bits to
run the majority of key-value operations directly in eBPF,
while maintaining read-all-write consistency and correct key-
value versions. For the DELETE operation, we deliberately
leave it for the next Section to describe, as it is highly related
to how we efficiently handle non-existing key lookups.

3.2.2 Handling GETs for Non-Existing Keys
So far, in the DINT key-value store, GET requests for non-
existing keys would enumerate all keys mapped to the indexed
kernel bucket including those spilled into the user space, in-
curring high kernel stack overheads. Conventional key-value
stores implemented in the user space do not have such a prob-
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lem because the enumeration overhead for them is only a few
more memory accesses; however, for the key-value store in
eBPF, the overhead escalates into expensive kernel network-
ing stack traversing and user-kernel context switching [19,87].

To handle non-existing key GETs efficiently, DINT main-
tains a small Bloom filter [5] in each kernel bucket, represent-
ing the membership of key-values spilled into the user space
(Figure 3). The Bloom filter is updated whenever a key-value
gets spilled into the user space. When a GET operation does
not find the looked-up key in its kernel bucket, it looks up
the Bloom filter to check if the key possibly exists in the user
space. If the Bloom filter answers no, then the GET operation
can guarantee that the key does not exist in the key-value
store, and directly return none to the client; otherwise, the
operation must go to the user space to check the overflow
buckets (see §3.2.1). Since the Bloom filter never reports an
existing key as non-existing (i.e., no false negative errors),
the above “early returning” in the GET operation is always
correct. DINT currently provisions 64 bits for the Bloom filter
in each kernel bucket, sufficient to handle dozens of spilled
key-values. To reduce the hash calculation overhead for the
Bloom filter, DINT reuses the highest six bits of the raw hash
value from the key-value store.

However, the Bloom filter design creates a challenge for
the key-value DELETE operation. This is because: when the
to-be-deleted key-value is in the user space, the DELETE
operation will need to remove the key-value from the Bloom
filter; however, the Bloom filter does not support member-
ship removal in order to guarantee no false negative errors.
To address this challenge, DINT lets the user-space process
reconstruct a new Bloom filter for the remaining key-values
whenever it deletes one, and then updates the new Bloom filter
to the kernel. Reconstructing the Bloom filter is doable, as the
user space records all the spilled key-values in its overflow
buckets. Formally, the DELETE operation works as follows.
DELETE (Figure 4d): For simplicity, we assume the to-be-
deleted key-value exists in the key-value store. In the frequent
path (a) where the INSERT operation finds the key-value in
the kernel bucket, it clears the valid bit and directly returns to
the client. In the rare path (b) where the key-value is not found
in the kernel bucket and the Bloom filter reports its existence
in the user space, the DELETE operation must forward the
request packet to the user space. The user-space process will
look up the key-value in the overflow buckets, clear its valid
bit, reconstruct a new Bloom filter based on the remaining
spilled key-values, and send back a response packet to the
client. The response packet will piggyback the new Bloom
filter and an optional spilled key-value (if existing, and this
key-value should not be covered in the new Bloom filter), and
trigger the TC egress eBPF program, which fills the Bloom
filter and key-value into the kernel bucket.

3.3 DINT Log Manager
High-performance distributed transaction systems store trans-
action logs in memory for failure recovery (assuming battery-

backed DRAM or fast NVRAM [14, 29]). The transactions
logs grow up as the transaction systems run: if they exceed the
log space (e.g., memory capacity of the machine), the trans-
action systems usually truncate the oldest logs [14] or dump
them into disks [76]; DINT follows the truncating manner.
Since the logging operation is on the transaction critical path,
DINT aims to provide a fast logging mechanism entirely in-
side the eBPF in failure-free cases, while supporting complex
offline recovery in failure cases.

To this end, DINT leverages the eBPF maps to implement
a circular log buffer abstraction entirely in the kernel. A cir-
cular log buffer allows pushing log entries to the tail to sup-
port logging operations in transaction systems; it also allows
popping log entries from the head (from the user space) to
support log replaying during failure recovery. DINT imple-
ments such a circular log buffer using a large-size eBPF ar-
ray map to store log entries, and another eBPF array map
to maintain the head and tail, both inside the kernel. These
two eBPF maps are also accessible to the user space for log
replaying. To avoid thread contentions during logging oper-
ations, DINT provisions a circular log buffer on each CPU
core. This is achieved by using the eBPF per-CPU array map
(BPF_MAP_TYPE_PERCPU_ARRAY [32]). When the log man-
ager looks up a per-CPU array map, it will automatically get
the map entry corresponding to its local CPU core.

4 DINT Implementation
Our DINT prototype consists of 2.1K lines of eBPF (for kernel
code) and 4.3K lines of C++ (for user-space code). DINT uses
Clang/LLVM-16 to compile the eBPF program into eBPF
bytecode. The eBPF bytecode gets attached to and runs inside
the XDP and TC hooks of the standard kernel networking
stack, atop unmodified Linux OSes. The user-space process
uses the standard POSIX kernel-visible threads (i.e., pthreads)
and the Linux UDP socket to receive rare-path request packets
and send response packets. Our prototype currently supports
two different transaction protocols, i.e., a 2PL-based proto-
col and an OCC-based protocol, demonstrating the genericity
of DINT’s designs to some extent. Our DINT prototype cur-
rently does not implement failure recovery to handle machine
failures; as described in Section 2.1, we assume a separate
configuration manager would handle them off the critical path,
thus not impacting the critical-path performance we focus on.

To reduce the performance impact of user-kernel context
switching when passing request packets to the user space,
DINT runs the user-space process (that handles rare-path re-
quests) on CPU cores that do not receive NIC interrupts or run
eBPF programs, similar to prior work [87]. This is achieved
by configuring the IRQ affinity of the NIC device to exclude
the rare-path handling core. Note that the rare-path handling
core does not do any busy polling and can be shared with
other applications.

To better reason about the performance of DINT, we build
two baseline transaction processing systems that run in the
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user space. One baseline uses the standard kernel UDP
socket with SO_REUSEPORT enabled to reduce thread con-
tentions [19], and pthreads. Another baseline uses the UDP
stack from the kernel-bypass runtime Caladan [17] that sup-
ports DPDK-style packet busy-polling and user-space thread-
ing for fast context switching. Both baselines leverage DINT’s
performance optimizations (e.g., lock sharing) if helpful, but
without eBPF programming constraints—so that they can
handle hash collisions efficiently using state-of-the-art solu-
tions [43]. The two baselines consist of 6.1K lines of C++.

5 Evaluation
This section aims to answer the following questions:
1. What is the throughput and latency of DINT compared to

kernel-bypass approaches (§5.1 and §5.2)?
2. Can DINT support different transaction protocols on trans-

action workloads efficiently (§5.1 and §5.2)?
3. Can DINT provide load-aware CPU scaling (§5.3)?
4. What are the effects of the write-back mechanism, Bloom

filter, and rare paths on DINT’s performance (§5.4)?
Testbed: We use 13 r650 physical machines from Cloud-
Lab [15]. Each machine has two 36-core (72 logic-core) Intel
Xeon Platinum 8360Y CPUs at 2.4GHz, 256GB memory,
and a dual-port Mellanox ConnectX-6 100Gb NIC via PCIe
4.0×16. All machines are connected via a Dell Z9432F switch
under the same rack. For all experiments, we use a single CPU
in the same NUMA domain as the NIC to enforce NUMA
locality; we also use a single 100Gb NIC port, as CloudLab
currently only wires one such port of r650 to the switch.

For all experiments, each machine runs an unmodified
Ubuntu 20.04 OS. For eBPF and UDP-related experiments,
we use kernel v6.1.0 which has full support for eBPF atomics.
We use the built-in Mellanox NIC driver on Linux kernel
v6.1.0 that has a default NAPI poll budget/batch size of 64
upon each interrupt. We disable Mellanox NIC’s interrupt
coalescing feature [11], as we find it hurts latency while not
increasing throughput, similar to prior work [87]. For Caladan-
related experiments, we are not able to run the Caladan run-
time on kernel v6.1.0, as it requires a customized kernel mod-
ule that relies on specific kernels; instead, we manage to run
it on kernel v5.8.0. Since Caladan uses the kernel-bypass net-
working stack and threading, different OS kernels should not
have a significant impact on its performance.
Measurement methodology: For transaction benchmark-
ing, we use 3 machines to run transaction servers with three-
way replication and sharding; that is, each machine is the
primary for one shard and a replica for the other two. For
microbenchmarks that benchmark individual lock manager,
key-value store, and log manager, we use 1 machine to run
the microbenchmark server without replication or sharding
to understand their standalone performance. We use the rest
machines to run multiple transaction/microbenchmark clients
that issue requests in a closed-loop manner. To avoid the
client machines becoming the bottleneck, we provision 8

cores on each transaction/microbenchmark server; the client
machines further use Caladan’s kernel-bypass UDP stack and
user-space threading to generate requests. We then vary the
number of clients, and measure the achieved throughput and
client-perceived median/average and 99th-tail latency, similar
to prior transaction works [6, 41, 55, 85].
Comparison baselines: As mentioned in Section 4, we com-
pare DINT to two baseline transaction processing systems:
one is based on the Linux kernel UDP socket, another is
based on the UDP stack from the kernel-bypass runtime Cal-
adan [17]. For simplicity, we just use kernel UDP and Caladan
to refer to these two baselines respectively. The Caladan base-
line is a challenging baseline that features DPDK-style packet
busy-polling, NIC RSS to evenly spread packets among avail-
able cores, and well-implemented and efficient user-space
UDP stack and threading.

We provision the memory sizes of the user-space key-value
store (for the two baselines), eBPF key-value store (for DINT),
and lock table (for all three) to be 1.5× of the key-values/locks
in corresponding workloads, similar to FaSST [29]. By de-
fault, kernel UDP and Caladan use all provisioned cores to
handle requests, while Caladan uses one extra core to run its
scheduler. DINT devotes one core out of the provisioned cores
to handle rare-path requests (§4), while the rest cores handle
frequent-path requests.

5.1 Microbenchmarks
To understand how each DINT component compares to base-
lines, we implement a series of microbenchmarks, including
a 2PL-based and an OCC-based lock manager with skewed
locking requests (80% shared locking requests or version
reads), a key-value store with 40B skewed reads, and a log
manager with 56B writes. These microbenchmark parameters
(e.g., skewness, value size) are derived from the TATP work-
load [46]. The two lock managers and the key-value store
are provisioned with 36 million lock/key slots, while their
requests target 24 million locks/keys.
Lock manager: Figure 5a and 5b show how the latencies
(both median and 99th-tail) of the 2PL and OCC lock manager
vary with different achieved throughput for different systems,
respectively. Each system performs similarly across the two
lock managers with the OCC lock manager being slightly
faster, as version reads in OCC do not run atomic operations.
Overall, DINT achieves 3.1×-3.2× higher throughput than
Caladan, with 0%-8%/5%-55% higher unloaded median/99th-
tail latency, while kernel UDP performs much worse than
others. We notice that DINT has throughput fluctuations at
high loads; we think this is because the achieved batch size
during interrupt handling gets changed unstably.

It might be supersizing that DINT achieves even higher
throughput than the kernel-bypass Caladan system. How-
ever, this is achievable, as Caladan wraps raw UDP pack-
ets into a high-level connection-oriented abstraction (i.e.,
rt::UdpConn) for applications, which loses some perfor-
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Figure 5: Microbenchmark load-latency curves (both median and 99th-tail).

mance, while DINT directly works on low-level UDP/eth-
ernet packets. In Caladan, each transaction server creates a
rt::UdpConn for each transaction client and spawns a user-
space thread to handle corresponding transaction requests.
Although rt::UdpConn only maintains simple connection
states and user-space threading is efficient (e.g., 50ns per
context switching [60]), they still consume extra CPU time,
compared to DINT that directly modifies incoming ethernet
packets and forwards back.

In terms of latency, kernel-bypass Caladan achieves lower
minimum latency than kernel-stack DINT, e.g., 13µs vs. 14µs
of the median and 20µs vs. 23µs of the 99th-tail for the
2PL lock server. The latency gap, especially for the 99th-
tail, is mainly caused by the interrupt-driven nature of DINT,
which includes the overheads of NIC interrupt delivery and
running interrupt handler. We note that such overheads can
be effectively amortized under high loads, thus not impacting
throughput. We think the small increased latency is acceptable,
as the current data center network usually has one or a few
tens of microseconds RTT [20, 50].
Key-value store: Figure 5c shows the load-latency curves
for the key-value store. Both Caladan and DINT’s perfor-
mance gets dropped compared to the lock managers, due to
more compute in key-value operations. DINT achieves 2.17×
higher throughput than Caladan, while having 0%-7%/27%-
57% higher unloaded median/99th-tail latency. The minimum
latency for Caladan and DINT is 14µs vs. 15µs for the me-
dian, and 21µs vs. 25µs for the 99th-tail, demonstrating DINT
only incurs small interrupt handling overheads.
Log manager: Figure 5d shows the load-latency curves for
the log manager. Similarly, DINT outperforms Caladan on
throughput (by 3.6×) but sacrifices latency (by 0%-7% for
unloaded median and 5%-40% for unloaded 99th-tail). Re-
garding the absolute performance number, DINT achieves up
to 7.4 Mops per core. This translates into as low as 0.14µs per
operation/packet, demonstrating the efficiency of offloading
frequent-path operations into the kernel. Both DINT and Cal-

adan achieve higher throughput on the log manager than the
lock managers, as the serial log appending operations have
better cache locality.

5.2 Transaction Benchmarks
We now evaluate DINT and other baselines on typical OLTP
workloads, including TATP [46] and SmallBank [75]. TATP
is a read-intensive OLTP benchmark modeling database be-
haviors of telecommunication providers. It features small
key-values (8B keys and 40B values), 80% read-only transac-
tions that read one or more keys, and 20% transactions that
modify key-values. We provision 7 million TATP subscribers
sharded across the three transaction servers. Similar to prior
works [14, 29], we use the OCC-based transaction protocol
(see §2.1) for the read-intensive TATP workload.

SmallBank is a write-intensive OLTP benchmark model-
ing bank account transactions, with 8B keys and values, and
85% write transactions. We provision 24 million bank ac-
counts sharded across the three transaction servers. We use
a 2PL-based transaction protocol suitable for write-intensive
workloads. Compared to OCC, the 2PL-based protocol uses
read-write locks in the read+lock phase without the validate
phase; it has similar log and commit phases (§2.1).

DINT can easily support both transaction protocols by lever-
aging different lock managers and slightly changing client
behaviors, demonstrating the genericity of its designs.
TATP: Figure 6a and 6b show how the average4 and 99th-
tail transaction latencies of different systems change when
varying the throughput, respectively. DINT achieves 1.9×
higher transaction throughput than Caladan with 7%/12%-
16% higher unloaded average/99th-tail latency. As described
in Section 5.1, the higher throughput of DINT benefits from
directly manipulating and forwarding raw ethernet/UDP pack-
ets immediately after the NIC driver receives the packets, in
contrast to Caladan that works on a high-level connection-

4We show the average rather than the median, as transaction workloads
contain many small transactions that dominate the median latency.
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Figure 6: OCC on TATP workload. Mtps = Million transactions per
second.

Kernel UDP Caladan Dint

0.0 2.5 5.0 7.5
Throughput (Mtps)

0

50

100

150

200

A
ve

ra
ge

 la
te

nc
y 

(μ
s)

(a) Average latency vs. tput.

0.0 2.5 5.0 7.5
Throughput (Mtps)

0

250

500

750

1000

99
th

-ta
il 

la
te

nc
y 

(μ
s)

(b) 99th-tail latency vs. tput.

Figure 7: 2PL on SmallBank workload.

oriented abstraction. Meanwhile, batching effectively amor-
tizes interrupt handling overheads in DINT, leading to a high
sustained load on transaction servers. On the other hand, such
batching inevitably causes higher latency for DINT when
compared to the kernel-bypass polling-based Caladan, i.e.,
1µs/12µs higher minimum average/99th-tail latency.

Although not an apple-to-apple comparison, we cite pub-
lished performance numbers of RDMA-based transaction sys-
tems to demonstrate the throughput achieved by DINT is
within the same order of magnitude as RDMA-based ones.
For example, FaSST reports 8.7 Mtps/machine with 14 cores
and 1 million TATP subscribers per machine [29, §6.2], while
DINT achieves 5.62 Mtps/machine with 8 cores and 2.3 mil-
lion subscribers per machine.
SmallBank: Figure 7a and 7b show the average and 99th-
tail transaction latencies of different systems when varying
transaction throughput under the SmallBank workload. DINT
achieves 2.6× higher throughput than Caladan, while only
adding 2%-4%/3%-9% unloaded average/99th-tail latency;
the added minimum average/99th-tail latency is 2µs/5µs.
Each SmallBank transaction consists of ∼10 transaction re-
quests on average, including locking and key-value opera-
tions; therefore, DINT could sustain ∼82 million/sec request
rate on 24 cores across three machines. Therefore, DINT’s
per-core request rate, i.e., ∼3.4 mops, is also within the same
order of magnitude as RDMA two-sided operations, i.e., 3.6
mops reported by [79, Figure 3] on a ConnectX-6 NIC.

5.3 CPU Utilization
We now examine whether DINT can scale CPU usage as load
changes, avoiding burning CPU cores. We use the same TATP
workload as in Section 5.2, but provision enough number of
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Figure 8: Core usage vs. throughput (on TATP).

KV workload
[Throughput (Mops)]

Write-through
(BMC [19])

Write-back Write-back+BF
(DINT)

All GETs, all exists 21.6 21.7 21.7
80% GETs, all exists 1.0 21.1 20.9

80% GETs, 31% exists 0.4 0.5 25.0

Table 1: Impact of write-back and Bloom filter. “80% GETs” and
“31% exists” are based on the TATP workload and its largest table.

clients, specify different transaction rates (by adjusting the
sleeping time interval between two consecutive transaction
requests in each client), and measure the CPU core usage of
transaction servers. For kernel UDP and DINT, they rely on
NIC interrupt to wake up any sleeping kernel-visible thread
(i.e., pthread) when packets arrive. For Caladan, it supports a
CPU-efficient non-spinning mode where the dedicated sched-
uler busy polls the NIC, and wakes up sleeping user-space
threads when needed via IPIs (Inter-Process Interrupt); the
Caladan scheduler also reallocates CPU cores every 5µs for
the application process based on various load signals (e.g.,
packet and thread queueing delay [17]), to provision just-
enough CPU cores for the current load.

Figure 8 shows how the CPU core usage varies with dif-
ferent throughput for different systems. Until 5 Mtps load,
Caladan achieves the lowest core usage and can additively
allocate more cores as the throughput increases, due to its fast
core reallocation. After 5 Mtps load, DINT achieves lower
CPU usage than Caladan and can additively scale its CPU
usage to 17 Mtps, because of packet batching during inter-
rupt handling. Kernel UDP has the worst CPU scaling curve,
caused by the high overheads of frequent kernel networking
stack traversing and user-kernel context switching. Neverthe-
less, to enable more efficient CPU scaling for DINT under low
loads, one way could be consolidating multiple NIC interrupts
onto fewer cores to leverage batching to reduce per-packet
processing overheads. We discuss more in Section 6.

5.4 Design Drill-Down
5.4.1 Impact of Write-Back and Bloom Filter
Table 1 shows how the write-back and Bloom filter designs
impact DINT performance on different key-value store work-
loads. With all GETs and all keys existing, the write-through,
write-back, and write-back + Bloom filter achieve similar
throughput. Once with 20% PUTs, the write-through through-
put drops to 1.0 Mops because of handling PUTs in the user
space, while the other two keep similarly high throughput.
Furthermore, adding 68.75% key-value operations for non-
existing keys, only the write-back + Bloom filter can achieve
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Figure 9: Impact of varying the eBPF memory size under the TATP
workload. “Ratio of eBPF memory” is against the workload dataset
size including both locks and key-values.

high throughput, as it handles most key-value operations in
the kernel, for both existing and non-existing keys.

5.4.2 Impact of Rare-Path Ratio
Figure 9a and 9b shows how different rare-path ratios (by
changing the eBPF memory size) impact DINT’s transaction
throughput. The rare-path ratio significantly impacts DINT
performance. For example, with 10% of the workload dataset
size in the eBPF memory, which gives 18% of rare-path packet
ratio, DINT only achieves 740 Kops. Once we provision the
eBPF memory to be 1.5× of the workload dataset size, similar
to how FaSST [29] provisions its hash table, there will be
only 1.7% of rare-path packet ratio, and DINT reaches 16.7
Mops. This supports the DINT’s design principle of offloading
frequent-path operations as much as possible into the kernel.

5.5 Comparison to More Baselines
We now compare the performance of DINT with more base-
lines that leverage other networking stacks. In particular, we
compare to eRPC [28] and AF_XDP socket [31]. eRPC is a
kernel-bypass event-driven RPC library that builds on top of
raw ethernet packets with its own efficient reliable transport
protocol. It supports both DPDK and RDMA in busy-polling
manners; our testing uses DPDK. AF_XDP is a new ker-
nel socket family that leverages eBPF/XDP to directly DMA
packet payload to a pre-registered user-space memory region,
so that user-space applications can efficiently receive and
send packets in a zero-copy manner. AF_XDP appears to ap-
plications as a set of socket APIs, so the application’s packet
processing logic can be written in a normal programming lan-
guage (e.g., C/C++, Go) without the strict kernel verification
as in eBPF. We run AF_XDP with two modes: floating where
all provisioned cores handle NIC interrupts and run transac-
tion servers, and dedicating where half of the cores handle
NIC interrupts and another half run transaction servers.

Figure 10a and 10b shows the load-latency curves of eRPC,
AF_XDP, and DINT for the OCC lock manager and key-value
store respectively. For both applications, eRPC achieves the
lowest minimum latency—8µs lower than DINT on both ap-
plications. For the lock manager, DINT achieves the highest
throughput, and outperforms AF_XDP by 1.6× and eRPC by
2.3×. eRPC suffers from latency spikes at low loads because
of insufficient RPC batching. For the key-value store that has
more compute per operation, DINT has similar throughput as
AF_XDP while achieving 29% lower minimum latency, be-
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Figure 10: Comparing eRPC and AF_XDP with DINT.

cause of directly handling requests in the kernel without going
into the user space; DINT achieves 1.4× higher throughput
than eRPC. The throughput results for eRPC must be taken
with a grain of salt: eRPC builds a generic loss-tolerant RPC
abstraction with session management, while DINT relies on
transaction semantics to handle packet losses and works on
raw ethernet/UDP packets.

One interesting observation is that AF_XDP in the floating
model performs much worse than the dedicating mode; simi-
lar results occur for DINT on the CPU placement of rare-path
request handling process as described in Section 4. This is
caused by the high user-kernel context switching overheads
when co-locating interrupt handling and the application pro-
cess on the same cores. We discuss further in Section 6.

6 Discussion and Future Work
Symmetric vs. asymmetric models: DINT adopts an asym-
metric client-side transaction model [41, 55, 59, 85], where
each transaction server “passively” handles incoming trans-
action requests. DINT then leverages eBPF/XDP to offload
transaction server operations into the kernel. In contrast, a
symmetric model [14, 29, 80] requires the transaction server
to also act as a client to issue transaction requests. This cre-
ates challenges to DINT, as eBPF/XDP itself cannot generate
new packets. Fortunately, by leveraging the AF_XDP tech-
nique (see §5.5) that provides fast packet sending function-
ality, DINT could support symmetric models efficiently. We
leave the integration of DINT with AF_XDP as future work.
Implications to networking stack research: DINT shows
that the kernel networking stack can achieve kernel-bypass-
like throughput and latency, but has worse CPU efficiency
under low loads than well-engineered kernel-bypass stacks
(§5.3). Therefore, we call for more research on optimizing the
CPU efficiency of the kernel networking stack that offloads
application operations. One idea may be smartly consolidat-
ing NIC interrupts to just-enough CPU cores by manipulating
the NIC IRQ affinity, which leverages batching during inter-
rupt handling to reduce per-packet processing overheads. This
shares the same goal as Shenango [60] and Caladan [17], but
targets the interrupt-driven kernel networking stack.

Another research problem is how to isolate the kernel stack-
offloaded operations and user-space operations, as naively
co-locating both on the same cores would cause severe per-
formance drop due to frequent user-kernel context switching
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(see §4 and §5.5). DINT currently uses a simple static par-
titioning policy, but a more advanced dynamic partitioning
policy could possibly provide better performance.
Implications to transaction protocol research: Co-
designing transaction protocols with eBPF allows for both
high performance and good CPU efficiency. In this work, we
co-design an OCC/2PL-based transaction protocol in DINT.
DINT should also be able to support more advanced trans-
action protocols like MDCC [39] and Tapir [85] that essen-
tially rely on read-write and version-based locking. To sup-
port advanced protocols like ROCOCO [56] and Janus [57]
that maintain transaction dependency DAGs in the lock man-
ager, DINT would need to maintain complex graph data struc-
tures in eBPF, which calls for more co-designs to address the
challenge of eBPF programming constraints. In an attempt
to reduce CPU utilization, many transaction systems have
pushed to incorporate network offload devices like RDMA
and smartNICs [14, 72]. However, these devices are much
more expensive than commodity NICs, and come with cus-
tomized network stacks that have high maintenance overheads
in terms of engineering. DINT provides the opportunity for
accomplishing similar goals without the need for expensive
customized hardware, and provides a new point in the design
space for transaction protocol developers to explore.
Wish list for eBPF: The most helpful feature would be
supporting dynamic memory allocations so that offloaded
states could be more memory-efficient. Another helpful fea-
ture would be the egress XDP hook. When developing DINT,
we were thinking of using the AF_XDP socket to process
rare-path request packets (instead of the slower UDP socket);
however, AF_XDP faces troubles with the egress bookkeep-
ing of in-kernel states (§3.2), as it relies on the ingress-only
XDP while bypassing the egress TC hook. Currently, the only
way for AF_XDP to work is by calling eBPF functions in the
user space, but this suffers from high syscall overheads. If
the kernel supports the egress XDP hook, DINT could instead
leverage the faster AF_XDP socket to handle rare paths.

7 Related Work
Distributed in-memory transactions: By leveraging battery-
backed DRAM or NVRAM, distributed transactions are
no longer bottlenecked by disk IOs, but the networking
IOs. This has spurred a series of research that leverages
RDMA to implement distributed in-memory transactions, e.g.,
FaRM [14], FaSST [29], DrTM [81], DrTM+R [8], DrTM+H [80],
and Prism [6]. Rather than using RDMA that bypasses ker-
nels, DINT sticks to the most common commodity NICs with
the kernel networking stack for better security, isolation, pro-
tection, maintainability, and debuggability, without losing per-
formance.
High-performance networking stacks: The inefficiency of
traditional kernel networking stack has motivated the designs
of many kernel-bypass networking stacks, e.g., mTCP [24],
eRPC [28], Snap [50], Demikernel [84] and more [17, 30, 36,

60, 62, 73]. These stacks generally require DPDK-style busy
polling, and trades security, protection, maintainability, and
more for high performance. Instead, DINT provides compa-
rable high performance without busy polling for distributed
transaction applications, while guaranteeing kernel-based se-
curity, protection, maintainability, etc.

Perhaps the most relevant work to DINT in this space is
IX [3] which implements a protected kernel networking stack
and achieves kernel-bypass performance. To achieve high
networking performance, IX leverages adaptive batching to
amortize user-kernel transition overheads, while DINT relies
on the built-in batching of the existing kernel networking stack
to amortize interrupt handling overheads. One advantage of
DINT over IX is that DINT directly works for existing widely-
deployed Linux kernels without any kernel modifications or
customized kernel modules.
Hardware offloading for applications: Offloading network-
intensive operations to specialized hardware such as FPGA [1,
22, 40, 44], SmartNICs [35, 42, 45, 63, 71, 79], and pro-
grammable switches [13, 25, 26, 83] significantly improves
application performance. However, they are generally hard
to deploy in today’s cloud environments [28, 87], as these ad-
vanced hardware are not widely available in the public cloud.
In contrast, DINT aims to be readily-deployable by leverag-
ing the kernel-native eBPF techniques on widely-deployed
modern Linux kernels.
eBPF applications: eBPF is mostly used for packet filter-
ing [51], infrastructure monitoring [2,65], and L4 load balanc-
ing [16] in industry. Recent research has proposed more appli-
cations including: accelerating key-value stores [19], sidecar
proxies [67], Paxos [87], DBMS proxies [7], gathering con-
gestion control signals [58], guiding request scheduling [27],
offloading storage functions [86], and optimizing locks [61].
DINT is a new eBPF application targeting distributed transac-
tions.

8 Conclusion
DINT is a distributed in-memory transaction system under
the kernel networking stack, yet achieving kernel-bypass-like
throughput and latency. DINT achieves this by offloading
transaction data structures and operations into the kernel via
eBPF techniques, significantly reducing kernel stack over-
heads. Compared to a transaction system implemented using
Caladan, a well-engineered kernel-bypass networking stack,
DINT even achieves 2.6× higher throughput and only adds
7%/16% unloaded average/99th-tail latency.

More importantly, DINT challenges the conventional belief
that the kernel networking stack is not suitable for distributed
in-memory transactions, or generally, µs-scale networked ap-
plications; DINT shows that, with proper application-kernel
co-design enabled by eBPF, one important class of such appli-
cations under the kernel networking stack can achieve kernel-
bypass-like performance. We will open source DINT.
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[14] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of ACM
SOSP, pages 54–70, 2015.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
Design and Operation of CloudLab. In Proceedings of
USENIX ATC, pages 1–14, 2019.

[16] Facebook. Katran: A High-Performance Layer 4 Load
Balancer. https://github.com/facebookincubat
or/katran.

[17] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In Proceedings of USENIX OSDI,
pages 281–297, 2020.

[18] Jian Gao, Youyou Lu, Minhui Xie, Qing Wang, and Jiwu
Shu. Citron: Distributed Range Lock Management with
One-sided RDMA. In Proceedings of USENIX FAST,
pages 297–314, 2023.

[19] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating Mem-
cached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In Proceedings of USENIX NSDI, pages 487–
501, 2021.

[20] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan MG Wassel, Zhehua Wu, Sunghwan Yoo,
et al. Aquila: A unified, low-latency fabric for datacen-
ter networks. In Proceedings of USENIX NSDI, pages
1249–1266, 2022.

[21] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The eXpress Data Path: Fast
Programmable Packet Processing in the Operating Sys-
tem Kernel. In Proceedings of ACM CoNEXT, pages
54–66, 2018.

13

https://cilium.io/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://www.tpc.org/tpcc/
https://www.tpc.org/tpcc/
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran


[22] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In Proceedings of USENIX NSDI, pages
425–438, 2016.

[23] Brendan Jackman. Atomics for eBPF. https://lwn.
net/Articles/840224/.

[24] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
USENIX NSDI, pages 489–502, 2014.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination.
In Proceedings of USENIX NSDI, pages 35–49, 2018.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing Key-Value Stores with Fast
In-Network Caching. In Proceedings of ACM SOSP,
pages 121–136, 2017.

[27] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-Defined Schedul-
ing Across the Stack. In Proceedings of ACM SOSP,
pages 605–620, 2021.

[28] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of USENIX NSDI, pages 1–16, 2019.

[29] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185–201, 2016.

[30] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of EuroSys, pages 1–16, 2019.

[31] The Linux kernel development community. AF_XDP.
https://docs.kernel.org/networking/af_xdp.
html.

[32] The Linux kernel development commu-
nity. BPF_MAP_TYPE_ARRAY and
BPF_MAP_TYPE_PERCPU_ARRAY. h t t p s :
//docs.kernel.org/bpf/map_array.html.

[33] The Linux kernel development community. NAPI. http
s://docs.kernel.org/networking/napi.html.

[34] The Linux kernel development community. struct
sk_buff. https://docs.kernel.org/networki
ng/skbuff.html.

[35] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
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Abstract
Implementing distributed protocols under a standard Linux
kernel networking stack enjoys the benefits of load-aware
CPU scaling, high compatibility, and robust security and iso-
lation. However, it suffers from low performance because of
excessive user-kernel crossings and kernel networking stack
traversing. We present Electrode with a set of eBPF-based
performance optimizations designed for distributed protocols.
These optimizations get executed in the kernel before the
networking stack but achieve similar functionalities as were
implemented in user space (e.g., message broadcasting, col-
lecting quorum of acknowledgments), thus avoiding the over-
heads incurred by user-kernel crossings and kernel network-
ing stack traversing. We show that when applied to a classic
Multi-Paxos state machine replication protocol, Electrode im-
proves its throughput by up to 128.4% and latency by up to
41.7%.

1 Introduction
Distributed protocols such as Paxos [37] for state machine
replication are important building blocks for highly-available
distributed applications. For example, Google’s Chubby [6]
uses a variant of classic Paxos [37] and Multi-Paxos [36] to
implement a highly-available lock service, powering their
business-critical GFS [16] and Bigdata [7] applications.
Google’s globally-distributed database Spanner [8] and Mi-
crosoft’s data center management tool Autopilot [22] also run
Paxos protocols to maintain their high availability.

Existing high-performance implementation of distributed
protocols tends to be radical and not readily-deployable.
DPDK-based kernel-bypass approaches [27, 79] allow direct
access to the underlying NIC hardware, but require appli-
cation developers to build their own networking stack and
maintain compatibility with the evolving kernel networking
stack [75]. DPDK also dedicates CPU cores to busily poll
the network interface for I/O competition, sacrificing CPU
resources and wasting energy during low I/O loads. This
is especially a problem for embedded devices [51, 60, 70]
where CPU resources are rare. Other approaches co-design
specialized distributed systems with niche network hardware
including RDMA [11, 28, 76], FPGA [23], SmartNICs [66],
and programmable switches [25]. These advanced hardware
devices are not widely available in today’s cloud environ-
ments, and systems built on top of them tend to be difficult to
design, implement, and deploy [27].

∗Equal contribution

Instead, we would prefer the widely-deployed and well-
maintained standard kernel networking stack that also pro-
vides load-aware CPU scaling and strong security and iso-
lation among different applications [5, 59]. However, imple-
menting distributed protocols under the standard kernel net-
working stack often gives poor performance. The root causes
are the high packet processing overhead in the kernel network-
ing stack and heavy communications in distributed protocols.
Our measurement shows that over half of CPU time is spent
on the kernel networking stack in a typical Paxos deploy-
ment (§2); such overhead is mainly caused by user-kernel
crossings (and associated context switches) and traversing
the kernel networking stack. Moreover, when using a clas-
sic leader-based Multi-Paxos protocol [43, 54] to implement
state machine replication, e.g., with five replicas, processing
a single request would require the leader node to send/receive
fourteen messages in total (see Figure 1a), suffering from the
kernel stack overhead fourteen times1.

In this paper, we focus on accelerating Paxos protocols in-
side data centers by offloading protocol operations to the ker-
nel via eBPF (i.e., extended Berkeley Packet Filter) [46, 49].
eBPF allows safely executing customized yet constrained
functions inside the kernel at various locations. Similar to ker-
nel bypass, the offloaded operations get executed immediately
after the NIC driver receives the packet, without user-kernel
crossing and kernel networking stack traversing. Unlike ker-
nel bypass, eBPF is an OS-native mechanism such that eBPF-
offloaded operations do not sacrifice security and isolation
properties while amenable to load-aware CPU scaling without
busy-polling.

The key challenge is, given the constrained programming
model of eBPF, which parts of Paxos protocols to offload that
can greatly reduce kernel stack overhead while being imple-
mentable and efficient in eBPF. Note that the eBPF subsystem
requires every offloaded function to be statically verified to
guarantee kernel security, which only allows limited instruc-
tions, bounded loops, static memory allocation, etc.

Our insight is that common operations of Paxos protocols,
e.g., message broadcasting and waiting on quorums, incur
large kernel stack overhead, but are naturally offloadable by
existing eBPF programming capacity. For example, Paxos pro-
tocols require a leader node to broadcast preparation messages
to follower nodes; if implemented using multiple sendto()
syscalls conventionally, it would incur multiple user-kernel

1Linux io_uring [1] can reduce user-kernel crossings, but cannot reduce
kernel stack traversing (see §8 for details).
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Figure 1: Normal case execution of the leader-based Multi-Paxos/Viewstamped Replication protocol vs. Electrode-accelerated one with 5
replicas. Electrode offloads 1⃝: message broadcasting (§4.1), 2⃝: fast acknowledging (§4.2), and 3⃝: wait-on-quorums (§4.3) to eBPF to reduce
the kernel networking stack overhead.

crossings and kernel networking stack traversing. Instead,
eBPF has a bpf_clone_redirect() [45] function that en-
ables us to clone an in-kernel packet buffer multiple times and
send them to different destinations; this eBPF-based message
broadcasting only needs one user-kernel crossing and one
kernel networking stack traversing. Besides broadcasting, we
also utilize eBPF to reduce unnecessary wake-ups of user-
space applications when waiting on quorums, and optimize
how follower nodes handle preparation messages by early
acknowledging before entering the kernel networking stack.
The final result of these three eBPF-based optimizations is
Electrode2 (Figure 1b). When applying Electrode to a classic
leader-based Multi-Paxos protocol, it achieves up to 128.4%
higher throughput and 41.7% lower latency. This translates
into up to 112.9% higher throughput and 19.3% lower latency
for a Paxos-based transactional replicated key-value store.

Electrode has some limitations: it currently targets pro-
tocols implemented in UDP and relies on application-level
retransmission to handle packet loss. This works well for
Paxos protocols whose requests are usually small enough to
fit into a single packet, and data center environments where
packet loss is rare [28, 61].

2 Background

2.1 Consensus Protocols
Distributed protocols that coordinate and synchronize among
a collection of nodes have become an indispensable part of
the modern data center application stack. Storage systems in
data centers replicate data for fault tolerance and availability.
For instance, Berkeley-DB [55] uses a consensus protocol to
replicate its logs over a set of distributed replicas. Transac-
tional storage systems like H-Store [71] and Spanner commit
their updates to multiple replicas in order to be more failure
resilient. At the heart of most replication-based systems is a
consensus protocol [36,37,43,54] that ensures that operations
execute in a consistent manner across all replicas.

2Electrode is a Pokémon that has a high speed score.

Here, we consider a set of nodes either functioning as
clients or replicas. Clients are the users of a particular
application-level service hosted by a collection of replicas. It
should also be noted here that clients could often just be other
servers within the same data center. Clients submit requests
to one or more replicas, which triggers a round of agreement
to occur. Paxos is a common protocol that is used to obtain
an agreement in the presence of node and network failures.

Since applications often need to reach agreements on many
client requests, servers use agreement protocols like Paxos to
implement a state machine-based abstraction that requires all
the replicas to process the exact same set of client requests
in the same order. This log-based state machine abstraction
is often optimized by the use of a leader. In a leader-based
protocol, all the instances of agreement on client requests are
mediated through the leader and the leader also dictates the
order of the log.

In Figure 1a, we have an example of VR (Viewstamped
Replication), a leader-based Multi-Paxos protocol that uses
Paxos for running agreements on individual requests. The
leader here is responsible for ordering all client requests by
assigning sequence numbers to them, and the followers (non-
leader nodes) are responsible for responding to the leader
and applying all the updates in the order in which they’re
sequenced by the leader.

The leader is also responsible for initiating agreement by
sending out a preparation message to all the other replicas.
The leader then waits for a quorum of acknowledgments from
all the other replicas before broadcasting a commit message
to all the replicas. A successful iteration of this two-round
protocol ensures that all non-failed replicas have the client’s
request. And the sequence number assigned by the leader
determines the order in which all the replicas process this
client’s request. This pattern of broadcasting and waiting on
quorums is common in many distributed protocols [38,39,80].

To gain more insights into the performance of the Multi-
Paxos/VR protocol under the standard Linux kernel net-
working stack, we measure the CPU time breakdown of
the leader node, shown in Table 1. There is 44.7% +
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Function Name Description % CPU
__libc_sendto() User function to send packets. 44.7

|– sock_sendmsg() Kernel function to send packets. 32.2
| |– __alloc_skb() Allocate sk_buff for packets. 4.5
| |– dev_queue_xmit() Transmit sk_buff. 6.8
| |– bookkeeping For sock, IP, and UDP layers. 20.9
|– user-kernel crossing Interrupt, mode switching, etc. 12.5

__libc_recvfrom() User function to recv packets. 11.8
|– sock_recvmsg() Kernel function to recv packets. 5.7
|– user-kernel crossing Interrupt, mode switching, etc. 6.1

Table 1: CPU time breakdown for the leader node when running the
Multi-Paxos/Viewstamped Replication protocol with 5 replicas. See
§7 for measurement setup.

11.8% = 56.5% of time spent on the __libc_sendto()
and __libc_recvfrom() functions, while 20.9%+12.5%+
6.1% = 39.5% of time spent on user-kernel crossing and ker-
nel networking stack bookkeeping. These numbers concrete
our previous motivations that implementing distributed proto-
cols under kernel networking stack incurs significant overhead
on user-kernel crossings and kernel stack traversing (while
eBPF can potentially save them).

2.2 eBPF and Hooks
BPF (i.e., Berkeley Packet Filter) [49] enables user-space
applications to customize packet filtering in the kernel. A
BPF program, written in some predicates on packet fields,
is triggered by the kernel event that a packet arrives at a
NIC driver. Once triggered, the BPF program will run inside
a kernel virtual machine with limited registers and scratch
memory, and a reduced instruction set [49]. For example, the
well-known tcpdump [20] command-line packet analyzer is
based on BPF.
eBPF extends the BPF by increasing the number of regis-
ters and adding stack memory. The increased number of reg-
isters and stack memory enable the eBPF program to ex-
ecute more complex operations—the developers can use a
C-like language to express customized operations. This C-like
code is compiled into an eBPF bytecode by the Clang/LLVM
toolchain and runs inside the kernel virtual machine via just-
in-time compilation.

eBPF also introduces various powerful in-kernel data struc-
tures called eBPF maps, which, paired with various helper
functions, are used to store and maintain states across multiple
triggering of eBPF programs. Example eBPF maps include
array, per-CPU arrays, queues, stacks, and hashMaps [46].
These maps are also used to communicate among different
eBPF programs and between eBPF programs and user-space
processes. Each eBPF map can be identified by a map_path
through the file system, e.g., /sys/fs/bpf/<map_name>,
and user-space processes can access a map based on its path.

The kernel events that can trigger eBPF programs are called
eBPF hooks. There are many hooks existing in Linux kernels

Network Interface Card (NIC)

eXpress Data Path (XDP)

Traffic Control (TC)

Netfilter

UDP/TCP Stack

Socket Layer

RX TX

NIC Driver

Figure 2: Linux kernel networking stacks and eBPF XDP/TC hooks.

and various device drivers, such as hooks in NIC drivers
right after it receives a packet. User-space applications can
attach eBPF programs to these eBPF hooks to customize the
handling of corresponding kernel events.
Constrained programming model: An eBPF program needs
to go through strict verification by an in-kernel eBPF verifier
before attaching to an eBPF hook and running inside the ker-
nel. The verification process does a static sanity check to make
sure the eBPF program does not have out-of-bounds memory
access (i.e., safety) and will always terminate (i.e., liveness).
The verifier basically enumerates all possible cases of every
conditional branch and loop to make sure every execution
path meets the safety and liveness requirements. Because the
verification tends to be time-consuming, each eBPF program
can only contain up to 1 million instructions. For a larger
eBPF program, the developer needs to split it into multiple
smaller eBPF programs and uses tail calls to let one eBPF
program call another one in a continuation manner.

Because of the strict verification process, dynamical mem-
ory allocation is not supported in eBPF programs; instead,
eBPF programs can only rely on eBPF maps with capacity
specified statically to maintain in-kernel states.

Due to these limitations, eBPF is commonly used in kernel
tracing, profiling, and monitoring [3,63] and L2-L4 low-level
packet processing such as load balancing [14].
XDP (eXpress Data Path) [21, 64] technique implements an
in-kernel eBPF hook that enables attached eBPF programs
to process RX packets directly out of the NIC driver (Figure
2). Such processing gets triggered before any sk_buff [31]
allocation or entering software socket queues, thus bypassing
any higher-level networking stacks (e.g., UDP, TCP, Socket).
XDP-based packet processing normally achieves comparable
throughput and latency as DPDK-based kernel-bypass packet
processing [21].
TC (Traffic Control) [47] is another important layer/hook
which locates right after the XDP (Figure 2). In the TC layer,
the sk_buff data structure has already been allocated by the
kernel networking stack, thus the performance of TC-based
packet processing will be slightly worse than XDP. However,
the TC hook allows attached eBPF programs to process both
RX and TX packets and manipulate the packet sk_buff. For
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example, one can clone the sk_buff for a TX packet and
thus implements packet broadcasting in the TC layer.

3 Electrode Overview
Electrode is a framework for offloading Paxos protocols under
kernel networking stack to in-kernel eBPF programs to reduce
user-kernel crossings and kernel networking stack traversing.
Electrode has two goals in designing its eBPF offloads: 1)
largely reducing kernel stack overhead to improve perfor-
mance, and 2) carefully partitioning user- and kernel-space
functionalities to keep offloads implementable and efficient
inside the eBPF subsystem.

To achieve the first goal, Electrode carefully extracts
generic and performance-critical fast-path operations from
Paxos protocols to offload to the eBPF. As shown in Fig-
ure 1b, Electrode offloads message broadcasting (§4.1), fast
acknowledging (§4.2), and wait-on-quorums (§4.3). These
operations, if purely implemented in the user space, would
involve many user-kernel crossings and kernel stack travers-
ing, causing significant kernel stack overhead as shown in
§2. Once implemented in the eBPF, message broadcasting
allows the leader node to efficiently send preparation and
commit messages to multiple follower nodes, by cloning and
sending packets in the kernel; fast acknowledging enables
follower nodes to buffer preparation messages in the kernel,
and quickly respond to the leader node without involving user-
space processes; wait-on-quorums lets the leader node eBPF
program wait for a quorum number of acknowledgments from
follower nodes, and only notify user-space processes once.
Moreover, to simplify how user-space applications use these
eBPF-based accelerations, Electrode further designs a set of
user-space APIs (Table 2). Each API corresponds to one oper-
ation that Electrode offloads to the eBPF, and is used to invoke
the offloaded function or retrieve eBPF processing results.

To achieve the second goal, Electrode keeps complicated
slow-path operations of Paxos protocols in the user space.
Specifically, Electrode leaves the procedures of failure re-
covery and handling message loss/reordering (i.e., gap agree-
ment) to user-space applications, using similar mechanisms as
VR [43] and NOPaxos [40]. These procedures involve access-
ing dynamic ranges of memory, which is hard to implement
in eBPF under the static verification (see §8 for details).

Overall, Electrode has the following workflow: first, user-
space applications attach eBPF programs to various hook lo-
cations corresponding to a network interface; then, user-space
applications use Electrode APIs to invoke eBPF-offloaded
functions or retrieve eBPF processing results; finally, the
eBPF programs intercept and process target packets in the ker-
nel without going through the networking stack or user-space
applications (i.e., Paxos protocols in our case). Electrode tar-
gets accelerating the handling of messages that can fit into
one ethernet packet (i.e., up to 9KB for jumbo frames). This
is well-suited for locks, barriers, and configuration parame-
ters [25, 78] that Paxos protocols commonly maintain. Non-

target packets still go through the stack and reach user-space
applications, without impacting applications’ other operations
or protocol semantics.

Finally, we note that Electrode does not aim to offload
every operation of Paxos protocols to the eBPF, because of
eBPF’s constrained programming model vs. the diverse set
of operations that Paxos protocols and related services could
have. For example, currently, Electrode does not offload client-
facing request/response handling. There are two reasons: 1)
Paxos clients normally serialize/deserialize their requests us-
ing widely-used libraries such as protocol buffers [19]; how-
ever, parsing or constructing protocol buffers is difficult in
eBPF, because it involves complex pointer arithmetics and
conditional branches which cannot easily pass the eBPF ver-
ifier. 2) client-facing requests/responses are normally em-
bedded into application-level services like the Chubby lock
service [6], but it is hard and inefficient to implement them
in eBPF because of the strict eBPF verifier and the lack of
dynamic memory allocation. We discuss more on Electrode’s
offloading decisions in §8.

4 Electrode Designs

4.1 Message Broadcasting in TC
In Paxos protocols, one-to-all message broadcasting is widely
used. For example, 1) the leader node sends preparation mes-
sages to all follower nodes, and 2) (after receiving enough
acknowledgments from followers) the leader node sends com-
mit messages to all follower nodes.

To implement the above message broadcasting, the most
common way is sending the same message multiple times in
the user space to different destinations. However, the overhead
(i.e., user-kernel crossing and kernel networking stack travers-
ing) of this implementation on the leader node increases lin-
early as the number of followers increases, while the overhead
on each follower node remains constant. Thus, the leader node
essentially becomes the system bottleneck, e.g., Table 1 has
shown that 44.7% of CPU time is spent on sending messages
on the leader node.

An alternative implementation is to use IP multicast [42,
68,77]. However, IP multicast normally requires support from
the underlying network switches (e.g., storing a large num-
ber of multicast group-table entries for the whole network
topology) [68, 77] or considerable modifications of the Linux
networking stack [42].
Electrode approach: Electrode provides a flexible host-based
broadcasting solution by utilizing eBPF on the TC hook. Here,
we require the eBPF program that implements broadcasting
operations to attach to the TC hook, because only the TC
hook can intercept and process outgoing packets (§2.2). Af-
ter attaching the eBPF program, user-space applications can
call the elec_broadcast() function shown in Table 2 with
specified sock_fd, message, and a list of destination IPs to
broadcast the message to these destinations through the socket.
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Function Name Arguments Output Description
elec_broadcast sock_fd, message, {dst_ips} status Broadcasts <message> to all destinations through <sock_fd>

elec_poll_message map_path messages Polls buffered messages from an eBPF-maintained in-kernel ring buffer identified
by <map_path>

elec_check_quorum received_message bool Checks if <received_message> (acknowledgment) indicates quorum reaching

Table 2: Electrode user-space APIs.
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Figure 3: Fast acknowledging in eBPF reduces Paxos request latency. This example follows Figure 1, but omits followers 3 and 4 for brevity.

Under the hood, the eBPF program makes clones of the mes-
sage packet using the bpf_clone_redirect() [45] helper
function, modifies the destination addresses of cloned pack-
ets accordingly, and sends these packets out. The benefit of
cloning packets and broadcasting in the kernel compared with
sending the same message multiple times in the user space
is that we only need to cross the user-kernel boundary and
traverse the UDP and socket layer once.
Handling message loss: Electrode relies on application-level
timeout and retransmission to handle message loss, similar
to modern RPC-based applications [13, 69]. Specifically, if
the leader node does not receive a response after a certain
time of sending a request, it will resend the request; once
a request experiences several timeouts, the leader node will
mark the destination node as dead and start Paxos failure
recovery. An alternative approach to handling message loss
is doing retransmission in the kernel, which could save user-
kernel context switching overheads, but such savings become
marginal as packet loss happens rarely in data centers [28,61];
it would also involve complex message buffer management
in kernel/eBPF, hurting performance.

4.2 Fast Acknowledging in XDP
As shown in Figure 3a, a significant portion of Paxos request
latency comes from the round-trip delay between the leader
node and follower nodes. Note that the ACK messages in
this figure mean Paxos protocol acknowledgments, not TCP
acknowledgments. For Paxos protocols under the kernel net-
working stack, this round-trip delay includes not only phys-
ical propagation and transmission delay, but also the delay
caused by the kernel networking stack (i.e., user-kernel cross-
ing and networking stack traversing). As the fabric latency
of nowadays data center network reaches a few tens of mi-
croseconds [48] or sub-ten microseconds [18, 27], the latency
of the kernel networking stack, which is also around sub-ten
microseconds [59], becomes non-negligible.

Electrode approach to reducing the Paxos request latency
is to optimize the preparation handling in follower nodes
by directly buffering the preparation messages into an in-
kernel log and early acknowledging to the leader node. At
the same time, user-space applications asynchronously poll
and consume the buffered messages from the log, using the
elec_poll_message() function shown in Table 2. Under
the hood, the function calls a corresponding eBPF syscall to
poll messages in batches, amortizing kernel crossing overhead.
This asynchrony does not break the correctness of Paxos pro-
tocols because as long as a preparation message gets buffered
into the log, it will be eventually processed by the user-space
Paxos protocols, and the message processing order has been
specified by the sequence number assigned by the leader node.
Figure 3b shows that this approach removes two user-kernel
crossings and networking stack traversing from the critical
path of the Paxos request.

Note that not every preparation message can be handled
using fast acknowledging; in some non-critical path cases
(e.g., message loss/reordering, and node failure) where the
eBPF program cannot handle because of its constrained pro-
gramming model, our eBPF program can detect them and
directly forward preparation messages to user-space Paxos
protocols (detailed in §6).
In-kernel log implementation: The in-kernel log temporally
stores incoming early-acknowledged preparation messages,
which are polled and consumed by user-space applications
concurrently. To implement this in-kernel log, we use a special
eBPF map named BPF_MAP_TYPE_RINGBUF [30] (introduced
from Linux kernel 5.8). This map implements an efficient
multi-producer single-consumer (MPSC) ring buffer using
shared memory and a lightweight spinlock, where we can
have multiple writers in eBPF and one reader in user space.
Based on our measurement, the time of pushing a preparation
message into the ring buffer is roughly equal to memcpying
this message, in cases without any lock contention. Note
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that the in-kernel ring buffer also has a fixed size, because
eBPF does not support dynamic memory allocation; in case it
becomes full, the eBPF program can detect them and directly
forward preparation messages to user-space applications.

4.3 Wait-on-Quorums in TC + XDP
Another common operation in Paxos protocols is the leader
node waiting for a quorum number of acknowledgments
(ACKs) from follower nodes (i.e., wait-on-quorums). Assume
there are 2 f +1 replicas including one leader node and 2 f fol-
lower nodes. In most Paxos protocols, once the leader collects
f ACKs from different follower nodes, the Paxos request is
considered committed.

Conventionally, wait-on-quorums is implemented by the
user-space applications that receive all ACKs and count to-
wards the quorum number. However, each acknowledgment
handling incurs the overhead of the user-kernel crossing and
traversing the kernel networking layer. The total overhead of
handling all ACKs is linear to the number of follower replicas
(i.e., 2 f ). Moreover, among these 2 f ACKs, only the first f
ones are required to commit a Paxos request.
Electrode approach: Electrode moves the leader-side wait-
on-quorums operations to the eBPF, requiring only one user-
kernel crossing and one networking stack traversing. Elec-
trode maintains an array of bitsets (and other metadata) in
eBPF, each of which indicates whether a Paxos request has
reached the quorum. Electrode only forwards ACK messages
that indicate reaching the quorum to the user-space appli-
cations, while dropping others. Electrode maps each Paxos
request to a specific bitset by using the unique increasing
sequence number assigned by the leader node (§2). Note that
we use the bitset instead of a counter to check if the quorum
gets reached; this is because a timed-out preparation request
could cause duplicate ACK messages from follower nodes,
and we want to avoid double counting.

Electrode maintains the bitset setting and clearing (i.e., ze-
roing out) operations through two eBPF programs hooked
at TC and XDP layers, respectively. The TC-hooked eBPF
program intercepts each outgoing preparation message and
clears the indexed bitset, while the XDP-hooked eBPF pro-
gram intercepts each incoming ACK message from follower
nodes and sets the bit corresponding to the follower node’s
index in replicas.

As shown in Listing 1, the tc_ebpf function/program in-
tercepts each outgoing preparation message and clears a spe-
cific bitset indexed by the sequence number in each message.
Line 6 checks if it is the first time to intercept a preparation
message corresponding to this Paxos request, by comparing
the seq stored along this bitset and the seq extracted from
the message; if so, it updates the stored seq in the array and
clears the bitset that may have been used by previous Paxos
requests (line 17-18).

The xdp_ebpf program intercepts each incoming ACK
message, updates the indexed bitset, drops most of the ACK

1 # Processing outgoing preparation message
2 # pkt: the packet of the message
3 # seq: unique increasing sequence number (from pkt)
4 def tc_ebpf(pkt, seq):
5 idx = seq % array_length
6 if array[idx].seq != seq
7 array[idx].seq = seq
8 array[idx].bitset.clear()
9 forward(pkt) # to follower node

10
11 # Processing incoming ACK message
12 # pkt : the packet of the message
13 # seq : unique increasing sequence number (from pkt)
14 # node_i: follower node index (from pkt)
15 def xdp_ebpf(pkt, seq, node_i):
16 idx = seq % array_length
17 if array[idx].seq == seq
18 array[idx].bitset.set(node_i)
19 if array[idx].bitset.count() == f
20 pkt.mark_quorum_reach(true)
21 forward(pkt) # to user-space application
22 else: drop(pkt)
23 else: # bitset overwritten by tc_ebpf
24 pkt.mark_quorum_reach(false)
25 forward(pkt)

Listing 1: Maintaining the fixed-length bitset array to achieve wait-
on-quorums in eBPF. Each bitset operation is also protected by a
spinlock; we omit it here for simplicity.

packets, and only forwards packets to user-space applications
that indicate reaching quorum or array overflow (explained
in the next paragraph). Lines 17-18 check if this bitset cor-
responds to the seq in the ACK message, and set the proper
bitset bit if so. Line 19 further checks if this ACK message
reaches the quorum: if so, lines 20-21 will mark the packet as
quorum-reaching and forward it to user-space applications;
otherwise, line 22 just drops the packet. Once the user-space
applications receive a quorum-reaching packet—checked by
calling the elec_check_quorum() function shown in Ta-
ble 2, it can directly consider this Paxos request as committed.
Handling array overflow: In some cases, a bitset might be
overwritten by the tc_ebpf because of the fixed size of the
bitset array. xdp_ebpf detects such array overflow in lines
17&23; once detected, lines 24-25 will mark the packet as
not-quorum-reaching and forward it to user-space applica-
tions. Once the user-space applications receive a not-quorum-
reaching packet, it resends the preparation messages to all
follower nodes and waits for ACKs again. In practice, the
leader node could limit the number of in-flight preparations
while provisioning a large bitset array, such that the array
overflow does not normally happen.
RSS: Electrode supports RSS (Receive-Side Scaling) which
distributes incoming packets to different NIC queues and
CPU cores. Specifically, Electrode has two receive-side op-
timizations: fast acknowledging and wait-on-quorums. For
fast acknowledging, the eBPF programs in the follower node
could maintain separate in-kernel ring buffers on different
cores to avoid synchronization overhead during log append-
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ing, and use spinlocks to synchronize accesses to small shared
in-kernel states (e.g., ebpf_seq in §6); the user-space applica-
tions asynchronously pull messages from all ring buffers, and
process messages following the order specified by their em-
bedded sequence numbers. For wait-on-quorums, the eBPF
programs in the leader node could use atomic instructions
to count how many ACKs it has received and check if the
quorum is reached.

5 Electrode Implementation
Electrode is prototyped with six eBPF programs written in
a restricted C language, and we utilize the Clang/LLVM
toolchain for compiling source code to eBPF bytecode. These
eBPF programs consist of 500 lines of C code in total. Ap-
plication developers can also customize their own eBPF pro-
grams based on needs, e.g., only processing packets with a
specific source port like [25]. Our prototype does not imple-
ment the RSS handling yet.

Figure 4 shows the structure of the six eBPF programs.
One program can transfer its control flow to the next program
via the eBPF tail call. We break the implementation into these
six programs because of 1) avoiding breaking the instruction
limits in the eBPF verifier (§2.2), and 2) modularity. In the
following, we describe each program in detail.
• tc_broadcast_and_quorum: This program intercepts

outgoing preparation messages. It implements the message
broadcasting mechanism (§4.1) and the tc_ebpf function
in Listing 1 for wait-on-quorums (§4.3). For broadcasting,
we generate multiple clones of the preparation packets us-
ing the bpf_clone_redirect() [45] helper function.

• xdp_dispatcher: This program checks the types of in-
coming messages and calls corresponding message han-
dlers. It only intercepts the ACK (only received on the
leader node) and preparation (only received on follower
nodes) messages, and calls the corresponding handle_ACK
and handle_preparation programs. It directly forwards

other types of messages to user-space applications.
• handle_ACK: This program implements the xdp_ebpf

function in Listing 1 for wait-on-quorums (§4.3). In com-
mon cases, it drops most ACK messages, and only forwards
the quorum-reaching ACK messages to user-space applica-
tions.

• handle_preparation: This program implements vari-
ous checks to detect non-critical path cases where it should
forward messages to user-space applications (§4.2). In nor-
mal cases (mostly), it will call write_buffer to begin
fast_ACK.

• write_buffer: This program stores message/packet data
into an in-kernel log for user-space applications to poll
and consume. As mentioned earlier, We use the eBPF ring
buffer [30] to implement the log data structure. This pro-
gram then calls the fast_ACK program.

• fast_ACK: This program reuses and modifies the received
packet buffer to create an ACK packet and sent it out. This
requires swapping the src-dst IP addresses and filling the
corresponding fields of the ACK message.

6 Apply Electrode to Multi-Paxos
Optimizing throughput: We apply the eBPF-based message
broadcasting (§4.1) and wait-on-quorums (§4.3) mechanisms
to the leader node in the Multi-Paxos protocol. This implies
two throughput optimizations: 1) when the leader node sends
out preparation messages to follower nodes, it relies on eBPF
to broadcast these messages instead of sending them one
by one; and 2) when the leader node is waiting for a quo-
rum number of ACK messages from follower nodes, it only
needs to process the quorum-reaching ACK message while
the other ACK messages are pruned/dropped by the eBPF
program. These two optimizations largely reduce the number
of user-kernel crossings and kernel networking stack travers-
ing, thus alleviating the CPU bottleneck on the leader node
and improving system throughput.
Optimizing latency: We apply the eBPF-based fast acknowl-
edging mechanism (§4.2) to each follower node in the Multi-
Paxos protocol. In normal cases (e.g., without packet loss/re-
ordering, and all nodes are alive), the preparation messages
from the leader node are quickly buffered and acknowledged
by the eBPF program in the follower nodes, bypassing both
the kernel networking stack and the user-space Multi-Paxos
protocol. This reduces the commit latency of each Multi-
Paxos request by twice the time of user-kernel crossing and
kernel networking stack traversing.
Detecting non-critical path cases in fast acknowledging:
As mentioned in §4.2, there are some non-critical path cases
in fast acknowledging where the eBPF program must detect
them and forward the incoming packets to the user-space
Paxos protocols. To understand why non-critical path cases
happen and how to detect them, we first elaborate on the
Multi-Paxos/VR protocol shown in §2, following the litera-
ture [43]. In the Multi-Paxos protocol, the leader node assigns
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each Multi-Paxos request a unique and strictly increasing se-
quence number, seq. Each replica including both the leader
node and follower nodes maintains locally a view number, a
status, and its last observed seq; each message sent by a
replica will piggyback these three variables. The view num-
ber indicates which (leader) election epoch this replica is in;
the status indicates if this replica is during a leader election
(status_viewchange), recovering (status_recovering),
or normal state (status_normal). This protocol requires a
follower node to only process a preparation message if the
node is in the normal state, and the message has a matched
view and strictly increasing seq; otherwise, the follower node
needs to drop the message, or execute a complex view-change
or state-transfer procedure [43,54]. Therefore, the non-critical
path cases for Multi-Paxos are:
1. the follower is during a leader election or recovering,
2. the follower receives a message with an unmatched view

that is either (a) stale or (b) newer,
3. the follower receives a message with a non-strictly-

increasing seq caused by message (a) loss/reordering or
(b) duplication.

These cases only happen when replicas fail or join, or mes-
sages get lost/reordered, which is less common in data cen-
ters [27, 61].

To detect these non-critical path cases in eBPF, we maintain
an ebpf_status, an ebpf_view, and an ebpf_seq variable
in the eBPF program using the eBPF map. In particular, these
three variables can be updated by the user-space Multi-Paxos
protocols to reflect the current protocol state. Listing 2 shows
the detection pseudocode. Line 5 detects case 1, and line 6 de-
tects case 2(a); for these two cases, the eBPF program needs
to drop the packet. Line 7 detects cases 2(b) and 3(a), and for-
wards the packet to the user space to execute the view-change
or state-transfer procedure. For case 3(b), i.e., msg_seq <
ebpf_seq + 1, the eBPF program function replies an ACK
(line 11), because it could be a re-transmitted preparation
message due to timeout.
Handling the cases 2(a)&3(a) in fast acknowledging is
tricky, because it (i.e., forwarding packets to the user space
for processing) involves the concurrency between the user-
space protocols and the kernel-space eBPF program, while
eBPF only supports map-based communication but not syn-
chronization between the user and kernel. Our approach is to
let the user-space protocols detach the eBPF program from
the hook while executing the view-change or state-transfer
procedure. Specifically, once a user-space protocol receives a
preparation message corresponding to the case 2(a) or 3(a), it
detaches the eBPF program, then it finishes the view-change
or state-transfer procedure, next it updates the ebpf_status,
ebpf_view, and ebpf_seq properly, and finally it reattaches
the eBPF program. This guarantees the cases 2(a)&3(a) are
exclusively handled by the user-space protocol, avoiding the
synchronization between the user and kernel. An alternative
approach to achieving the same effect as eBPF detach-reattach

1 # pkt : the packet of the preparation message
2 # msg_view: view piggybacked by the pkt
3 # msg_seq : unique increasing sequence number (from pkt)
4 def detect_non_crit_path_cases(pkt, msg_view, msg_seq):
5 if (ebpf_status != status_normal): drop(pkt)
6 if (msg_view < ebpf_view): drop(pkt)
7 if (msg_view > ebpf_view or msg_seq > ebpf_seq + 1):
8 forward(pkt)
9 if (msg_seq == ebpf_seq + 1):

10 append_log(++ebpf_seq, pkt)
11 reply_ack(pkt)

Listing 2: Detecting non-critical path cases during fast
acknowledging for Multi-Paxos. Assume the protocol works in a
single core, in line with prior Paxos work [40, 44, 61].

is to use an eBPF map with a branch testing before any Elec-
trode logic. The first packet in the non-critical path can update
this map atomically and let all following packets directly go
to the user-space application (i.e., closing Electrode optimiza-
tions); later, the user-space application can update this map
to reopen Electrode optimizations.

There are a few caveats: 1) After the user-space protocol
detaches the eBPF program, it needs to poll the in-kernel
ring buffer again, in case the eBPF program still appends
a few messages to the ring buffer before detaching. Note
that the eBPF map can outlive the eBPF program, as long
as the user-space process holds a reference to it, because
its lifetime is managed through reference counting [50]. 2)
While the user-space protocol is setting the ebpf_seq value
and is about to reattach the eBPF program, some preparation
packets might just pass the eBPF hook location but have not
been processed by the user-space protocol, e.g., queued in
the socket layer. In this case, the user-space protocol actu-
ally has set a smaller ebpf_seq value in the map; once the
eBPF program gets reattached, it will trigger more case 3(a)
(lines 7&8). Our solution to this problem is: after the user-
space protocol finishes the view-change or state-transfer pro-
cedure, it first sends a stop_sending_preparation mes-
sage to the leader node to stop it from sending preparation
messages, then it polls the socket to drain and process any
queued packet, next it sets the proper ebpf_seq value, finally
it sends a resume_sending_preparation message to the
leader node to resume sending preparation messages, and reat-
taches the eBPF program. These two messages should be sent
using reliable transport like TCP to handle packet loss.
Generalizability: Electrode’s eBPF-based optimizations are
generic to many more distributed protocols, which normally
consist of broadcasting and wait-on-quorums operations.
More discussions can be found in Appendix A.

7 Evaluation
This section answers the following questions:
1. How do Electrode and each optimization improve the per-

formance of the Multi-Paxos protocol (§7.1 and §7.2)?
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Figure 5: Performance comparison of the Multi-Paxos protocol vs. Electrode-accelerated one with different numbers of replicas.

2. How does Electrode improve the performance of real-
world Paxos-based applications (§7.3)?

3. How does Electrode save kernel stack overhead (§7.4)?
4. How does Electrode compare to kernel-bypassing (§7.5)?

Testbed setup: We use eight xl170 servers from Cloud-
Lab [12], each of which has a ten-core Intel E5-2640v4 CPU
at 2.4 Ghz, 64GB memory, and a Mellanox ConnectX-4 25
Gbps NIC. Each server runs an unmodified Ubuntu 20.04
OS with kernel v5.8.0. All servers are connected using a two-
level topology: five Mellanox 2410 as rack switches (each
connecting to forty xl170 servers) and one Mellanox 2700 as
the spine switch. One server is dedicated as the client server
that generates Paxos requests, and other servers run the Paxos
protocol with 3/5/7-replica configurations. By default, we con-
figure each server to use one core for interrupt processing and
another core for Paxos processing, following the performance
optimizations in [41]. We disable irqbalance to avoid out-of-
order packet deliveries as much as possible (which would hurt
Paxos performance), in line with prior Paxos work [40,44,61].
Unlike prior Paxos work [32, 40, 61], we do not use IP mul-
ticast which requires specialized support from the network
(§4.1).
Measurement methodology: The client server runs multiple
Paxos/application clients, and each client sends Paxos/appli-
cation requests in either a closed-loop or open-loop manner.
In closed-loop experiments, each client sends the next request
once it receives the response of the last request; we vary the
number of clients and measure the corresponding through-
put, and median and 99th-percentile tail latency, in line with
prior Paxos work [40,44,61]. In open-loop experiments, each
client sends requests one by one at a specific time interval,
such that the overall request rate reaches a specified value; we
use enough clients (i.e., they could saturate the Paxos servers),
specify different request rates, and measure the corresponding

CPU utilization of each replica node.
Comparisons: We use the Multi-Paxos/VR protocol imple-
mentation in the SpecPaxos [61] open-sourced code [35] as
the baseline, and optimize it using Electrode. We also run a
transactional replicated key-value store similar to the one in
SpecPaxos [61] atop the baseline Multi-Paxos protocol and
Electrode-accelerated Multi-Paxos protocol. All implementa-
tion uses the standard UDP stack and socket layer from the
Linux kernel.

7.1 Overall Results
Figure 5a, 5b, and 5c show the performance comparison of
the Multi-Paxos protocol and the Electrode-accelerated one
when using 3, 5, and 7 replicas, respectively. In each figure,
we vary the number of clients sending Multi-Paxos requests
in a closed-loop manner, and report throughput and median
and 99th-percentile tail latency. All curves eventually hit a
“hockey stick” in their median or tail latency growth when the
system reaches its maximum throughput.
Throughput: the Electrode-accelerated Multi-Paxos proto-
col achieves 34.9%, 104.8%, and 128.4% higher maximum
throughput than the original Multi-Paxos protocol under 3, 5,
and 7 replicas, respectively. The large throughput improve-
ments benefit from the eBPF-based broadcasting and wait-on-
quorums which reduce the kernel stack overhead significantly
on the leader node. With more replicas, the improvement
becomes more significant. This is because, for each Multi-
Paxos request, the leader node will send more preparation and
commit messages, and handle more ACK messages; thus the
eBPF-based broadcasting and wait-on-quorums can save more
user-kernel crossings and kernel networking stack traversing.
Latency: the Electrode-accelerated Multi-Paxos protocol
achieves 12.5%, 20.0%, and 25.6% lower median latency
than the original Multi-Paxos protocol with 2 clients (before
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Figure 6: Performance impact of different optimizations for
Electrode-accelerated Multi-Paxos protocol (with 5 replicas).

the “hockey stick”) under 3, 5, and 7 replicas, respectively;
the corresponding tail latency is 11.8%, 24.7%, and 41.7%
lower. The latency reduction mostly comes from the fast
acknowledging in the follower nodes, which, for each Multi-
Paxos request, saves the time of two user-kernel crossings,
two kernel networking stack traversing, and one wake-up of
the user-space process. With more replicas, the latency reduc-
tion becomes larger. This is because the fast acknowledging
bypasses user-space process scheduling and avoids unpre-
dictable scheduling delays [48] by the OS; for the original
Multi-Paxos, with more follower nodes, such unpredictable
scheduling delays would raise the chance of follower nodes
straggling, thus increasing commit latency. Besides, for Multi-
Paxos under 3/5 replicas and Electrode under 7 replicas, their
latency curves first decline a bit and arrive at the lowest point,
then rise and reach the “hockey stick”. This is because, un-
der lower throughput, the Linux scheduler would schedule
the Paxos process off the CPU more frequently, while under
higher throughput, the Paxos process is mostly scheduled on
the CPU.

7.2 Performance Gain Breakdown
Figure 6 shows the performance impact of different optimiza-
tions for the Electrode-accelerated Multi-Paxos protocol with
5 replicas. Similar to §7.1, we vary the number of clients send-
ing Multi-Paxos requests in a closed-loop manner, and report
the throughput and latency. eBPF-based message broadcast-
ing improves the maximum throughput of the Multi-Paxos
protocol by 31.7%; fast acknowledging further reduces the
median latency by 4.3%-12.7% (before the “hockey stick”);
finally, wait-on-quorums improves the maximum throughput
by 57.7%. Overall, we find that the two throughput optimiza-
tions (i.e., eBPF-based message broadcasting and wait-on-
quorums) have almost no impact on the median latency, while
the latency optimization (i.e., fast acknowledging) does not
nearly impact maximum throughput. This division of labor
demonstrates good modularity of each optimization design
in Electrode, and each design can be independently used to
accelerate more distributed protocols as shown in Table 4.
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Figure 7: Performance comparison of a transactional key-value store
atop the Multi-Paxos protocol vs. Electrode-accelerated one.

7.3 Application Performance
To demonstrate how Electrode can bring benefits to real-world
Paxos-based applications, we run a transactional replicated
key-value store (similar to the one in SpecPaxos [61]) atop the
Multi-Paxos protocol and Electrode-accelerated one. This key-
value store supports serializable transactions using two-phase
commit and optimistic concurrency control (OCC). Clients
use BEGIN_TXN, COMMIT_TXN, ABORT_TXN, SET, and GET op-
erations to express transactions. We use a synthetic workload
derived from the Retwis application [56]—an open-source
Twitter clone. This workload consists of four types of trans-
actions with different ratios, and each one issues different
numbers of GET and PUT operations. The workload details
can be found in Table 2 of [80]. We vary the number of clients
that execute transactions in a closed-loop manner, and mea-
sure the maximum throughput these clients can achieve and
the average latency under one client.

Figure 7a and 7b shows the maximum throughput and av-
erage latency of the key-value store atop the Multi-Paxos pro-
tocol vs. Electrode-accelerated one under different numbers
of replicas, respectively. Overall, Electrode improves the key-
value store throughput by 32.3%-112.9% and latency by 5.9%-
19.3%. The improvement becomes larger with more replicas,
due to the similar reasons described in §7.1. The latency of
the key-value store atop the original Multi-Paxos gradually in-
creases with more replicas, while Electrode-accelerated one’s
remains relatively stable, because the former is more vulnera-
ble to follower nodes straggling (§7.1).

7.4 CPU Utilization
One design goal of Electrode is to reduce the kernel network-
ing stack overhead (§3) when implementing Paxos protocols.
Thus, in this subsection, we study the impact of Electrode
on CPU utilizations, which indicates how much kernel stack
overhead gets reduced.

Figure 8a and 8b show the CPU utilization of the leader
node and follower nodes, respectively, for the Multi-Paxos
protocol and Electrode-accelerated one with different offered
throughput. The experiments are done in an open-loop man-
ner to control the offered throughput when measuring CPU
utilization. The CPU utilization covers both the core handling
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Figure 8: CPU utilization comparison of the Multi-Paxos protocol
vs. Electrode-accelerated one (with 5 replicas).

interrupts and the core running Paxos. With higher offered
throughput, the CPU utilization gradually increases, demon-
strating the load-aware CPU scaling provided by the kernel
networking stack (§1). We note that for DPDK-based Multi-
Paxos protocol implementation, the CPU utilization would
be always 100% because DPDK busily polls the network
interface. Overall, Electrode reduces the CPU utilization by
22.7%-38.0% on the leader node and 16.0%-35.7% on the
follower nodes, benefiting from the reduced user-kernel cross-
ings and kernel stack traversing.

7.5 Comparison with Kernel-Bypassing
Electrode still handles client-facing requests/responses and
initiates message broadcasting using the Linux kernel net-
working stack (§3); thus, it will achieve lower performance
than pure kernel-bypassing approaches. This subsection com-
pares the performance of Electrode with a kernel-bypassing
baseline, aiming to reveal the performance upper bound of
kernel-based approaches and identify the possible improve-
ments for future work.

We choose Caladan [15] and use its high-performance
DPDK-based UDP stack to implement our kernel-bypassing
baseline. Similar to Caladan, our baseline dedicates one CPU
core for packet polling and another core for running the Paxos
protocol. We also configure the Caladan runtime to never idle
the Paxos core even under low request load.

Table 3 compares the latency and throughput of kernel-
based Multi-Paxos and the kernel-bypassing one. To exclude
the latency incurred by the client-side kernel stack, we tested
all three Paxos implementations with a request generator im-
plemented using Caladan. Electrode achieves 1.4-1.6x lower
latency and 2.0x higher throughput than vanilla Linux, but it
still has 2.2x higher latency and 2.4x lower throughput com-
pared to pure kernel-bypassing. The performance gap between
Electrode and kernel-bypassing exists, because there are still
substantial Paxos messages going through the kernel net-
working stack in Electrode. In particular, our profiling shows
that, on the leader node, around 59.5% CPU time is spent on
__libc_sendto() caused by frequent dev_queue_xmit()
and sk_buff clones. Although eBPF-based broadcasting re-
duces a significant number of user-kernel crossings and sock-

Lowest median/99p
latency

Maximum
throughput

Vanilla Linux 59/69 µs 32 K req/s

Electrode 38/49 µs 65 K req/s

Kernel-bypassing 17/22 µs 154 K req/s

Table 3: Performance comparison of kernel-based Multi-Paxos vs.
kernel-bypassing one (with 5 replicas).

/UDP/IP layer traversing, it cannot fundamentally optimize
how the Linux kernel manages NICs and packet buffers. Fi-
nally, we note that Electrode’s goal is to provide generic eBPF-
based accelerations for distributed protocol implementations
that stick to kernel networking stacks because of compatibility,
security, isolation, and elastic CPU scaling.

An additional evaluation regarding how the interrupt coa-
lescing feature of modern NICs impacts Electrode is in Ap-
pendix B.

8 Discussion and Future Work
Electrode’s offloading decisions: Electrode decides to leave
four components of the Multi-Paxos protocol to the user space:
1) failure recovery, 2) handling packet loss and reordering, 3)
handling client-facing requests/responses, and 4) executing
application-specific operations after reaching the consensus.
The first two components involve complex operations on the
log, e.g., scanning the log and sending inconsistent entries to
other replicas, and inserting missing log entries received from
others. These operations require accessing dynamic ranges
of log entries, which would fail the eBPF static verification.
The last two involve complex serialization/deserialization
and application-level operations (see §3). We note that it
is possible to offload these four components into eBPF by
modifying the kernel eBPF subsystem or verifier—we leave
this as future work.
How to improve the eBPF subsystem for offloading? Ver-
ifying memory accesses more smartly could make more ap-
plication operations offloadable. The current eBPF verifier
only allows accessing static ranges of memory, which hinders
many applications with complex memory accessing behaviors.
Another useful construct in eBPF would be dynamic mem-
ory allocation, which could ease the maintenance of more
advanced data structures in eBPF. To avoid memory leaks, a
possible solution could be enforcing Rust-style single-owner
memory semantics.
io_uring [1] was recently introduced into the Linux kernel
to support efficient batching of asynchronous I/Os via shared
memory between the user and kernel space, thus reducing
the overhead of frequent user-kernel crossings. Therefore,
when implementing Paxos protocols using io_uring, it can
help reduce the overhead of message broadcasting, which
accounts for 12.5% of CPU time based on Table 1. However,
each preparation and ACK message still goes through the
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full Linux networking stack and wakes up user-space applica-
tions, incurring significant overhead; Electrode can be used
together with io_uring to reduce such overhead. A recent
work XRP [82] shares a similar view regarding io_uring.
Electrode on shared environments: Electrode requires at-
taching eBPF programs to the network interface, which then
processes every packet accordingly. However, multiple Elec-
trode applications might share the same NIC and attach differ-
ent eBPF programs that might interfere with each other. We
can use the SR-IOV (Single Root IO Virtualization) feature
that is widely available in modern NICs [2, 9] to avoid such
interference. SR-IOV virtualizes a physical network interface
into multiple virtualized ones; the Electrode eBPF program
can be attached to only one virtualized interface, without im-
pacting others (e.g., used by non-Paxos applications). Besides
SR-IOV, Electrode can also check the port numbers of incom-
ing packets in eBPF, and only execute optimizations if the
port numbers belong to target Paxos applications.
Accelerating leader-less consensus protocols using eBPF:
Electrode targets at leader-based consensus protocols such
as Paxos [37] and its variants [36, 43, 54], because they are
the most-used ones by modern distributed applications [6,
8, 22]. Electrode’s eBPF-based optimizations could also be
applied to leader-less consensus protocols, e.g., EPaxos [52],
Mencius [4], SD-Paxos [81], etc. For example, replicas in
EPaxos could acknowledge preparation messages earlier in
an eBPF program before entering the kernel networking stack,
thus reducing latency. We leave the exploration of applying
Electrode to leader-less consensus protocols as future work.

9 Related Work
Kernel-bypass and hardware offloading: Overheads of
the monolithic kernel networking stack have spurred var-
ious attempts to design new kernel-bypassed networking
stacks like mTCP [24], eRPC [27], Demikernel [79] and
more [15, 29, 33, 48, 57, 67], which attempt to eliminate the
kernel from the I/O datapath. But all of these solutions are
not backward compatible with solutions that already use the
standard kernel networking stack, and they incur more costs
in terms of CPU cycles and energy during low I/O loads due
to busy-polling. Electrode attempts to leverage eBPF to un-
clog some of the bottlenecks in the kernel networking stack
for distributed protocols without completely having to shift
to kernel-bypassed stacks.

Similarly, network offload solutions attempt to offload I/O-
intensive operations to specialized hardware, e.g., RDMA [11,
28, 76], FPGA [23], SmartNICs [66], and programmable
switches [10, 25]. But they come with limited interfaces for
programmability and need custom hardware to be installed.
Co-designing distributed systems with networks: There
have been attempts to optimize distributed systems by co-
designing them with data center networks for improved perfor-
mance. SpecPaxos [61] attempts to leverage the natural order
of packet delivery in data centers to optimize the ordering of

messages needed for state machine replication. NoPaxos [40]
uses in-network switches to sequence packets for a similar
purpose. Eris [39] further applies in-network sequencing to
distributed transactions to avoid coordination overhead. These
are orthogonal ways to optimize distributed systems and can
be used in conjunction with Electrode.
Distributed protocols in data centers: Data centers have
a variety of distributed protocols that are deployed for fault
tolerance and data consistency. These include replication pro-
tocols like Mencius [4], EPaxos [52], chain replication [74],
SDPaxos [81], and transaction protocols like TAPIR [80] and
Meerkat [72]. Since many distributed protocols share similar
patterns of communication like broadcasting and quorum re-
sponses, Electrode can be applied to speed up these distributed
protocols as well.
eBPF applications: For a long time, eBPF was only used
for packet filtering [49], monitoring [3, 63], and load balanc-
ing [14] because of its restricted programming model. Now,
it is shown to be able to offload small yet critical operations
to improve application performance. CCP [53] mentions that
it may be possible to leverage the JIT feature of eBPF to
gather datapath’s congestion measurements for congestion
control. BMC [17] uses eBPF to implement an in-kernel
cache to accelerate UDP-based Memcached GET requests and
achieves significant throughput improvement. Syrup [26] uses
eBPF maps to share incoming request information across OS,
networking stacks, and application runtimes to enable user-
defined scheduling. SPRIGHT [65] employs fast eBPF-based
packet forwarding to accelerate sidecar proxies in serverless
computing. XRP [82] offloads storage functions (e.g., B-tree
lookups) into the kernel using eBPF to reduce kernel stor-
age stack overhead. SynCord [58] leverages eBPF to inject
workload-specific and hardware-aware kernel lock policies
specified by application developers. Electrode further demon-
strates that eBPF can be used to accelerate distributed proto-
cols under the kernel networking stack.

10 Conclusion
Electrode is a system that accelerates distributed protocols
using safe in-kernel eBPF-based packet processing before
the networking stack. Electrode retains the benefits of using
the standard Linux networking stack (e.g., good maintenance,
elastic CPU scaling, security, and isolation), while optimizing
the performance-critical operations of distributed protocols
(e.g., broadcasting, and wait-on-quorums) in a non-intrusive
manner. When applying Electrode to a classic Multi-Paxos
protocol, we achieve up to 128.4% higher throughput and
41.7% lower latency. We believe that the designs of eBPF-
based optimizations in Electrode can motivate more research
on improving networked application performance while main-
taining the standard Linux networking stack.

Electrode code is available at https://github.com/E
lectrode-NSDI23/Electrode.
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Types Protocols Applying message broadcasting Applying fast acknowledging Applying wait-on-quorums

Replication

Primary-
backup

The primary broadcasts requests to
backups.

Each backup buffers messages in the kernel and quickly
responds to the primary.

The primary waits for responses
from all backups.

Chain None Each replica (except for the last one) buffers write re-
quests in the kernel and forwards them to the next replica. None

Concurrency
control

Two-phase
locking

A transaction coordinator broad-
casts LOCK and UNLOCK requests to
all shards.

Each shard maintains a lock table in the kernel and di-
rectly handles lock acquiring and releasing.

A transaction coordinator waits for
responses from all shards.

OCC None Each shard checks in the kernel if the committing trans-
action’s timestamp conflicts with all other running ones. None

Atomic com-
mitment

Two-phase
commit

A transaction coordinator broad-
casts PREPARE and COMMIT re-
quests to all shards.

Each shard buffers PREPARE messages in the kernel
and responds to the coordinator, and handles COMMIT
requests by polling the buffered messages.

A transaction coordinator waits for
responses from all shards

Table 4: Applying Electrode to more distributed protocols.

APPENDIX

A Electrode Generalizability
Table 4 summarizes how the classic replication, concurrency
control, and atomic commitment protocols can leverage Elec-
trode optimizations. For example, the primary-back replica-
tion, two-phase locking, and two-phase commit protocols fol-
low the pattern of sending requests to multiple nodes and
waiting for a quorum number of responses; thus they nat-
urally fit well with the eBPF-based message broadcasting
and wait-on-quorums. Together with the above protocols, the
chain replication [74] and opportunistic concurrency control
(OCC) [34] protocols include some critical-yet-simple oper-
ations like storing messages in memory, maintaining a lock
table, and checking timestamp conflicts; these operations are
also suitable for offloading to the eBPF following the fast
acknowledging mechanism.

B Impact of Interrupt Coalescing
During benchmarking, we noticed that the interrupt coalesc-
ing [62] (IC) feature of modern NICs has a big impact on
the measured performance. In IC, after an incoming packet
triggers an interrupt, the kernel networking stack waits until a
threshold of packets arrives or a timeout gets triggered, aim-
ing to amortize the interrupt cost. In our scenarios, we find it
significantly hurts latency and performance predictability in
our settings; similar results are also reported in [73]. Thus, in
all our experiments, we disable IC by default.

Figure 9 shows the performance impact of IC on the Multi-
Paxos protocol and Electrode-accelerated one, by varying the
number of open-loop clients. With IC, load-latency curves
become unpredictable with two “hockey stick”s. The second
“hockey stick” is because the extremely high load triggers coa-
lescing/batching much more packets in one interrupt. Overall,
IC does not nearly impact the maximum throughput for the
Multi-Paxos protocol and Electrode-accelerated one, but it
increases the latency by 57.4%-129.2% and 9.1%-246.8%
with 1-3 clients (before the first “hockey stick”). Moreover,
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Figure 9: Performance impact of interrupt coalescing (IC) on the
Multi-Paxos protocol vs. Electrode-accelerated one (with 5 replicas).

enabling IC decreases the one-client throughput by 38.3% and
10.1% for the original Multi-Paxos and Electrode-accelerated
one, respectively.
Electrode performance with IC: Electrode accelerates the
maximum throughput of the Multi-Paxos protocol by 81.4%
and latency by 32.7% with 1 client (before the first “hockey
stick”) when IC is on.
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Abstract
Far memory systems allow an application to transparently
access local memory as well as memory belonging to re-
mote machines. Fault tolerance is a critical property of any
practical approach for far memory, since machine failures
(both planned and unplanned) are endemic in datacenters.
However, designing a fault tolerance scheme that is efficient
with respect to both computation and storage is difficult. In
this paper, we introduce Carbink, a far memory system that
uses erasure-coding, remote memory compaction, one-sided
RMAs, and offloadable parity calculations to achieve fast,
storage-efficient fault tolerance. Compared to Hydra, a state-
of-the-art fault-tolerant system for far memory, Carbink has
29% lower tail latency and 48% higher application perfor-
mance, with at most 35% higher memory usage.

1 Introduction
In a datacenter, matching a particular application to just
enough memory and CPUs is hard. A commodity server
tightly couples memory and compute, hosting a fixed number
of CPUs and RAM modules that are unlikely to exactly match
the computational requirements of any particular application.
Even if a datacenter contains a heterogeneous mix of server
configurations, the load on each server (and thus the amount
of available resources for a new application) changes dynam-
ically as old applications exit and new applications arrive.
Thus, even state-of-the-art cluster schedulers [51,52] struggle
to efficiently bin-pack a datacenter’s aggregate collection of
CPUs and RAM. For example, Google [52] and Alibaba [34]
report that the average server has only ~60% memory utiliza-
tion, with substantial variance across machines.

Memory is a particularly vexing resource for two reasons.
First, for several important types of applications [19, 20, 33,
54], the data set is too big to fit into the RAM of a single
machine, even if the entire machine is assigned to a single
application instance. Second, for these kinds of applications,
alleviating memory pressure by swapping data between RAM
and storage [14] would lead to significant application slow-
downs, because even SSD accesses are orders of magnitude
slower than RAM accesses. For example, Google runs a graph
∗Contributed to this work during internships at Google.

analysis engine [28] whose data set is dozens of GBs in size.
This workload runs 46% faster when it shuffles data purely
through RAM instead of between RAM and SSDs.

Disaggregated datacenter memory [2,5,15,16,22,44,46] is
a promising solution. In this approach, a CPU can be paired
with an arbitrary set of possibly-remote RAM modules, with
a fast network interconnect keeping access latencies to far
memory small. From a developer’s perspective, far memory
can be exposed to applications in several ways. For example,
an OS can treat far RAM as a swap device, transparently
exchanging pages between local RAM and far RAM [5,22,46].
Alternatively, an application-level runtime like AIFM [44]
can expose remotable pointer abstractions to developers, such
that pointer dereferences (or the runtime’s detection of high
memory pressure) trigger swaps into and out of far memory.

Much of the prior work on disaggregated memory [2,44,55]
has a common limitation: a lack of fault tolerance. Unfor-
tunately, in a datacenter containing hundreds of thousands
of machines, faults are pervasive. Many of these faults are
planned, like the distribution of kernel upgrades that require
server reboots, or the intentional termination of a low-priority
task when a higher-priority task arrives. However, many server
faults are unpredictable, like those caused by hardware fail-
ures or kernel panics. Thus, any practical system for far mem-
ory has to provide a scalable, fast mechanism to recover from
unexpected server failures. Otherwise, the failure rate of an
application using far memory will be much higher than the
failure rate of an application that only uses local memory;
the reason is that the use of far memory increases the set of
machines whose failure can impact an application [8].

Some prior far-memory systems do provide fault toler-
ance via replication [5, 22, 46]. However, replication-based
approaches suffer from high storage overheads. Hydra [29]
uses erasure coding, which has smaller storage penalties than
replication. However, Hydra’s coding scheme stripes a sin-
gle memory page across multiple remote nodes. This means
that a compute node requires multiple network fetches to re-
construct a page; furthermore, computation over that page
cannot be outsourced to remote memory nodes, since each
node contains only a subset of the page’s bytes.
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In this paper, we present Carbink,1 a new framework for
far memory that provides efficient, high-performance fault
recovery. Like (non-fault-tolerant) AIFM, Carbink exposes
far memory to developers via application-level remoteable
pointers. When Carbink’s runtime must evict data from lo-
cal RAM, Carbink writes erasure-coded versions of that data
to remote memory nodes. The advantage of erasure coding
is that it provides equivalent redundancy to pure replication,
while avoiding the double or triple storage overheads that
replication incurs. However, straightforward erasure coding
is a poor fit for the memory data created by applications writ-
ten in standard programming languages like C++ and Go;
those applications allocate variable-sized memory objects,
but erasure coding requires equal-sized blocks. To solve this
problem, Carbink eschews the object-granularity swapping
strategy of AIFM, and instead swaps at the granularity of
spans. A single span consists of multiple memory pages that
contain objects with similar sizes. Carbink’s runtime asyn-
chronously and transparently moves local objects within the
spans in local memory, grouping cold objects together and
hot objects together. When necessary, Carbink batch-evicts
cold spans, calculating parity bits for those spans at eviction
time, and writing the associated fragments to remote memory
nodes. Carbink utilizes one-sided remote memory accesses
(RMAs) to efficiently perform swapping activity, minimizing
network utilization. Unlike Hydra, Carbink’s erasure coding
scheme allows a compute node to fetch a far memory region
using a single network request.

In Carbink, each span lives in exactly one place: the local
RAM of a compute node, or the far RAM of a memory node.
Thus, swapping a span from far RAM to local RAM creates
dead space (and thus fragmentation) in far RAM. Carbink
runs pauseless defragmentation threads in the background,
asynchronously reclaiming space to use for later swap-outs.

We have implemented Carbink atop our datacenter infras-
tructure. Compared to Hydra, Carbink has up to 29% lower
tail latency and 48% higher application performance, with
at most 35% more remote memory usage. Unlike Hydra,
Carbink also allows computation to be offloaded to remote
memory nodes.

In summary, this paper has four contributions:
• a span-based approach for solving the size mismatch be-

tween the granularity of erasure coding and the size of the
objects allocated by compute nodes;

• new algorithms for defragmenting the RAM belonging to
remote memory nodes that store erasure-encoded spans;

• an application runtime that hides spans, object migration
within spans, and erasure coding from application-level
developers; and

• a thorough evaluation of the performance trade-offs made
by different approaches for adding fault tolerance to far
memory systems.

1Carbink is a Pokémon that has a high defense score.

2 Background
Recent work on far memory has used one of two approaches.
The first approach modifies the OS that runs applications,
exploiting the fact that preexisting OS abstractions already
decouple application-visible in-memory data from the back-
ing storage hierarchy. For example, INFINISWAP [22],
Fastswap [5], and LegoOS [46] leverage virtual memory sup-
port to swap application memory to far RAM instead of a local
SSD or hard disk. Applications use standard language-level
pointers to interact with memory objects; behind the scenes,
the OS swaps pages between local RAM and far RAM, e.g., in
response to page faults for non-locally-resident pages. In con-
trast, the remote region approach [2] exposes far memory via
file system abstractions. Applications name remote memory
regions using standard filenames, and interact with regions
using standard file operations like open() and read().

Exposing far memory via OS abstractions is attractive be-
cause it requires minimal changes to application-level code.
However, invasive kernel changes are needed; such changes
require substantial implementation effort, and are difficult to
maintain as other parts of the kernel evolve.

The second far-memory approach requires more help from
application-level code. For example, AIFM [44] uses a modi-
fied C++ runtime to hide the details of managing far memory.
The runtime provides special pointer types whose dereferenc-
ing may trigger the swapping of a remote C++-level object
into local RAM. AIFM’s runtime tracks object hotness using
GC-style read/write barriers, and uses background threads to
swap out cold local objects when local memory pressure is
high. To synchronize the local memory accesses generated
by application threads and runtime threads, AIFM embeds a
variety of metadata bits (e.g., present, isBeingEvicted)
in each smart pointer, leveraging an RCU-like scheme [36] to
protect concurrent accesses to a pointer’s referenced object.

Listing 1 provides an example of how applications use
AIFM’s smart pointers. Like AIFM, Carbink exposes far mem-
ory via smart pointers, but unlike AIFM, Carbink provides
fault tolerance.

3 Carbink Design
Figure 1 depicts the high-level architecture of Carbink. Com-
pute nodes execute single-process (but potentially multi-
threaded) applications that want to use far memory. Memory
nodes provide far memory that compute nodes use to store
application data that cannot fit in local RAM. A logically-
centralized memory manager tracks the liveness of compute
nodes and memory nodes. The manager also coordinates the
assignment of far memory regions to compute nodes. When a
memory node wants to make a local memory region available
to compute nodes, the memory node registers the region with
the memory manager. Later, when a compute node requires
far memory, the compute node sends an allocation request to
the memory manager, who then assigns a registered, unallo-
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RemUniquePtr<Node> rem_ptr = AIFM::MakeUnique<Node>();
{

DerefScope scope;
Node* normal_ptr = rem_ptr.Deref(scope);
computeOverNodeObject(normal_ptr);

} // Scope is destroyed; Node object can be evicted.

Listing 1: Example of how AIFM applications interact with
far memory. In the code above, the application first allocates a
Node object that is managed by a particular RemUniquePtr.
Such a remote unique pointer represents a pointer to an object
that (1) can be swapped between local and far memory, and
(2) can only be pointed to by a single application-level pointer.
The code then creates a new scope via an open brace, declares
a DerefScope variable, and invokes the RemUniquePtr’s
Deref() method, passing the DerefScope variable as an
argument. Deref() essentially grabs an RCU lock on the
remotable memory object, and returns a normal C++ pointer
to the application. After the application has finished using the
normal pointer, the scope terminates and the destructor of the
DerefScope runs, releasing the RCU lock and allowing the
object to be evicted from local memory.

cated region. Upon receiving a deallocation message from a
compute node, the memory manager marks the associated re-
gion as available for use by other compute nodes. A memory
node can ask the memory manager to deregister a previously
registered (but currently unallocated) region, withdrawing the
region from the global pool of far memory.

Carbink does not require participating machines to use cus-
tom hardware. For example, any machine in a datacenter can
be a memory node if that machine runs the Carbink memory
host daemon. Similarly, any machine can be a compute node
if that node’s applications use the Carbink runtime.

From the perspective of an application developer, the
Carbink runtime allows a program to dynamically allocate
and deallocate memory objects of arbitrary size. As described
in Section 3.2, programs access those objects through AIFM-
like remotable pointers [44]. When applications dereference
pointers that refer to non-local (i.e., swapped-out) objects,
Carbink pulls the desired objects from far memory. Under
the hood, Carbink’s runtime manages objects using spans
(§3.3) and spansets (§3.4). A span is a contiguous run of
memory pages; a single region allocated by a compute node
contains one or more spans. Similar to slab allocators like
Facebook’s jemalloc [17] and Google’s TCMalloc [21, 24],
Carbink rounds up each object allocation to the bin size of the
relevant span, and aligns each span to the page size used by
compute nodes and memory nodes. Carbink swaps far mem-
ory into local memory at the granularity of a span; however,
when local memory pressure is high, Carbink swaps local
memory out to far memory at the granularity of a spanset
(i.e., a collection of spans of the same size). In preparation for
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threads

Swap in span

Swap out 
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Compute nodes

Span Object Memory manager

…
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Allocation, dealloc.
Monitoring
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Figure 1: Carbink’s high-level architecture.

swap-outs, background threads on compute nodes group cold
objects into cold spans, and bundle a group of cold spans into a
spanset; at eviction time, the threads generate erasure-coding
parity data for the spanset, and then evict the spanset and the
parity data to remote nodes. As we discuss in Sections 3.4
and 3.5, this approach simplifies memory management and
fault tolerance.

Carbink disallows cross-application memory sharing. This
approach is a natural fit for our target applications, and has
the advantage of simplifying failure recovery and avoiding
the need for expensive coherence traffic [46].

3.1 Failure Model
Carbink implements the logically-centralized memory man-
ager as a replicated state machine [1, 45]. Thus, Carbink as-
sumes that the memory manager will not fail. Carbink as-
sumes that memory nodes and compute nodes may experience
fail-stop faults. Carbink does not handle Byzantine failures
or partial network failures.

The memory manager tracks the liveness of compute nodes
and memory nodes via heartbeats. When a compute node fails,
the memory manager instructs the memory nodes to deallo-
cate the relevant spans; if applications desire, they can use an
application-level fault tolerance scheme like checkpointing
to ensure that application-level data is recoverable. When
a memory node fails, the memory manager deregisters the
node’s regions from the global pool of far memory. However,
erasure-coding recovery of the node’s regions is initiated by a
compute node when the compute node unsuccessfully tries to
read or write a span belonging to the failed memory node. If
an application thread on a compute node tries to read a span
that is currently being recovered, the read will use Carbink’s
degraded read protocol (§3.5), reconstructing the span using
data from other spans and parity blocks.

3.2 Remotable Pointers
Like AIFM, Carbink exposes far memory through C++-level
smart pointers. However, as shown in Figure 2, Carbink uses
a different pointer encoding to represent span information.
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L S M E H (8b) Object local address (48b)
62 61 60 59 ⋯ 55 ⋯ 48 47  0⋯

P
63

(a) Local object.

L S Obj ID (13b) Region ID (16b) Span ID (32b)
62 61 60 48 47 32 31  0⋯ ⋯ ⋯

P
63

(b) Far object.

Field Meaning
Present Is the object in local RAM or far RAM?
Lock Is the object (spin)locked by a thread?
Shared Is the pointer a unique pointer or a shared pointer?
Moving Is the object being moved by a background thread?
Evicting Is the object being evicted by a background thread?
Hotness Is the object frequently accessed?

(c) Field semantics.

Figure 2: Carbink’s RemUniquePtr representation. In con-
trast to AIFM [44], Carbink does not embed information about
a data structure ID or an object size. Instead, Carbink embeds
span metadata (namely, a Region ID and a Span ID) to asso-
ciate a pointed-to object with its backing span.

A Carbink RemUniquePtr has the same size as a traditional
std::unique_ptr (i.e., 8 bytes). The Present bit indicates
whether the pointed-to object resides in local RAM. The
Shared bit indicates whether a pointer implements unique-
pointer semantics or shared-pointer semantics; the former
only allows a single reference to the pointed-to object. The
Lock, Moving, and Evicting bits are used to synchronize
object accesses between application threads and Carbink’s
background threads (§3.6). The Hotness byte is consulted by
the background threads when deciding whether an object is
cold (and thus a priority for eviction).

If an object is local, the local virtual address of the object is
directly embedded in the pointer. If an object has been evicted,
the pointer describes how to locate the object. In particular, the
Obj ID indicates the location of an object within a particular
span; the Span ID identifies that span; and the Region ID
denotes the far memory region that contains the span.

Carbink supports two smart pointer types: RemUniquePtr,
which only allows one reference to the underlying object,
and RemSharedPtr, which allows multiple references. When
moving or evicting an object, Carbink’s background threads
need a way to locate and update the smart pointer(s) which
reference the object. To do so, Carbink uses AIFM’s approach
of embedding a “reverse pointer” in each object; the reverse
pointer points to the object’s single RemUniquePtr, or to the
first RemSharedPtr that references the object. An individ-
ual RemSharedPtr is 16 bytes large, with the last 8 bytes
storing a pointer that references the next RemSharedPtr in
the list. Thus, Carbink’s runtime can find all of an object’s
RemSharedPtrs by discovering the first one via the object’s
reverse pointer, and then iterating across the linked list.
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Figure 3: Allocation sizes in our production workloads.

3.3 Span-Based Memory Management

Local memory management: A span is a contiguous set of
pages that contain objects of the same size class. Carbink sup-
ports 86 different size classes, and aligns each span on an 8KB
boundary; Carbink borrows these configuration parameters
from TCMalloc [21, 24], which observed these parameters to
reduce internal fragmentation. When an application allocates
a new object, Carbink tries to round the object size up to the
nearest size class and assign a free object slot from an appro-
priate span. If the object is bigger than the largest size class,
Carbink rounds the object size up to the nearest 8KB-aligned
size, and allocates a dedicated span to hold it.

To allocate spans locally, Carbink uses a local page heap.
The page heap is an array of free lists, with each list tracking
8KB-aligned free spans of a particular size (e.g., 2MB, 4MB,
etc.). If Carbink cannot find a free span big enough to satisfy
an allocation request, Carbink allocates a new span, using
mmap() to request 2MB huge pages from the OS.

Allocating and deallocating via the page heap is mutex-
protected because application threads may issue concurrent
allocations or deallocations. To reduce contention on the page
heap, each thread reserves a private (i.e., thread-local) cache of
free spans for each size class. Carbink also maintains a global
cache of free lists, with each list having its own spinlock.
When a thread wants to allocate a span whose size can be
handled by one of Carbink’s predefined size classes, the thread
first tries to allocate from the thread-local cache, then the
global cache, and finally the page heap. For larger allocation
requests, threads allocate spans directly from the page heap.

Carbink associates each span with several pieces of meta-
data, including an integer that describes the span’s size class,
and a bitvector that indicates which object slots are free. To
map a locally-resident object to its associated span metadata,
Carbink uses a two-level radix tree called the local page map.
The lookup procedure is similar to a page table walk: the first
20 bits of an object’s virtual address index into the first-level
radix tree table, and the next 15 bits index into a second-level
table. The same mapping approach allows Carbink to map the
virtual address of a locally-resident span to its metadata.
Far memory management: On a compute node, local spans
contain a subset of an application’s memory state. The rest of
that state is stored in far spans that live in far memory regions.
Recall from Figure 2b that a Carbink pointer to a non-local
object embeds the object’s Region ID and Span ID.
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To allocate or deallocate a region, a compute node sends
a request to the memory manager. A single Carbink region
is 1GB or larger, since Carbink targets applications whose
total memory requirements are hundreds or thousands of GBs.
Upon successfully allocating a region, the compute node up-
dates a region table which maps the Region ID of the allocated
region to the associated far memory node.

A compute node manages far spans and far regions using
additional data structures that are analogous to the ones that
manage local spans. A far page heap handles the allocation
and deallocation of far spans belonging to allocated regions.
A far page map associates a far Span ID with metadata that (1)
names the enclosing region (as a Region ID) and (2) describes
the offset of the far span within that region.

Each application thread has a private far cache; Carbink
also maintains a global far cache that is visible to all appli-
cation threads. To swap out a local span of size s, a compute
node must first use the far page heap (or a far cache if pos-
sible) to allocate a free far span of size s. Similarly, after a
compute node swaps in a far span, the node deallocates the
far span, returning the far span to its source (either the far
page heap or a far cache).
Span filtering and swapping: The Carbink runtime executes
filtering threads that iterate through the objects in locally-
resident spans and move those objects to different local spans.
Carbink’s object shuffling has two goals.
• First, Carbink wants to create hot spans (containing only

hot objects) and cold spans (containing only cold ones);
when local memory pressure is high, Carbink’s eviction
threads prefer to swap out spansets containing cold spans.
Carbink tracks object hotness using GC-style read/write
barriers [4, 23]. Thus, by the time that a filtering thread
examines an object, the Hotness byte in the object’s pointer
(see Figure 2) has already been set. Upon examining the
Hotness byte, a filtering thread updates the byte using the
CLOCK algorithm [12].

• Second, object shuffling allows Carbink to garbage-collect
dead objects by moving live objects to new spans and
then deallocating the old spans. During eviction, Carbink
utilizes efficient one-sided RMA writes to swap spansets
out to far memory nodes; this approach allows Carbink to
avoid software-level overheads (e.g., associated with thread
scheduling) on the far node.

From the application’s perspective, object movement and
spanset eviction are transparent. This transparency is pos-
sible because each object embeds a reverse pointer (§3.2)
that allows filtering threads and evicting threads to determine
which smart pointers require updating.

Carbink swaps far memory into local memory at the granu-
larity of a span. As with swap-outs, Carbink uses one-sided
RMAs for swap-ins. Swapping at the granularity of a span
simplifies far memory management, since compute nodes
only have to remember how spans map to memory nodes (as
opposed to how the much larger number of objects map to

memory nodes). However, swapping in at span granularity
instead of object granularity has a potential disadvantage: if
a compute node swaps in a span containing multiple objects,
but only uses a small number of those objects, then the com-
pute node will have wasted network bandwidth (to fetch the
unneeded objects) and CPU time (to update the remotable
pointers for those unneeded objects). We collectively refer to
these penalties as swap-in amplification.

To reduce the likelihood of swap-in amplification,
Carbink’s filtering and eviction threads prioritize the scanning
and eviction of spansets containing large objects. The asso-
ciated spans contain fewer objects per span; thus, swapping
in these spans will reduce the expected number of unneeded
objects. Figure 3 shows that, for our production workloads,
large objects occupy the majority of memory. Moreover, most
hot objects are small; for example, in our company’s geo-
distributed database [13], roughly 95% of accesses involve
objects smaller than 1.8KB. As a result, an eviction scheme
which prioritizes large-object spansets is well-suited for our
target applications.

In Carbink, a local span has a three-state lifecycle. A span
is first created due to a swap-in or local allocation. The span
transitions to the filtering state upon being examined by filter-
ing threads. Once filtering completes, those spans transition
to the evicting state when evicting threads begin to swap out
spansets. The transition from created to filtering to evicting
is fixed, and determines which Carbink runtime threads race
with application threads at any given moment (§3.6).

3.4 Fault Tolerance via Erasure Coding

Erasure coding provides data redundancy with lower storage
overhead than traditional replication. However, the design
space for erasure coding schemes is more complex. Carbink
seeks to minimize both average and long-tail access penal-
ties for far objects; per our fault model (§3.1), Carbink also
wants to efficiently recover from the failure of memory nodes.
Achieving these goals forced us to make careful decisions
involving coding granularity, parity recalculation, and cross-
node transport protocols.
Coding granularity: To motivate Carbink’s decision to
erasure-code at the spanset granularity, first consider an ap-
proach that erasure-codes individual spans. In this approach,
to swap out a span, a compute node breaks the span into
data fragments, generates the associated parity fragments, and
then writes the entire set of fragments (data+parity) to remote
nodes. During the swap-in of a span, a compute node must
fetch multiple fragments to reconstruct the target span.

This scheme, which we call EC-Split, is used by Hydra [29].
With EC-Split, handling the failure of memory nodes during
swap-out or swap-in is straightforward: the compute node
who is orchestrating the swap-out or swap-in will detect the
memory node failure, select a replacement memory node,
trigger span reconstruction, and then restart the swap-in or
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Schemes EC data fragment size Network transport Parity computation Defragmentation
EC-Split (Hydra [29]) Span chunk RMA in & out Local N/A

EC-2PC Full span RMA in, RPC out (+updating parity via 2PC) Remote N/A
EC-Batch Local (Carbink) Full span RMA in & out Local Remote compaction

EC-Batch Remote (Carbink) Full span RMA in & out (+parallel 2PC for compaction) Local (swap-out)+ Remote compaction
Remote (compaction)

Table 1: The erasure-coding approaches that we study.

swap-out. The disadvantage of EC-Split is that, to reconstruct
a single span, a compute node must contact multiple memory
nodes to pull in all of the needed fragments. This requirement
to contact multiple memory nodes makes the swap-in opera-
tion vulnerable to stragglers (and thus high tail latency2). This
requirement also frequently prevents a compute node from
offloading computation to memory nodes; unless a particu-
lar object is small, the object will span multiple fragments,
meaning that no single memory node will have a complete
local copy of the object.

An alternate approach is to erasure-code across a group
of equal-sized spans. We call such a group a spanset. In this
approach, each span in the spanset is treated as a fragment,
with parity data computed across all of the spans in the set.
To reconstruct a span, a compute node merely has to contact
the single memory node which stores the span. Carbink uses
this approach to minimize tail latencies.
Parity updating: Erasure-coding at the spanset granularity
but swapping in at the span granularity does introduce compli-
cations involving parity updates. The reason is that swapping
in a span s leaves an invalid, span-sized hole in the backing
spanset; the hole must be marked as invalid because, when s
is later swapped out, s will be swapped out as part of a new
spanset. The hole created by swapping in s causes fragmen-
tation in the backing spanset. Determining how to garbage-
collect the hole and update the relevant parity information
is non-trivial. Ideally, a scheme for garbage collection and
parity updating would not incur overhead on the critical path
of swap-ins or swap-outs. An ideal scheme would also allow
parity recalculations to occur at either compute nodes or mem-
ory nodes, to enable opportunistic exploitation of free CPU
resources on both types of nodes.
Cross-node transport protocols: In systems like RAM-
Cloud [39], machines use RPCs to communicate. RPCs in-
volve software-level overheads on both sides of a communi-
cation. Carbink avoids these overheads by using one-sided
RMA, avoiding unnecessary thread wakeups on the receiver.
However, in and of itself, RMA does not automatically solve
the consistency issues that arise when offloading parity calcu-
lations to remote nodes (§3.4.2).

Throughout the paper, we compare Carbink’s erasure-coding
approach to various alternatives.

2Hydra [29] and EC-Cache [42] try to minimize straggler-induced laten-
cies by contacting k+∆ memory nodes instead of the minimum k, using the
first k responses to reconstruct an object. This approach increases network
traffic and compute-node CPU overheads.

• EC-Split is Hydra’s approach, which erasure-codes at
the span granularity, swaps data using RMA, and syn-
chronously recalculates parity at compute nodes when swap-
outs occur. Fragmentation within an erasure-coding group
never occurs, as a span is swapped in and out as a full unit.

• EC-2PC erasure-codes using spansets, and uses RMA to
swap in at the span granularity. During a swap-out (which
happens at the granularity of a span), EC-2PC writes the
updated span to the backing memory node; the memory
node then calculates the updates to the parity fragments,
and sends the updates to the relevant memory nodes which
store the parity fragments. To provide crash consistency for
the update to the span and the parity fragments, EC-2PC im-
plements a two-phase commit protocol using RPCs. There
is no fragmentation within an erasure-coding group because
swap-ins and swap-outs both occur at the span granularity.

• EC-Batch Local and EC-Batch Remote are the ap-
proaches used by Carbink. Both schemes erasure-code at
spanset granularity, using RMA for swap-in as well as swap-
out. Swap-ins occur at the granularity of a span, but swap-
outs occur at the granularity of spansets (§3.4.1); thus, both
EC-Batch approaches deallocate a span’s backing area in
far memory upon swapping that span into a compute node’s
local RAM. The result is that swap-ins create dead space on
a remote memory node. Both EC-Batch schemes reclaim
dead space and recalculate parity data using asynchronous
garbage collection. EC-Batch Local always recalculates
parity on compute nodes, whereas EC-Batch Remote can re-
calculate parity on compute nodes or memory nodes. When
EC-Batch Remote offloads parity computations to remote
nodes, it employs a parallel commit scheme that avoids the
latencies of traditional two-phase commit (§3.4.2).

Table 1 summarizes the various schemes. We now discuss
EC-Batch Local and Remote in more detail.

3.4.1 EC-Batch: Swapping

Swapping out: In both varieties of EC-Batch, a spanset con-
tains multiple spans of the same size. At swap-out time, a
compute node writes a batch (i.e., a spanset and its parity
fragments) to a memory node. Figure 4a shows an exam-
ple. In that example, the compute node has two spansets:
spanset1 (consisting of data spans < D1,D2,D3,D4 > and
parity fragments < P1,P2 >), and spanset2 (containing data
spans < D5,D6,D7,D8 > and parity fragments < P3,P4 >).
Carbink uses Reed-Solomon codes [43] to create parity data,
and prioritizes the eviction of spansets that contain cold spans
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(a) Swapping out spans and parity in a batch.
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(b) Swapping in individual spans.
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(c) Compacting spansets to reclaim space.
Figure 4: EC-Batch swapping-out, swapping-in, and far compaction.

(§3.3). Neither variant of EC-Batch updates spansets in place,
so eviction may require a compute node to request additional
far memory regions from the memory manager.
Swapping in: When an application tries to access an object
that is currently far, the Carbink runtime inspects the appli-
cation pointer and extracts the Span ID (see Figure 2b). The
runtime consults the far page map (§3.3) to discover which
remote node holds the span. Finally, the runtime initiates the
appropriate RMA operation to swap in the span.

However, swapping in at the span granularity creates re-
mote fragmentation. In Figure 4b, the compute node in the
running example has pulled four spans (D1, D2, D7, and D8)
into local memory. Any particular span lives exclusively in
local memory or far memory; thus, the swap-ins of the four
spans creates dead space on the associated remote memory
nodes. If Carbink wants to fill (say) D1’s dead space with a
new span D9, Carbink must update parity fragments P1 and
P2. For a Reed-Solomon code, those parity fragments will
depend on both D1 and D9.

There are two strawman approaches to update P1 and P2:
• The compute node can read D1 into local memory, generate

the parity information, and then issue writes to P1 and P2.
• Alternatively, the compute node can send D9 to memory

node M1, and request that M1 compute the new parity data
and update P1 and P2.

The second approach requires a protocol like 2PC to guaran-
tee the consistency of data fragments and parity fragments;
without such a protocol, if M1 fails after updating P1, but be-
fore updating P2, the parity information will be out-of-sync
with the data fragments.

The first approach, in which the compute node orchestrates
the parity update, avoids the inconsistency challenges of the
second approach. If a memory node dies in the midst of a
parity update, the compute node will detect the failure, pick a
new memory node to back the parity fragment, and retry the
parity update. If the compute node dies in the midst of the par-
ity update, then the memory manager will simply deallocate
all regions belonging to the compute node (§3.1).

Unfortunately, both approaches require a lot of network
bandwidth to fill holes in far memory. To reclaim one vacant
span, the first approach requires three span-sized transfers—
the compute node must read D1 and then write P1 and P2.
The second approach requires two span-sized transfers to up-
date P1 and P2. To reduce these network overheads, Carbink
performs remote compaction, as described in the next section.

3.4.2 EC-Batch: Remote Compaction

Carbink employs remote compaction to defragment far mem-
ory using fewer network resources than the two strawmen
above. On a compute node, Carbink executes several com-
paction threads. These threads look for “matched” spanset
pairs; in each pair, the span positions containing dead space
in one set are occupied in the other set, and vice versa. For ex-
ample, the two spansets in Figure 4b are a matched pair. Once
the compaction threads find a matched pair, they create a new
spanset whose data consists of the live spans in the matched
pair (e.g., < D3,D4,D5,D6 > in Figure 4b). The compaction
threads recompute and update the parity fragments P1′ and
P2′ using techniques that we discuss in the next paragraph.
Finally, the compaction threads deallocate the dead spaces
in the matched pair (e.g., < D1,D2,D7,D9,P3,P4 > in Fig-
ure 4b), resulting in a situation like the one shown in Figure 4c.
Carbink’s compaction can occur in the background, unlike the
synchronous parity updates of EC-2PC which place consensus
activity on the critical path of swap-outs.

So, how should compaction threads update parity infor-
mation? Carbink uses Reed-Solomon codes over the Galois
field GF(28). The new parity data to compute in Figure 4c is
therefore represented by the following equations on GF(28):

P1′−P1 = A1,1(D5−D1)+A2,1(D6−D2)

P2′−P2 = A1,2(D5−D1)+A2,2(D6−D2)
where Ai, j (i ∈ {0,1,2,3}, j ∈ {0,1}) are fixed coefficient
vectors in the Reed-Solomon code. Carbink provides two
approaches for updating the parity information.
• In EC-Batch Local, the compute node that triggered the

swap-out orchestrates the updating of parity data. In the
running example, the compute node asks M1 to calculate
the span delta D5−D1, and asks M2 to calculate the span
delta D6−D2. After retrieving those updates, the compute
node determines the parity deltas (i.e., P1′−P1 and P2′−
P2) and pushes those deltas to the parity nodes M5 and M6.

• In EC-Batch Remote, the compute node offloads parity
recalculation and updating to memory nodes. In the running
example, the compute node asks M1 to calculate the span
delta D5−D1, and M2 to calculate the span delta D6−D2.
The compute node also asks M1 and M2 to calculate partial
parity updates (e.g., A1,1(D5−D1) and A1,2(D5−D1) on
M1). M1 and M2 are then responsible for sending the partial
parity updates to the parity nodes. For example, M1 sends
A1,1(D5−D1) to M5, and A1,2(D5−D1) to M6.
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In EC-Batch Local, recovery from memory node failure is
orchestrated by the compute node in a straightforward way,
as in EC-Split (§3.4). In EC-Batch Remote, a compute node
performs remote compaction by offloading parity updates to
memory nodes. The compute node ensures fault tolerance
for an individual compaction via 2PC. However, the com-
pute node aggressively issues compaction requests in parallel.
Two compactions (i.e., two instance of the 2PC protocol) are
safe to concurrently execute if the compactions involve dif-
ferent spansets; the prepare and commit phases of the two
compactions can partially or fully overlap.

On a compute node, Carbink’s runtime can monitor the
CPU load and network utilization of remote memory nodes.
The runtime can default to remote compaction via EC-Batch
Local, but opportunistically switch to EC-Batch Remote if
spare resources emerge on memory nodes. During a switch
to a different compaction mode, Carbink allows all in-flight
compactions to complete before issuing new compactions that
use the new compaction mode.

The strawmen defragmentation schemes in Section 3.4.1 re-
quire two or three span-sized network transfers to recover one
dead span. In the context of Figure 4, EC-Batch Local recov-
ers four dead spans using four span-sized network transfers.
EC-Batch Remote requires four span-sized network trans-
fers (plus some small messages generated by the consistency
protocol) to recover four dead spans.

3.5 Failure Recovery

Carbink handles two kinds of memory node failures: planned
and unplanned. Planned failures are scheduled by the cluster
manager [51, 52] to allow for software updates, disk refor-
matting, and so on. Unplanned failures happen unexpectedly,
and are caused by phenomena like kernel panics, defective
hardware, and power disruptions.
Planned failures: When the cluster manager decides to
schedule a planned failure, the manager sends a warning no-
tification to the affected memory nodes. When a memory
node receives such a warning, the memory node informs the
memory manager. In turn, the memory manager notifies any
compute nodes that have allocated regions belonging to the
soon-to-be-offline memory node. Those compute nodes stop
swapping-out to the memory node, but may continue to swap-
in from the node as long as the node is still alive. Meanwhile,
the memory manager orchestrates the migration of regions
from the soon-to-be-offline memory node to other memory
nodes. When a particular region’s migration has completed,
the memory manager informs the relevant compute node, who
then updates the local mapping from Region ID to backing
memory node. At some point during this process, the mem-
ory manager may also request non-failing memory nodes to
contribute additional regions to the global pool of far memory.
Unplanned Failures: On a compute node, the Carbink run-
time is responsible for detecting the unplanned failure of a

memory node. The runtime does so via connection timeouts
or more sophisticated leasing protocols [15, 16]. Upon de-
tecting an unplanned failure, the runtime spawns background
threads to reconstruct the affected spans using erasure cod-
ing. The runtime is also responsible for allowing application
threads to read spans whose recovery is in-flight.
Span reconstruction: To reconstruct the spans belonging to
a failed memory node M f ail , a compute node first requests
a new region from the memory manager. Suppose that the
new region is provided by memory node Mnew. The compute
node iterates through each lost spanset associated with M f ail ;
for each spanset, the compute node tells Mnew which external
spans and parity fragments to read in order to erasure-code-
restore M f ail’s data. As the relevant spans are restored, a
compute node can still swap in and remotely compact those
spans. However, the swap-in and remote compaction activity
will have to synchronize with recovery activity (§3.6).

In EC-Batch Local, when a compute node detects a mem-
ory node failure, the compute node cancels all in-flight com-
pactions involving that node. A compute node using EC-
Batch Remote does the same; however, for each canceled
compaction, the compute node must also instruct the surviv-
ing memory nodes in the 2PC group to cancel the transaction.

The data and parity for a swapped-out spanset reside on
multiple memory nodes. As a compute node recovers from
the failure of one of the nodes in that group, another node in
the group may fail. As long as the number of failed nodes
does not exceed the number of parity nodes, Carbink can
recover the spanset. The reason is that all of the information
needed to recover is stored on a compute node, e.g., in the far
page heap (§3.3). Due to space limitations, we omit a detailed
explanation of how Carbink deals with concurrent failures.
Degraded reads: During the reconstruction of an affected
span, application threads may try to swap in the span. The
runtime handles such a fetch using a degraded read proto-
col. For example, consider Figure 4a. Suppose that M1 fails
unexpectedly, and while the Carbink runtime is recovering
M1’s spans (D1 and D5), an application thread tries to read
an object residing in D1. The runtime will swap in data spans
D2, D3, and D4, as well as parity fragment P1, and then re-
construct D1 via erasure coding. Degraded reads ensure that
the failure of a memory node merely slows down an appli-
cation instead of blocking it. In Section 5.3, we show that
application performance only drops for 0.6 seconds, and only
suffers a throughput degradation of 36% during that time.
Network bandwidth consumption: During failure recovery,
Carbink consumes the same amount of network bandwidth
as Hydra. For example, suppose that both Hydra and Carbink
use RS4.2 encoding and have 4 spans, with a span stored on
each of 4 memory nodes. In Hydra, a single node failure will
lose four 1/4th spans. Reconstructing each 1/4th span will
require the reading of four 1/4th span/parity regions from the
surviving nodes, resulting in an aggregate network bandwidth
requirement of 1 full span. So, reconstructing four 1/4th spans
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will require an aggregate network bandwidth of 4 full spans.
In Carbink, the failure of a single memory node results in the
loss of 1 full span. To recover that span, Carbink (like Hydra)
must read 4 span/parity regions.

3.6 Thread Synchronization

On a compute node, the main kinds of Carbink threads are
applications threads (which read objects, write objects, and
swap in spans), filtering threads (which move objects within
local spans), and eviction threads (which reclaim space by
swapping local spansets to far memory). At any given time, a
span may be in one of two concurrency regimes (§3.3): the
span is either accessible to application threads and filtering
threads, or to application threads and eviction threads. In both
regimes, Carbink has to synchronize how the relevant threads
update Carbink’s smart pointers (§3.2).

At a high level, Carbink uses an RCU locking scheme that
is somewhat reminiscent of AIFM’s approach [44]. Due to
space restrictions, we merely sketch the design. Carbink op-
timizes for the common case in which a span is only being
accessed by an application thread. In this common case, an
application thread grabs an RCU read lock on the pointer via
the pointer’s Deref() method, as shown in Listing 1. The
thread sees that either (1) the Present bit is not set, in which
case the Carbink runtime issues an RMA read to swap in
the appropriate span; (2) alternatively, the thread sees that
the Present bit is set, but the M and E bits are unset. In the
second case, Deref() can just return a normal pointer back
to the application. The application can be confident that con-
current filtering or evicting threads will not move or evict the
object, because those threads cannot touch the object until
application-level threads have released their RCU read locks
via the DerefScope destructor (Listing 1).

The more complicated scenarios arise when the Present
bit is set and either the M or E bit are set as well. In this
case, the (say) M bit has been set because the filtering thread
set the bit and then called SyncRCU() (i.e., the RCU write
waiting lock). The concurrent application thread and filtering
thread essentially race to acquire the pointer’s spinlock; if the
application thread (i.e., Deref()) wins, it makes a copy of the
object, clears M, releases the spinlock, and returns the address
of the object copy to the application. Otherwise, if the filtering
thread wins, it moves the object, clears M, and releases the
spinlock. The losing thread has to retry the desired action. An
analogous situation occurs if the E bit is set.

Carbink’s eviction and remote compaction threads directly
poll the network stack to learn about RMA completions and
RPC completions. An application thread which has issued
an RMA swap-in operation will yield, but a dedicated RMA
poller thread detects when application RMAs have completed
and awakens the relevant application threads. Polling avoids
the overheads of context switching to new threads and notify-
ing old threads that network events have occurred.

During recovery (§3.5), Carbink spawns additional threads
to orchestrate the reconstruction of spans. Those threads ac-
quire per-spanset mutexes which are also acquired by threads
performing swap-ins, swap-outs, and remote compactions.

4 Implementation
Our Carbink prototype contains 14.3K lines of C++. It runs
atop unmodified OSes, using standard POSIX abstractions
for kernel-visible threads and synchronization. The runtime
leverages the PonyExpress user-space network stack [35]. On
a compute node, all threads in a particular application (both
application-defined threads and Carbink-defined threads) ex-
ecute in the same process. On a memory node, a Carbink
daemon exposes far memory via RMAs or RPCs. We use
Intel ISA-L v2.30.0 [25] for Reed-Solomon erasure coding.

Our current prototype has a simplified memory manager
that is unreplicated, does not handle planned failures, and
statically assigns memory nodes to compute nodes. Imple-
menting the full version of the memory manager will be con-
ceptually straightforward, since we can use off-the-shelf li-
braries for replicated state machines [1, 45] and cluster man-
agement [51, 52]. We also note that the experiments in §5
are insensitive to the performance of the memory manager,
regardless of whether the manager is replicated or not. The
reason is that memory allocations and deallocations (which
must be routed through the memory manager) are rare and
are not on the critical path of steady-state compute node oper-
ations like swap-in and swap-out.

To better understand the performance overheads of
Carbink’s erasure-coding approach, we built an AIFM-
like [44] far memory system. That system uses remotable
pointers like Carbink, but swaps in and out at the granular-
ity of objects, and provides no fault tolerance. Like Carbink,
it leverages the PonyExpress [35] user-space network stack.
Our AIFM clone is 5.8K lines of C++.

5 Evaluation
In this section, we answer the following questions:
1. What is the latency, throughput, and remote memory us-

age of EC-Batch compared with the other fault tolerance
schemes (§5.1 and §5.2)?

2. How does an unplanned memory node failure impact the
performance of Carbink applications (§5.3)?

3. How does the performance of Carbink’s span-based mem-
ory organization compare to the performance of an AIFM-
like object-level approach (§5.4)?

Testbed setup: We deployed eight machines in the same rack,
including one compute node and seven memory nodes; one of
the memory nodes was used for failover. Each machine was
equipped with dual-socket 2.2 GHz Intel Broadwell proces-
sors and a 50 Gbps NIC.
Fault tolerance schemes: Using the Carbink runtime, we
compared our proposed EC-Batch schemes to four ap-
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Figure 5: Microbenchmark load-latency curves.
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Figure 6: Latency distribution of remote object accesses in
the microbenchmark under an offered load of 2 Mops.

proaches: Non-FT (a non-fault-tolerant scheme that used
RMA to swap spans), Replication (which replicated spans on
multiple nodes), EC-Split (the approach used by Hydra [29]),
and EC-2PC (Table 1). We configured all fault tolerance
schemes to tolerate up to two memory node failures. So,
the Replication scheme replicated each swapped-out span on
three memory nodes, whereas the EC schemes used six mem-
ory nodes—four held data, and two held RS4.2 parity bits [43].
EC-Batch spawned two compaction threads by default.

As mentioned in Section 4, we also built an AIFM-like far
memory system. This system did not provide fault tolerance,
but it provided a useful comparison with our Non-FT Carbink
version.

Carbink borrows the span sizes that are used by TCMalloc
(§3.3). These parameters have been empirically observed to
reduce internal fragmentation. In our evaluation, EC-Batch
(both Local and Remote) grouped four equal-size spans into a
spanset, swapping out at the granularity of a spanset. Increas-
ing spanset sizes would allow Carbink to issue larger batched
RMAs, improving network efficiency. However, spansets
whose evictions are in progress must be locked in local mem-
ory while RMAs complete; thus, larger spanset sizes would
delay the reclamation of larger portions of local memory.

5.1 Microbenchmarks
To get a preliminary idea of Carbink’s performance, we cre-
ated a synthetic benchmark that wrote 15 million 1 KB objects
(totalling 15 GB) to a remotable array. The compute node’s
local memory had space to store 7.5 GB of objects (i.e., half
of the total set). By default, the compute node spawned 128
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Figure 7: Impact of skew on throughput.

threads on 32 logical cores to access objects; the access pat-
tern had a Zipfian-distributed [41] skew of 0.99. Such skews
are common in real workloads for key/value stores [7].
Object access throughput and tail latency: Figure 5 shows
the 99th-percentile latency with various object access loads.
All of the fault-tolerant schemes eventually hit a “hockey stick”
in tail latency growth when the schemes could no longer catch
up with the offered load. EC-Batch Remote had the highest
sustained throughput (6.0 Mops), which was 40% higher than
the throughput of the state-of-the-art EC-Split (4.3 Mops).
EC-Batch Local achieved 5.6 Mops, which was 30% higher
than EC-Split. EC-Split had worse performance because it
had to issue four RMA requests to swap in one span; thus, EC-
Split quickly became bottlenecked by network IO. In contrast,
EC-Batch only issued one RMA request per swap-in.

EC-Batch Remote had 18%-29% lower tail latency than
EC-Split under the same load (before reaching the “hockey-
stick”). The reason was that EC-Split’s larger number of
RMAs per swap-in left EC-Split more vulnerable to strag-
glers [29]. Also recall that EC-Batch can support computation
offloading [3, 27, 44, 57], which is hard with EC-Split (§3.4).

EC-2PC had the worst throughput because it relied on
costly RPCs and 2PC protocols to swap out spans. Thus, EC-
2PC could not reclaim local memory as fast as other schemes.
The Replication scheme was bottlenecked by network band-
width, since every swap-out incurred a 3× network write
penalty; in contrast, EC-based schemes used RS4.2 erasure
coding to reduce the write penalty to 1.5×.
Latency distribution of remote object accesses: Figure 6
shows the latency of accessing remote objects under 2 Mops
of offered load. With this low offered load, Replication and
EC-Batch Remote achieved similar access latencies as Non-
FT because none of the schemes were bottlenecked by net-
work bandwidth. EC-Batch Local had slightly higher remote
access latencies. However, EC-Split had significantly higher
access latencies (e.g., at the median and tail) than EC-Batch
Local and Remote; the reason was that EC-Split issued four
times as many network IOs and thus was more sensitive to
stragglers. EC-2PC’s tail latency was slightly higher than that
of EC-Batch Local and Remote due to the overhead of costly
RPCs and 2PC traffic.
Impact of skewness: Figure 7 shows how the skewness of
object accesses impacted throughput. EC-Batch Remote and
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# Compac-
tion threads

Norm. remote
mem usage

Avg. # remote
logical cores

Avg. BW
(Gbps)

EC-Batch
Local

1 2.54 0.23 1.27
2 2.35 0.53 1.64
3 2.28 0.56 1.76

EC-Batch
Remote

1 1.89 1.97 2.98
2 1.83 2.10 3.15
3 1.74 2.27 3.40

W/o compaction 0 3.03 – –

Table 2: Remote resource usage in the microbenchmark. The
remote memory usage is normalized with respect to the us-
age of Non-FT. The number of remote logical cores and the
network bandwidth are averaged across all six memory nodes.

Local performed best due to their more efficient swapping
approaches. However, the throughput of all schemes increased
with higher skewness. The reason is that high skewness led
to a smaller working set and thus a higher likelihood that
hot objects were locally resident. In these scenarios, schemes
with faster swapping were not rewarded as much.
Remote resource usage with compaction: Table 2 shows
the impact of compaction on the average memory, CPU, and
bandwidth usage per memory node. Without compaction, EC-
Batch used 3.03× remote memory (normalized with respect to
Non-FT memory consumption). With two local compaction
threads, EC-Batch Remote’s memory overhead reduced to
1.83×. The memory reduction was at the expense of 2.1 cores
and 3.15 Gbps bandwidth on each memory node. With more
compaction threads, Carbink could further reduce memory
usage at the cost of higher CPU and bandwidth utilization.
That being said, we note that the synthetic microbenchmark
application represented an extreme case of remote CPU and
network usage, since the workload accessed objects without
actually computing on them.
EC-Batch Remote vs. Local: EC-Batch Remote had higher
throughput and lower tail latency than EC-Batch Local (Fig-
ure 5). This was because EC-Batch Local’s compaction re-
quired (1) local CPUs for parity computation and (2) network
bandwidth for transferring span deltas and parity updates, leav-
ing fewer local resources for application threads and RMA
reads. Because of EC-Batch Remote’s faster compaction, EC-
Batch Remote also used 28%-34% less remote memory than
EC-Batch Local (Table 2). However, EC-Batch Remote con-
sumed more remote CPUs (2.10 vs. 0.53 cores) and more
network bandwidth (3.15 vs. 1.64 Gbps) than Local. In prac-
tice, the Carbink runtime could transparently switch between
EC-Batch Remote and Local based on an application devel-
oper’s policy about resource/performance trade-offs.

5.2 Macrobenchmarks

We evaluated Carbink using two memory-intensive applica-
tions that would benefit from remote memory: an in-memory
transactional key-value store, and a graph processing algo-
rithm. The two applications exhibited different patterns of
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Figure 8: Transactional KV-store evaluation.

object accesses, and had different working set behaviors.
Transactional KV-store: This application implemented a
transactional in-memory B-tree, exposing it via a key/value
interface similar to that of MongoDB [37]. Each remotable
object was a 4 KB value stored in a B-tree leaf. The applica-
tion spawned 128 threads, and each thread processed 20 K
transactions. The compute node provisioned 32 logical cores,
with the application overlapping execution of the threads for
higher throughput [26, 38, 44, 56]. Each transaction contained
three reads and three writes, similar to the TPC-A bench-
mark [53]. Each update created a new version of a particular
key’s value; asynchronously, the application trimmed old ver-
sions. The maximum working set size during the experiment
was roughly 50 GB.
Throughput: Figure 8a shows the KV-store throughput when
varying the size of local memory (normalized as a fraction
of the maximum working set size). In scenarios with less
than 50% local memory, EC-Batch Remote achieved higher
transactions per second (TPS) than all other fault tolerance
schemes. For example, TPS for EC-Batch Remote was 1.5%-
48% higher than that of EC-Split; this was because EC-Batch
only needed one RMA request to swap in a span. EC-Batch
Remote was at most 29% slower than Non-FT, mainly due to
the additional parity update required for fault tolerance. EC-
Batch Local was at most 13% slower than EC-Batch Remote.
EC-2PC performed the worst among EC schemes.

All schemes achieved similar throughput when the local
memory size was above 50%. The reason was that the average
working set size of the workload was only half the size of the
maximum memory usage. The maximum memory usage only
occurred when the B-Tree had fallen very behind in culling
old versions of objects.
Remote memory usage: Figure 8b plots remote memory us-
age as a function of local memory sizes; remote memory
usage is normalized with respect to that of Non-FT. Com-
pared to EC-Split, EC-Batch Remote and Local used up to
35% and 93% more remote memory, respectively. EC-Batch
schemes defragmented remote memory using compaction,
but when local memory space was less than 50%, remote
compaction could not immediately defragment the spanset
holes created by frequent span swap-ins. As local memory
grew larger, span fetching became less frequent, making it
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Figure 9: Graph processing evaluation.

easier for remote compaction to reclaim space. In this less
hectic environment, EC-Batch’s remote memory usage was
similar to that of the other erasure-coding schemes.3

Graph processing: We implemented a connected-
components algorithm [50] that found all sets of linked
vertices in a graph. This kind of algorithm is critical to
various Google services. We evaluated the algorithm using
the Friendster graph [30] which contained 65 million vertexes
and 1.8 billion edges. In the graph analysis code, each
vertex’s adjacency list was referenced via remotable pointers.
The total size of the objects stored in Carbink was roughly 40
GB. The application used 80 application threads that ran atop
80 logical cores. In our experimental results, the reported
processing times exclude graph loading, since graph loading
is dominated by disk latencies.

Figure 9a shows that all schemes had similar processing
times as Non-FT, regardless of the local memory size. The
reason was that the graph application had a high compute-
to-network ratio—the application fetched all neighbors asso-
ciated with each vertex and then spent non-trivial time enu-
merating each neighbor and computing on them. As a result
of this good spatial locality and high “think time,” the graph
application did not incur frequent data swapping, and thus
avoided fault tolerance overhead that the KV-store could not.

Figure 9b shows that EC-Batch Local and Remote had
similar remote memory usage as EC-Split: 15%-39% lower
than EC-2PC and roughly 50% lower than Replication. All
EC-based schemes had lower remote memory overheads than
Replication because the erasure coding only incurred a 1.5×
space overhead for the extra parity data.

EC-2PC used more memory than EC-Batch because the
graph workload randomly fetched diverse-sized spans. The
random fetch sizes reflected the fact that different vertices
had different sizes for their adjacency lists. This lack of span
size locality hindered dead space reclamation, since EC-2PC
had to wait longer for all of the spans in an erasure-coding
group to be swapped in. EC-Batch avoided this problem by
bundling equal-sized spans into the same spanset and using
remote compaction.

3The remote memory usage of triple-replication was slightly less than 3×
the usage of Non-FT because Non-FT could swap out memory faster during
periods of high local memory pressure.
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Figure 10: Failure recovery evaluation.

5.3 Failure Recovery

We measured the recovery time for an unplanned memory
node failure in the KV-store, the graph processor, and the
microbenchmark application. For the graph application, all
schemes achieved similar processing time during unplanned
failures; thus, in the text below, we focus on the KV-store and
the microbenchmark.
Transactional KV-store: Figure 10a shows the KV-store
throughput of Replication and EC-Batch Local, with a data
point collected every 100 ms before and after an unplanned
memory node failure. Upon detecting the failure, EC-Batch
Local immediately reconstructed the lost data on a pre-
configured failover memory node. We gave the KV-store 15
GB of local memory, equivalent to 30% of the 50 GB maxi-
mum working set size.

The throughput of both schemes fluctuated sinusoidally be-
cause the KV-store frequently tried to swap in remote objects,
but the swap-ins sometimes had to synchronously block until
eviction threads could reclaim enough local memory. After a
memory node failed, EC-Batch needed 0.6 seconds to restore
normal throughput, while replication needed 0.3 seconds. This
is because, during failure recovery, an EC-Batch read that tar-
geted an affected span used the degraded read protocol which
uses more bandwidth than a normal read (§3.5); in contrast,
a Replication read that targeted an affected span consumed
the same amount of bandwidth as a read during non-failure-
recovery. During recovery, the throughput of Replication and
EC-Batch dropped an average of 35% and 36% respectively.

EC-Batch required 9.7 seconds to fully regenerate the lost
data on the failover node, taking 1.7× longer than Replication.
This difference arose because, in EC-Batch, the new memory
node read 4× span/parity information involving the lost data
and computed erasure codes to reconstruct the lost data. In
contrast, Replication lost more data per memory node, but
only read one copy of the lost data. Note that with EC-Batch,
degraded reads mostly happened during the first second of fail-
ure recovery; the skewed workload meant that a small number
of objects were the targets of most reads, and once a hot object
was pulled into local memory (perhaps by a degraded read),
the object would not generate additional degraded reads.
Microbenchmark: Figure 10b shows recovery times as a
function of the remote data size. The recovery time of EC-
Batch increased almost linearly with the remote data size,
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Figure 11: Application performance: AIFM-like object-
based systems and Carbink.

with 0.6 GB/s recovery speed. This speed was 12%-44%
slower than Replication due to the larger amount of recovery
information that EC-Batch had to transfer around the network,
and the computational overhead of generating erasure codes.

Prior work [10, 29, 58] also found that, during recovery,
erasure-coding schemes had longer recovery times and worse
performance degradation than replication schemes. However,
this drawback only happens for unplanned failures which, in
our production environment, are rare compared to planned
failures; in an erasure-coding scheme, handling a planned
failure just requires simple copying of the information on a
departing memory node, and does not incur additional work
to find parity information or recompute erasure coding. Thus,
in our deployment setting where unplanned failures are rare,
erasure-coding schemes (which have lower memory utiliza-
tion than replication schemes) are very attractive.

5.4 Comparison with AIFM-like Systems

We compared span-based swapping in Carbink with the object-
based approach used in AIFM [44]. We implemented two
AIFM-like systems using our threading and network stack
(§4). The first system used RPCs to swap individual objects,
with the remote memory nodes tracking the object-to-remote-
location mapping (as done in AIFM). Our second object-
granularity swapping system used more-efficient RMAs to
swap objects, and had compute nodes track the mapping be-
tween objects and their remote locations; recall that RMA is
one-sided, so compute nodes could not rely on memory nodes
to synchronously update mappings during swaps. Like the
original AIFM, neither system provided fault tolerance.
Transactional KV-store: Figure 11a shows that, if local
memory was too small to hold the average working set, Non-
FT Carbink had 45%-167% higher throughput than the AIFM-
like system with RPC. The reason is that, when local memory
pressure was high, more swapping occurred, and the better
efficiency of RMAs over RPCs became important. However,
Non-FT Carbink achieved 5.6%-15% lower throughput than
the object-based system with RMA. This was due to swap-in
amplification. For example, Non-FT Carbink might swap in
an 8KB span but only use one 4KB object in the span; this
never happens in a system that swaps at an object granularity.

Graph processing: Figure 11b shows the graph application’s
processing time. When the local memory size was below
87.5%, Carbink performed 18%-58% faster than the object-
based system with RMA. This is because, in the graph work-
load, 4% of large objects occupied 50% of the overall data set.
Carbink prioritized swapping out large cold objects (§3.3),
keeping most small objects in local memory and reducing the
miss rate for those objects. In contrast, the object-based sys-
tems did not consider object sizes when swapping, leading to
an increased miss rate for small objects. Note that, with larger
local memories, all schemes had similar performance; indeed,
when all objects fit into local memory, the object-based sys-
tem with RPC slightly outperformed the rest because it did
not require a dedicated core to poll for RMA completions.

6 Discussion

EC-Batch for paging-based systems: Carbink uses EC-
Batch to transparently expose far memory via remotable point-
ers. However, EC-Batch can also be used to expose far mem-
ory via OS paging mechanisms [5, 22, 46]. In a traditional
paging-based approach for far memory, a compute node swaps
in and out at the granularity of a page. However, a compute
node can use EC-Batch to treat each page as a span, such that
pages are swapped out at the “pageset” granularity, and pages
are swapped in at the page granularity.
Custom one-sided operations: EC-Batch requires memory
nodes to calculate span deltas and parity updates (§3.4.2). In
our Carbink prototype, memory nodes use separate threads
to execute these calculations. However, memory nodes could
instead implement them as custom one-sided operations in the
network stack, such that the network stack itself performs the
calculations, avoiding the need to context-switch to external
threads. This approach has been used in prior work [6, 9, 35,
47, 48] to avoid thread scheduling overheads.
Designing the memory manager: We used a centralized
manager because such a manager (1) simplified our overall
design, and (2) made it easier to drive memory utilization high
(because a centralized manager will have a global, accurate
view of memory allocation metadata). A similarly-centralized
memory manager is used by the distributed transaction system
FaRM [16]. If the centralized manager became unavailable,
Carbink could fall back to a decentralized memory allocation
scheme like the one used by Hydra [29] or INFINISWAP [22].

The state maintained by the memory manager is not large.
With 1 GB regions, we expect up to 500 regions in a typical
memory node (similar to FaRM [16]). With thousands of
memory nodes, the memory manager just needs to store a few
MBs of state for region assignments.
Fault tolerance for compute nodes: In Carbink, a compute
node does not share memory with other compute nodes. Thus,
a Carbink application can checkpoint its own state without
fear of racing with other compute nodes that modify the state
being checkpointed. Checkpoint data could be placed in a
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Fast
s/o

Low
mem

Fast
s/i Interface Coding

granularity
On-disk rpl. 7 3 3 Various –

In-memory rpl. 3 7 3 Various –
Hydra [29] 3 3 7 Paging Split 4KB pages

Cocytus [10] 3 3 7 KV-store Across 4KB pages
BCStore [31] 3 3 7 KV-store Across objs
Hybrid [32] 7 7 3 KV-store Split 4KB pages

Carbink 3 3 3 Remotable pointers Across spans

Table 3: Comparison of existing fault-tolerant approaches
for far memory. “Fast s/o” indicates whether a system can
swap out at network/memory speeds. “Low mem” means that
a system has relatively low memory pressure. “Fast s/i” refers
to whether a system can swap in at network/memory speeds.

non-Carbink store, obviating the need to track how check-
pointed spans move across Carbink memory nodes during
compaction and invalidation. Alternatively, Carbink itself
could store checkpoints, e.g., in the fault-tolerant address
space of a well-known Carbink application whose sole pur-
pose is to store checkpoints.

7 Related Work
Fault tolerance for far memory: Many far memory systems
do not provide fault tolerance [2, 44, 55]. Of the systems
that do, most replicate swapped-out data to local disks or
remote ones [5, 22, 46]. Unfortunately, this approach forces
application performance to bottleneck on disk bandwidth or
disk IOPs during bursty workloads or failure recovery [29].
This behavior is unattractive, since a primary goal of a far
memory system is to have applications run at memory speeds
as much as possible.

Like Carbink, Hydra [29] is a far memory system that
provides fault tolerance by writing erasure-coded local mem-
ory data to far RAM. Hydra uses the EC-Split coding ap-
proach that we describe in Section 3.4. As we demonstrate in
Section 5, Carbink’s erasure-coding scheme provides better
application performance in exchange for somewhat higher
memory consumption. Carbink’s coding scheme also enables
the offloading of computations to far memory nodes. Such of-
floading can significantly improve the performance of various
applications [3, 27, 44, 57].
Fault tolerance for in-memory transactions and KV-
stores: In-memory transaction systems typically provide fault
tolerance by replicating data across the memory of multiple
nodes [15, 16, 26]. These approaches suffer from the classic
disadvantages of replication: double or triple storage over-
head, and the associated increase in network traffic.

Recent in-memory KV-stores use erasure coding to provide
fault tolerance. For example, Cocytus [10] and BCStore [31]
only rely on in-memory replication to store small instances
of metadata; object data is erasure-coded using a default page
size of 4KB. Cocytus erasure-codes using a scheme that re-
sembles EC-2PC (§3.4). To reduce the network utilization of

a Cocytus-style approach, a BCStore compute node buffers
outgoing writes; this approach allows the node to batch the
computation of parity fragments (and thus issue fewer updates
to remote data and parity regions). Batching reduces network
overhead at the cost of increasing write latency.

Both Cocytus and BCStore rely on two-sided RPCs to ma-
nipulate far memory. RPCs incur software-level overheads
involving thread scheduling and context switching on remote
nodes. To avoid these costs, Carbink eschews RPCs for one-
side RMA operations. Carbink also issues fewer parity up-
dates than Cocytus; whereas Cocytus uses expensive 2PC
to update parity information during every write, Carbink de-
fers parity updates until compaction occurs on remote nodes
(§3.4.2). Carbink’s compaction approach is also more effi-
cient than that of BCStore. BCStore’s compaction algorithm
performs actual copying of data objects on memory nodes,
whereas Carbink compaction just manipulates span pointers
inside of spanset metadata.

A far memory system could use both replication and erasure
coding [32]. For example, during a Hydra-style swap-out, a
span would be erasure-coded and the fragments written to
memory nodes; however, a full replica of the span would
also be written out. Relative to Carbink, this hybrid approach
would have lower reconstruction costs (assuming that the full
replica did not live on the failed node). However, Carbink
would have lower memory overheads because no full replica
of a span would be stored. Carbink would also have faster
swap-outs, because swap-outs in the hybrid scheme would
require an EC-2PC-like mechanism to ensure consistency.

Table 3 summarizes the strengths and weaknesses of the
various systems discussed above.
Memory compaction: In Carbink, the far memory regions
used by a program become fragmented as spans are swapped
in. Memory compaction is a well-studied topic in the literature
about “moving” garbage collectors for managed languages
(e.g., [11, 18, 49]). Moving garbage collection is also possible
for C/C++ programs; Mesh [40] represents the state-of-the-art.
With respect to this prior work, Carbink’s unique challenge
is that the compaction algorithm (§3.4.2) must compose well
with an erasure coding scheme that governs how objects move
between local memory and far memory.

8 Conclusion
Carbink is a far memory system that provides low-latency,
low-overhead fault tolerance. Carbink erasure-codes data us-
ing a span-centric approach that does not expose swap-in
operations to stragglers. Whenever possible, Carbink uses
efficient one-sided RMAs to exchange data between com-
pute nodes and memory nodes. Carbink also uses novel com-
paction techniques to asynchronously defragment far memory.
Compared to Hydra, a state-of-the-art fault-tolerant system
for far memory, Carbink has 29% lower tail latency and 48%
higher application performance, with at most 35% higher
memory usage.
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[16] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of ACM
SOSP, pages 54–70, 2015.

[17] Jason Evans. A Scalable Concurrent malloc (3) Imple-
mentation for FreeBSD. In Proceedings of BSDCan
Conference, 2006.

[18] Robert R. Fenichel and Jerome C. Yochelson. A LISP
Garbage-Collector for Virtual-Memory Computer Sys-
tems. Communications of the ACM, 12(11):611–612,
1969.

[19] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
Graph-Parallel Computation on Natural Graphs. In Pro-
ceedings of USENIX OSDI, pages 17–30, 2012.

[20] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.
Graphx: Graph Processing in a Distributed Dataflow
Framework. In Proceedings of USENIX OSDI, pages
599–613, 2014.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    69

https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/
https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/
https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/


[21] Google. TCMalloc Open Source. https://github.c
om/google/tcmalloc.

[22] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient Memory Dis-
aggregation with INFINISWAP. In Proceedings of
USENIX NSDI, pages 649–667, 2017.

[23] Xianglong Huang, Stephen M Blackburn, Kathryn S.
McKinley, J. Eliot B. Moss, Zhenlin Wang, and Perry
Cheng. The Garbage Collection Advantage: Improving
Program Locality. ACM SIGPLAN Notices, 39(10):69–
80, 2004.

[24] Andrew Hamilton Hunter, Chris Kennelly, Paul Turner,
Darryl Gove, Tipp Moseley, and Parthasarathy Ran-
ganathan. Beyond Malloc Efficiency to Fleet Efficiency:
A Hugepage-Aware Memory Allocator. In Proceedings
of USENIX OSDI, pages 257–273, 2021.

[25] Intel. Intel Intelligent Storage Acceleration Library.
https://github.com/intel/isa-l.

[26] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Trans-
actions with Two-Sided RDMA Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185–201, 2016.

[27] Dario Korolija, Dimitrios Koutsoukos, Kimberly Kee-
ton, Konstantin Taranov, Dejan Milojičić, and Gustavo
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