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Abstract—Sketch is a data structure used to record frequencies

of items in a multiset, which is widely used in data streams, data

graph, distributed datasets processing, etc. It works with small

memory usage and a high speed at the cost of a slight inaccuracy.

In practice, frequencies of items in many datasets are non-

uniformly distributed. Unfortunately, existing sketches can hardly

work well on non-uniform datasets. To address this issue, we

propose a new sketch framework, namely ABC framework, which

can be applied to most existing sketches and can significantly

improve the accuracy on non-uniform datasets. The key idea

behind our framework is that when a counter overflows, it makes

use of the space from the adjacent counters by operations of

bits-borrowing and combination. Extensive experimental

results show that our ABC framework improves the accuracy by

4.10 times and 4.49 times in average, respectively. A demo and

all the related source codes are available on our homepage [1].

Index Terms—Data Structure, Sketch, Data Streams, Non-

uniform Datasets

I. INTRODUCTION

A sketch is a probabilistic data structure that stores the
frequencies of items in a multiset, and provides an estimated
frequency of any item in or not in the multiset. Among all the
existing methods for approximate query processing, sketches
have a limited size and a faster processing speed than most
of other methods, on account of its probabilistic feature and
the updating method which are largely independent of the
current state of the summary. Furthermore, the sketch also has
a high accuracy for queries. A sketch is often associated with
three operations: insertion, deletion and query. An insertion
operation of an item will increase the frequency of the item
stored in the sketch by 1, and correspondingly a deletion
operation of an item will decrease the frequency of the item
by 1, and a query operation of an item will report the current
approximate frequency of the item.

Sketches have been originally used to approximately query
the streaming data [2], [3], [4], [5], [6], [7], [8], [9]. Sketches
can also be used to query the frequency of finite multisets,
such as TreeSketches [10] and Tuple Graph synopses [11]
for data graph, the well known algorithm BIRCH [12] for
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finding useful patterns in large datasets, the approximation of
join and related problems using AGMS [13] and Fast-Count
[14], mining top-K frequent items in databases [15], outlier
detection in high-dimensional data based on AMS sketch
[16], information aggregation for sensor database [17], [18],
information theoretic feature selection [19], graph streams
[20], and more [21], [22], [23]. In this paper, we focus on
sketches used for querying the frequency of items in a multiset.

With regard to the performance of the sketch, we focus on
four key metrics: accuracy, update speed, query speed, and the
size of memory usage the sketch requires. Among these four
metrics, we mainly focus on the improvement of accuracy,
which indicates the relative error of the frequency of each
item on average. Currently, different sketches have different
advantages and disadvantages, and are suitable for different
application scenarios. Existing sketches can work well for the
multisets following uniform distribution. However, frequencies
of items in most real datasets are non-uniformly distributed
[24], [7], [25]. In most real datasets, most items have small
frequencies while only a few items have large frequencies.
Unfortunately, existing sketches can hardly work well on non-
uniform datasets because of two reasons: 1) If the number of
bits is determined by the maximum frequency, most counters
always have small values, and this is a waste of memory; 2)
If fewer bits are used for each counter, counter overflow will
happen, and new errors such as under-estimation errors will
occur. What is worse, hot items (items with large frequencies)
can hardly get accurate estimations in this case. An elegant
scheme should achieve accurate estimation for both hot items
and cold items (items with small frequencies). In sum, only
when high memory efficiency is achieved, can the accuracy be
optimized.

To improve the memory efficiency of sketches for non-
uniform dataset, one straightforward way is to use additional
counters and additional hashings. However, such a method
needs more hash computations and memory accesses, and thus
will badly degrade the processing speed (i.e., update speed)
for high-speed data streams. Actually, the insertion speed is
at least as important as the accuracy in practice, because if
the inserting process is not fast enough, data loss will happen,
which is hardly acceptable in practice. What is worse, hot
items will collide in the additional counters, and the accuracy
of hot items will be badly degraded, while hot items are often



more important than cold items, especially in detections of
top-K hot items and heavy hitters.

The design goal of this paper is to improve the memory
efficiency while keeping the processing speed of sketches
unchanged. Towards this goal, we propose a universal s-
ketch framework, namely Adjacent Borrow and Carry (ABC),
achieving higher accuracy while keeping processing speed
unchanged. Our ABC framework is based on our observation:
extensive experiments on real datasets show that when a hot
item is mapped to a counter C, the adjacent counters of C
are often empty or mapped by cold items. In other words,
the adjacent counters have available memory (i.e., bits). The
reason behind is that cold items are often much more than hot
items in practice. Based on this observation, we propose the
bits-borrowing technique, i.e., to borrow bits from the adjacent
counters when a mapped counter overflows. In the worst case,
the adjacent counters have no available bits, we propose the
combination technique, i.e., to combine the mapped counter
and its adjacent counter into a big counter, to significantly
enlarge the expression range than that of the original small
counters (i.e., from 255 to 65535 when each counter is 8
bits). Even in the worst case, two hot items are mapped into
two adjacent counters, but this situation can hardly happen
in all the d hash mappings, while existing sketches perform
d hashing, and report the counter with slightest collisions.
By borrowing bits or combining small counters, the memory
efficiency of sketches is significantly improved, and thus the
accuracy is optimized. Meanwhile, during this process, no
additional hash computation or memory accesses is needed,
and thus the processing speed is not degraded using ABC.
Furthermore, our ABC sketch framework can be applied to
most existing sketches (e.g., the Count sketch [26], the Count-
min sketch [27], the CU sketch [24], the CML sketch [28]),
indicating the good generality of our framework.

In this paper, we have made the following key contributions:

• First, we propose a novel sketch framework named the
ABC framework, which significantly improves the ac-
curacy of sketches, keeping the processing speed un-
changed.

• Second, we apply our ABC framework to two typical
sketches: the CM sketch and the CU sketch as case
studies. Our framework can also be applied to other
sketches, including the Count sketch, the CML sketch,
etc.

• Third, we have conducted extensive experiments to verify
our formulas and compare the performance of sketches
before and after using our ABC frameworks.

II. RELATED WORK

The pioneering work of sketches is the Count sketch (C
sketch for short) proposed by Charikar et al. [26]. A C sketch
consists of d arrays, and each array A

i

is associated with two
hash functions h

i

(.) and g

i

(.) (1 6 h

i

(.)%w 6 w, and we
will omit ‘%w’ in the rest of this paper for conciseness). g

i

(.)
maps each item to �1 or +1 with the same probability. When

inserting an item e, it calculates all hash functions and adds
g

i

(e) to the counters A
i

[h
i

(e)] for each i (1 6 i 6 d).
When querying an item e, it just reports the median of
A1[h1(e)]⇥g1(e), A2[h2(e)]⇥g2(e), ... , A

d

[h
d

(e)]⇥g

d

(e).
Because the reported value is a ‘median’, the C sketch suffers
from both over-estimation and under-estimation errors.

Based on the C sketch, the CM sketch [27] eliminates
the under-estimation error. A CM sketch also consists of
d ⇤ w counters. When inserting an item e, it increments the
d counters A

i

[h
i

(e)] (1 6 i 6 d, we call them d hashed

counters for convenience) by 1. The deletion is just the
reverse of insertion. When querying an item e, it reports
the minimum one among the d hashed counters A

i

[h
i

(e)]
(1 6 i 6 d). CU sketches [24] are very similar to CM sketches
except the insertion: when inserting an item, CU sketches
increase only the minimum counter(s) rather than all the d

hashed counters. CU sketches work better than other sketches
on three important NLP problems [29]. Although this im-
provement increases the query accuracy, it causes CU sketches
do not support deletions. CML sketches [28] use logarithm-
based approximate counters rather than linear counters. It
increases the d hashed counters with logarithmic probabilities.
This strategy makes such structures to record more (larger)
frequencies with fewer bits for each counter but sacrificing
the ability of supporting deletions. A very recent work called
Augmented sketch [7] focuses on the accuracy optimization on
hot items, and builds a filter (a queue) to dynamically store
them, and use a sketch to store all item frequencies. In this
way, Augmented sketch can improve the accuracy at the cost
of complicated implementation and frequent communications
between the filter and the sketch. There are two other typical
sketches called Counter Braids [30] and random counters [31].
Counter braids sketch has a high accuracy when the memory
usage is large. However, it cannot support instant query, which
means that the query operation can only be performed after
inserting all items, and its update and query speed are both
slow. What is worse, when the memory size is small, its
error rate of decoding drastically increases. To address these
shortcomings, the random counter sketch only increases exact
one counter for each update, thus is the fastest sketch among
prior art. However, the accuracy of random counter sketch is
not as good as that of the CU sketch.

Unfortunately, all these existing sketches do not address
the problem of memory inefficiency. This problem drastically
deteriorates for non-uniform datasets. To address this problem,
we propose a novel sketch framework in the next section,
enabling existing sketches work well for non-uniform datasets.

III. THE ABC FRAMEWORK

In this section, we present the details of our Adjacent
Borrow and Carry (ABC) sketch framework which can be
applied to all existing sketches. We first present the rationale
of our ABC framework, and then present the two techniques:
bits-borrowing and combination in details. Table I summarizes
the symbols and abbreviations used in this paper.



A. Rationale

Sketches are intended for applications that do not require
absolute accuracy but make use of estimations, even with large
errors for a small portion of the estimations, as long as the
overall statistical distribution stays about the same. Existing
sketches hash each data item to multiple counters so that the
probability of having a counter without collision is increased.
In this way, as an example, the CM sketch will return d counter
values for each item. As long as one of the d counters is
collision-free, we will have an accurate answer. Even when all
d counters contain errors due to collisions, the smallest counter
has the least error. On top of multi-hashing, we can further
improve the accuracy by increasing the number of counters,
which reduces the chance of hash collisions and improves the
likelihood for each item to have a collision-free counter. For a
given amount of memory, more counters mean fewer bits per
counter.

In practice, many multisets are non-uniform [7], [24]. What
is worse, some multisets are extremely non-uniform. Specifi-
cally, the frequencies of most items in these multisets are small
while only a small number of them are very large. On the one
hand, in order to prevent counters from being overflowed by
large-frequency items, we should adopt a large counter size,
which means fewer counters and more collisions, causing over-
estimation errors. Moreover, the dominance of low-frequency
items means that the high-order bits of most counters are likely
to be left unused, causing space waste. On the other hand, if we
use small counters, there is the problem of overflow, resulting
in exceptions and under-estimation errors.

Our quest is to solve the above dilemma faced by conven-
tional sketches. The proposed ABC framework will use a large
number of small counters, yet allowing overflowed counters to
borrow space from other counters dynamically. There is a sur-
prisingly rich design space with a variety of possible methods
for storing overflowed counts in adjacent counters, combining
adjacent counters to create larger counters, borrowing bits
from other counters, or applying different methods jointly.
The ABC framework will apply these methods to improve
the accuracy of sketches as high as possible.

The major advantage of the ABC framework is that it solves
the overflow problem such that we can use a large number
of small counters to reduce collision-induced errors. We
stress that the ABC framework does not require an error-free
counter design. Instead, we will identify the sources of errors
and try every means to reduce them in a series of designs.
For the remaining errors in counters, as we apply the ABC
framework to existing sketches, their aforementioned multi-
hashing strategy will further reduce or sometimes eliminate
the errors.

B. Technique I: bits-borrowing

Without loss of generality, a sketch is a matrix consisting of
d arrays and each array consists of w counters. We represent
the i

th array in the sketch with A
i

, and the j

th counter of
the i

th array in the sketch with A
i

[j], where 1 6 i 6 d and

TABLE I
SYMBOLS & ABBREVIATIONS USED IN THE PAPER

Symbol Description

d # of arrays of a sketch
w # of counters in an array
w # of bits in an array
b # of normal bits in a counter
e one element

Ai[j] the counter in the j

th position of the i

th array
Ai[j].value the value of the counter Ai[j]
Ai[j].FG the flag bit of the counter Ai[j]
Ai[j].BW the borrow bit of the counter Ai[j]

hi(.) the i

th hash function
ABC the Adjacent Borrow and Carry framework
Mqps mega-queries per second

1 6 j 6 w. Each array A

i

is associated with a uniformly
distributed independent hash function h

i

(.) (1 6 h

i

(.) 6 w).
In our ABC framework, each counter has b+1 bits, of which

b bits serve as a counter, recording how many insertions have
occurred in this counter, and the rest 1 bit serves as a FlaG
bit (FG). For definiteness and without loss of generality, we
always choose the most significant bit of the counter as FG.
The values of all counters A

i

[j].value are initially 0, where
1 6 i 6 d and 1 6 j 6 w.

In this part, we present our first technique:
bits-borrowing. Using this technique, when counter
overflow occurs, the overflowed counter will only borrow
free bits from the next counter. Here free bits refer to the
prefix 0s of the next counter. In this way, memory efficiency
is improved.
Data Structure: As shown in Figure 1, each counter in our
ABC framework has a flag bit (FG), and each borrowed
counter is divided into two parts: the borrowed space and the
used space. The borrowed space is borrowed by the previous
counter, and the used space still belongs to the original counter.
Each time when a counter (Counter A in the figure) overflows,
it sets the flag bit to 1, sets the value of the counter to 0,
borrows one free bit from the used space in the next counter,
put it in the borrowed space, and sets the new added bit in
the borrowed space to 1. For example, as shown in Figure 1,
the borrowed space (green color) in Counter B is borrowed
by Counter A while the used space (blue color) still belongs
to Counter B, and there are three prefix 1s in the borrowed
space, which indicates that Counter A has overflowed for three
times. Note that there is always a 0-bit (we call it the wall for
convenience) in the borrowed counter (Counter B), which is
used to separate the borrowed space and the used space.

0 0 1 0 0 0 0 0 1 1 1 x0 x x x

Counter A (Ai[hi(e)]) Counter B (Ai[hi(e)+1])

1 0

kth bit (wall)

k-1 th bit used space

borrowed space

FG bit FG bit

Fig. 1. The ABC framework using bits-borrowing technique.



Insertion: Using the bits-borrowing technique, there are three
cases of insertions. Without loss of generality, we discuss
insertions of the three cases only in the i

th array of the sketch.
Case 1: When inserting an item e, if A

i

[h
i

(e)] does not
overflow before and after the insertion, our framework does
not modify the insertion process no matter A

i

[h
i

(e)].FG is 0
or not.
Case 2: When inserting an item e, if A

i

[h
i

(e)].FG is 1 (its
counter has been overflowed before) and the counter is going
to overflow again, we perform several operations on the next
counter as follows. We search for the left-most ‘0’ bit in the
next counter: for example in Figure 1, the left-most ‘0’ is the
k

th bit. Then we check the k�1th bit. 1) If the k�1th bit is 1,
which means it is a part of the recorded value of the borrowed
counter, then the k

th bit should not be modified, because the 0
in the k

th bit is a necessary wall to separate the borrowed
space and the used space. Therefore, there is no free bit
to be borrowed, and another technique is required, which will
be discussed in the next section. 2) If the k�1th bit is 0, then
we turn the k

th bit from 0 to 1 and reset A
i

[h
i

(e)].value to
indicate that the previous counter overflows again.
Case 3: When the insertion of an item e is going to cause
A

i

[h
i

(e)] to overflow for the first time, we first check the
two most significant bits of the next counter. If both of them
are 0, we set A

i

[h
i

(e)].FG to 1 and set the most significant
bit (except for the flag FG) of A

i

[h
i

(e) + 1] to 1 to indicate
A

i

[h
i

(e)] overflows once. Otherwise, we do nothing because
the wall to separate the borrowed space and the used space
cannot be established, and this suggests that we need to borrow
bits from the next adjacent counters using the same method.
Query: When querying the value of item e in the i

th array, we
first check A

i

[h
i

(e)].FG. If it is 1, then we count the number
of 1s in the borrowed space of A

i

[h
i

(e) + 1]. Suppose there
are t successive 1s, then the query value of e is decoded as
A

i

[h
i

(e)].value+t ⇤ 2b. If A
i

[h
i

(e)].FG is 0 but A
i

[h
i

(e) �
1].FG is 1, then A

i

[h
i

(e)] is borrowed by the previous counter.
Therefore, we ignore the successive 1s in the borrowed space
of A

i

[h
i

(e)], and the rest bits are decoded as the value of this
counter. If both A

i

[h
i

(e)].FG and A
i

[h
i

(e)�1].FG are 0, then
we report A

i

[h
i

(e)].value as the query value.
Deletion: Deletion is exactly the inverse process of insertion.
Specifically, when deleting an item e, if A

i

[h
i

(e)].value is
not 0, we simply decrease A

i

[h
i

(e)].value. Otherwise, 1) if
A

i

[h
i

(e)].FG is 1, we will set A
i

[h
i

(e)].value to the maximum
value, find the least significant ‘1’ bit in the borrowed space
of A

i

[h
i

(e) + 1] and set the bit to 0; 2) if A
i

[h
i

(e)].FG is
0, this means “deleting a nonexistent item”, thus the deletion
will be aborted.
Advantages and Limitations: The bits-borrowing technique
shows a method to borrow free space from the next counter.
This method significantly diminishes interaction between the
overflowed counter and the borrowed counter. The updating
of the overflowed counter would not rob the used bits of the
borrowed counter and thus would not result in any deviation,
at the cost of making the capacity of the borrowed counter
smaller. At the same time, the updating of the borrowed

counter would not influence the borrowed bits, and thus has
no side effect on the accuracy of the overflowed counter.
The main shortcoming of the bits-borrowing technique is
that the allowed times of overflows of a single counter are
limited. When there is no free bit in the next counter, the
bits-borrowing technique cannot work, and another solution
is required. In the next part, we present another technique to
address this issue.

C. Technique II: combination

In this section, we propose another key technique used in
our ABC framework, namely combination. Its key idea is
to combine two adjacent counters into one big counter when
no free bit is available in the borrowed counter.

For convenience, we name the second significant bit (the
b

th bit) of the counter BorroW bit (BW). BW is used as an
essential signal of whether the counter is being borrowed or
being combined. When a counter overflows for the first time,
our framework starts using the bits-borrowing technique.
When Counter A overflows for b � k times but the k � 1th

bit in Counter B is 1, as shown in Figure 2, Counter A is
not capable to borrow more bits from Counter B. In this case,
we use the combination technique and set BW in Counter
B to 0 to indicate it is combined with Counter A as shown
in Figure 3. Without loss of generality, we let bits in the left
counter (Counter A) be the higher bits and let those in the right
counter (Counter B) be the lower bits. Note that in Figure 3,
BW does not belong to the big counter, because it should be
always 0 when the two adjacent counters are combined.
Different combination policies for different sketches: When
combining two adjacent counters in the sketch, we should let
the big counter store the frequencies of both two adjacent
counters. Note that for each incoming item, the CM sketch
increments all mapped counters by 1, while the CU sketch only
increments the counter(s) with the minimum value. Therefore,
we should take different combination policies for different
sketches. For CM sketches, we should set the value in the
big counter to the sum of values in original adjacent counters,
while for CU sketches, the value in the big counter should
be set to the maximum of values in original counters. Table
II shows different combination results of the big counter in
different sketches.

TABLE II
DIFFERENT COMBINATION RESULTS OF THE BIG COUNTER IN DIFFERENT

SKETCHES (c1 AND c2 ARE ORIGINAL VALUES IN THE TWO ADJACENT
COUNTERS,  IS THE LOG BASE OF CML SKETCHES)

Sketches Combination result

CM sketches [27] c1 + c2

CU sketches [24] max(c1, c2)
C sketches [26] c1 + c2

CML sketches [28] log
2�c1�c2

1�

Next, we describe the method of insertion, deletion, and
query in our ABC framework, applying both bits-borrowing
and combination technique.



Insertion: When inserting an item e, we compute the hash
functions h1(e), h2(e), . . . , h

d

(e) and insert e to each array,
respectively. Without loss of generality, we only discuss the
insertion in the i

th array.
Case 1: We just increase A

i

[h
i

(e)].value in the following three
situations: 1) Both A

i

[h
i

(e) � 1].FG and A
i

[h
i

(e)].FG are 0,
and A

i

[h
i

(e)] is not going to overflow; 2) A
i

[h
i

(e) � 1].FG
is 0 and both A

i

[h
i

(e)].FG and A
i

[h
i

(e) + 1].BW are 1, and
A

i

[h
i

(e)] is not going to overflow; 3) Both A
i

[h
i

(e)� 1].FG
and A

i

[h
i

(e)].BW are 1, and A
i

[h
i

(e)] is not going to
overflow.
Case 2: There are two situations: 1) Both A

i

[h
i

(e) � 1].FG
and A

i

[h
i

(e)].FG are 0, and A
i

[h
i

(e)] is going to overflow; 2)
A

i

[h
i

(e)�1].FG is 0, both A
i

[h
i

(e)].FG and A
i

[h
i

(e)+1].BW
are 1, and A

i

[h
i

(e)] is going to overflow. In these two situa-
tions, if there is a bit available for borrowing in A

i

[h
i

(e)+1],
we will turn the bit into 1 and reset A

i

[h
i

(e)].value. Otherwise,
we will set A

i

[h
i

(e) + 1].BW to 0, which means combining
A

i

[h
i

(e)] with A
i

[h
i

(e) + 1] into a big counter.
Case 3: Both A

i

[h
i

(e)� 1].FG and A
i

[h
i

(e)].BW are 1, and
the used space of A

i

[h
i

(e)] is going to overflow. We will set
A

i

[h
i

(e)].BW to 0, which means combining A
i

[h
i

(e)] with
A

i

[h
i

(e) � 1] into a big counter.
Case 4: We just increase the big counter in the following
two situations: 1) A

i

[h
i

(e) � 1].FG is 0 and A
i

[h
i

(e)].FG is
1 and A

i

[h
i

(e) + 1].BW is 0; 2) A
i

[h
i

(e) � 1].FG is 1 and
A

i

[h
i

(e)].BW is 0.

finalb

0 0 1 0 0 0 0 0 1 1 1 0 1 x x x

Counter A (Ai[hi(e)]) Counter B (Ai[hi(e)+1])

1 0

borrowed space kth bit (wall)

k-1th bit

used space

BW bitFG bit FG bit

Fig. 2. The ABC framework - bits-borrowing

finalc

0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 01 0

The Big Counter

b-1th bitbth bit BW bit

Counter A (Ai[hi(e)]) Counter B (Ai[hi(e)+1])

FG bit FG bit

Fig. 3. The ABC framework - combination

Query: When querying an item e, we check all d arrays and
each array will report a value, here we focus on how to report
the i

th value.
Case 1: Both A

i

[h
i

(e)� 1].FG and A
i

[h
i

(e)].FG are 0. Then
we just report A

i

[h
i

(e)].value as the i

th value.
Case 2: A

i

[h
i

(e) � 1].FG is 1, and A
i

[h
i

(e)].BW is also 1.
Then we check A

i

[h
i

(e)] starting from the BW bit to locate
the first ‘0’ bit (wall), and report the rest bits on the right of
the wall as the query value.

Case 3: A
i

[h
i

(e)].FG is 1, and A
i

[h
i

(e) + 1].BW is also 1.
First we get t, the number of borrowed bits in A

i

[h
i

(e) + 1],
by counting the number of successive 1s down from the BW
bit. Then we report A

i

[h
i

(e)].value+t ⇥ 2b.
Case 4: A

i

[h
i

(e)].FG is 1 and A
i

[h
i

(e) + 1].BW is 0, or
A

i

[h
i

(e)�1].FG is 1 and A
i

[h
i

(e)].BW is 0. Then this is a big
counter which has 2b�1 bits. Note that the left counter repre-
sents the higher bits while the right counter represents the low-
er bits, we report 2b⇥A

i

[h
i

(e) � 1].value+A
i

[h
i

(e)].value in
the former case, and 2b⇥A

i

[h
i

(e)].value+A
i

[h
i

(e)+1].value
in the latter case.
Deletion: We focus on the deletion in the i

th array.
Case 1: A

i

[h
i

(e)] is not in a big counter and is not going
to underflow, i.e., its current value is not equal to 0. We
simply decrease it.
Case 2: A

i

[h
i

(e)] has borrowed bits from A
i

[h
i

(e) + 1] and
is going to underflow. We reset the least significant bit of the
borrowed space in A

i

[h
i

(e)+1] and set A
i

[h
i

(e)].value to the
maximum value.
Case 3: A

i

[h
i

(e)] is in a big counter. We just decrease the
big counter.

IV. MATHEMATICAL ANALYSIS

Our ABC framework can enable most existing sketches to
work well for non-uniform datasets. In this section, we make
mathematical analysis for CM sketches as the case study, and
we call the CM sketch after using our ABC framework the
CM-ABC sketch for convenience.

A. Proof of No Under-estimation Error
In this section, we prove there is no under-estimation error

in the CM-ABC sketch. Under-estimation error means that the
querying value is smaller than the real frequency. We claim
that our CM-ABC sketch is free of under-estimation error,
because every mapped counter maintains a larger value than
the real frequency.

Theorem 1. Our CM-ABC sketch is free of under-estimation
error, because every mapped counter maintains a larger value
than the real frequency.

Proof. There are four cases for insertions.
Case 1: The insertion processes of CM-ABC and CM sketches
are exactly the same when no overflows occur. Each mapped
counter will be increased by 1 when inserting item e, so the
estimated value must be no less than the real frequency of e.
Case 2: If a counter has borrowed bits from its next counter,
the values of both counters are larger than the real frequencies
of their corresponding items, since they do not influence each
other.
Case 3: If a counter has been combined with the adjacent
counter, the initial value of the big counter is the sum of the
two counters. Therefore, the value of the big counter is larger
than the real frequencies of all items mapped into these two
counters.
Case 4: After insertions in a big counter, the value of the big
counter is clearly larger than the real frequencies of all items
mapped to this big counter.



As deletion is the inverse operation of insertion, the detailed
derivation is ignored due to space limitation. According to the
above derivation, it can be possible to conclude that the CM-
ABC sketch has no under-estimation error.

B. Correct Rate of CM-ABC Sketches
Given a multiset, we build a CM-ABC sketch. Let n be the

number of distinct items. Let w

0 be the number of counters
in each array. Let � be the average number of big counters
in each array. Let d be the number of arrays in the CM-ABC
sketch. Let C

r

be the correct rate (the ratio of items whose
frequency is equal to its estimate result to total items) of the
CM-ABC sketch.

Theorem 2. Given the parameters w

0, n, �, and d as defined
above, the correct rate C

r

of the CM-ABC sketch is calculated
by the following formula:

C

r

⇡ 1 �
 
1 �

✓
w

0 � 1

w

0

◆
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+
2 ⇤ �

w

0

!
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(1)

Proof. First, we suppose there are no overflows and thus no
big counters in the sketch. For an arbitrary item e, in the i

th

array the hashed counter stays the accurate value if and only
if there is no collision in the counter, and the probability P

is:

P =

✓
w

0 � 1

w

0

◆
n�1

(2)

The item e suffers from a false positive only in the condition
that there are collisions in all the d hashed counters. In this
case, the query result of e returns an over-estimated value with
the probability P

0:

P

0 = (1 � P )d =

 
1 �

✓
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w

0

◆
n�1
!

d

(3)

Now, we consider the situation that counters overflow in
the CM-ABC sketch. When a counter is borrowing bits from
the adjacent counter, no positive false is introduced. However,
after this counter is combined with the adjacent counter, items
mapped into both two counters will suffer from false positives
even if there are no other items hashed into the big counter,
because the value of the big counter is larger than the value of
the two small counters. As a result, a big counter introduces
additional false positives. The number of big counters is
denoted by �. � is determined by the distribution of the
items, and can be easily obtained during insertions. Here �

should be doubled because two counters are combined into
one big counter. Therefore, the ultimate correct rate formula
is as follows:
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Here we made a comparison between the correct rate of the
CM sketch and the CM-ABC sketch. The correct rate of the
CM sketch can be easily calculated:

C

r

= 1 �
 
1 �

✓
w � 1

w

◆
n�1
!

d

Therefore, if we set b = 16 for the CM sketch, and set b = 8
bits for the CM-ABC sketch, the width of the CM-ABC sketch
w

0 is the twice as large as that of the CM sketch w. With fixed
n = 1000000, d = 4 and memory size, we can get the correct
rate of both two sketches. Here b is the counter size, d is
the depth of sketches, w and w

0 is the width of sketches. As
shown in Figure 4, with memory size varied from 1MB to
10MB, the correct rate of the CM-ABC sketch always has a
great advantage over that of the CM sketch.

2 4 6 8 10
Memory Size (MB)

0.0

0.5

1.0

C
or

re
ct

R
at

e

CM sketch
CM-ABC sketch

Fig. 4. Correct rate of CM-ABC and CM sketches.

C. Error Bound of CM-ABC Sketches

Theorem 3. For each item x, we can ensure the probability
that its query result v

0
x

exceeds its real frequency v

x

by ✏ is
bounded.

Pr(v0
x

> v

x

+ ✏ ⇥ V ) 6
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Proof. We define c

x,j,y

as a boolean variable indicating
whether item x is hashed into the same counter (including
combined big counters) with as item y in the j

th array. The
expectation of c

x,j,y

can be easily obtained:

E(c
x,j,y

) =
1

w
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2

w

0 · 2 ⇤ �

w

0 (5)

We define C

x,j

=
P

n

y=1 c

x,j,y

v

y

. Since hash functions are
independent, we can get the expectation of c

x,j,y

as follows:
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By the Markov inequality,
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It is proved that for CM sketches, the error bound formula
is

Pr(v0
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> v

x

+ ✏ ⇥ V ) 6
✓

1

✏w

◆
d

Clearly, if we use a counter size of 16 bits for the CM sketch,
and use a counter size of 8 bits for the CM-ABC sketch,
the CM-ABC sketch has a better error bound than the CM
sketch. Figure 5 shows the different error bounds with different
memory size for both two sketches (✏ = 0.0001).
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Fig. 5. Logarithm of error bounds of CM-ABC and CM sketches.

V. EXPERIMENTAL RESULTS

In this section, we will present the experimental results of
our framework when applied to the CM sketch and the CU
sketch. There are two essential factors to evaluate: accuracy
and query speed. We use the CPU platform with single core
to evaluate the accuracy of our framework, and the multi-core
CPU platforms to evaluate the query speed. The CM sketch is
the most widely used sketch, and the CU sketch is the most
accurate sketch [29]. We have made comparisons between the
sketches (CM and CU sketches) before and after using the
ABC framework.

A. Experimental Setup
Platform: Our platform is built on a machine with 12-core
CPUs (24 threads, Intel Xeon CPU E5-2620 @2 GHz) and
62 GB total DRAM memory. CPU has three levels of cache
memory: two 32KB (where 1KB = 210 bytes) L1 caches (one
is a data cache and the other is an instruction cache) for each
core, one 256KB L2 cache for each core, and one 15MB
(where 1MB = 220 bytes) L3 cache shared by all cores.
Real Datasets: We capture real IP packets from the main
gateway of our campus. Sketches can be used to record the
number of packets of each flow. One flow is often identified by
the five-tuple: source IP address, destination IP address, source
port, destination port, and protocol type. We use 100 groups
of datasets, and each dataset has 10M packets. We show the
average results of the 100 groups in the following experiments.

According to our statistical results, the distribution of flows in
these datasets is similar. Here we show the distribution of a
typical dataset as follows. 1) There are around 300K distinct
flows in each dataset. 2) The average frequency of all items
is 33.92 and the deviation is 10952. 3) In the 300K distinct
flows, there are about 173.5K items whose frequencies are
1, and there are 156 items whose frequencies are larger than
10000. For an item e with a frequency of 1, if it collides with
a hot item with a frequency of 10,000, the estimated value of
e will be 10,001, then the relative error is 10,000. That is why
the following experimental results of relative error in average
seem surprisingly large. Actually, even if the relative error is
1 or 2, the sketch is actually very accurate.
Uniform Datasets: we also conduct experiments on uniform
datasets. As we did not find uniform datasets, we use the well
known tool YCSB [32] to produce datasets in which the item
frequencies follow uniform distribution. Each uniform dataset
consists of 10M items, among which there are 1M distinct
items. We repeat our experiments by generating multiple
datasets, and the experimental results are almost the same.

B. Metrics
Relative Error (RE): RE(e) is defined as:

RE(e) =
|f̂(e) � f(e)|

f(e)

where RE(e) represents the relative error of the item e, f̂(e)
represents the frequency reported by the sketch, and f(e)
represents the real frequency.
Average Relative Error (ARE): ARE is defined as:

ARE =
1

N

NX

i=1

|f̂(e
i

) � f(e
i

)|
f(e

i

)

where N is the number of items in the query set, f̂(e)
represents the frequency reported by the sketch, and f(e)
represents the real frequency.
Throughput: The query speed is another important factor to
evaluate. Here we use the throughput to measure the query
speeds of those sketches.

C. Applied to the CM Sketch
In this part, we focus on the performance of the CM sketch

before and after using our ABC framework, and we call
the sketch after using the ABC framework CM-ABC sketch.
To evaluate the accuracy of both sketches, we focus on the
average relative error (ARE) of them after insertions and dele-
tions. Because our ABC framework is tailored for non-uniform
datasets, we will pay more attention to the experiments on
IP packets which are non-uniformly distributed, while we
also show that our framework does not bring more errors for
synthetic uniform datasets. For experiments on real datasets,
we set d = 3 and w = 1600000; moreover, we set b = 14 for
the CM sketch, and set b = 7 for the CM-ABC sketch. For
experiments on uniform datasets, we set d = 3, w = 2000000,
and b = 10 for all sketches. Note that it is guaranteed that the
memory usage is the same for all sketches.
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1) Relative Error and the Empirical CDF: For real dataset-
s, our experimental results show that 53.49% items have no
error for the CM-ABC sketch, while only 21.12% for the CM
sketch. An intuition of the relative error can be made by Figure
6 which reveals the empirical CDF of both sketches. To be
specific, we first performed a total of 10M insertions for
300K distinct items. After we completed these insertions, we
calculated the relative error of each item, and thus we could
compute the empirical CDF for both sketches and plot them.
Just as shown in Figure 6, the CDF of the CM-ABC sketch is
better than that of the CM sketch. In particular, for the ratio
of those items that have no error, our ABC framework has a
remarkable advantage. For uniform datasets, our experimental
results show that the CDFs of both sketches are very similar,
and both sketches have 83.95% items that have no error.
Figure 7 shows the CDF of both sketches, and it shows that
when working on synthetic uniform dataset, the accuracy of
our CM-ABC sketch is as good as that of the CM sketch.
In sum, after using the ABC framework, the accuracy of the
CM sketch will increase significantly when applied to real
non-uniform datasets, and keep unchanged when applied to
uniform datasets.

2) Relative Error with Insertions: For real datasets, with
different numbers of insertions spanned from 1M to 10M , our
experimental results show that the ARE of the CM-ABC sketch
is 2.74 ⇠ 4.10 (with a mean of 3.13) times smaller than that
of the CM sketch. Figure 8 shows the ARE of both sketches
with different numbers of insertions, and it shows that the CM-
ABC sketch has a considerable advantage no matter how many
insertions have made. For uniform datasets, our experimental
results show that the AREs of both sketches are very similar,
with the ARE 0.157 for both sketches. Figure 9 shows the ARE
of both sketches with different numbers of insertions.

3) Relative Error with Deletions: For real datasets, our
experimental results show that the ratio between the ARE of
the CM sketch and that of the CM-ABC sketch ranges from

2.21 to 3.05 with different numbers of deletions ranging from
1M to 9M . In this part, we first performed 10M insertions
on both sketches, and then performed several distinct numbers
of deletions. Last, we have plotted the ARE of those 100K
distinct items in Figure 10. The experimental results of the
uniform dataset are similar to those before. In other words,
the performances of the two sketches are almost the same.
Thus we will not present those results for following deletion
experiments due to space limitation.

4) Effect of Sketch Parameters: In this part, we present the
effect of sketch parameters including the width of the sketch
and the number of arrays. We focus on the effect of the number
of bits in each array (w) and the number of arrays (d), thus
we will fix other factors: b = 7 for sketches using the ABC
framework and b = 14 for other sketches. In the experiment
of varying w, we make the sketches work on real datasets,
and we vary w of both sketches from 400K to 2M . In the
experiment of varying d, we also make the sketches work on
real datasets, and we vary d of both sketches from 2 to 10.

In the experiment of varying parameter w, our experimental
results show that the ARE of the CM-ABC sketch is always
smaller than that of the CM sketch, and when w equals to 2M
the ARE of the CM-ABC sketch is less than 0.43. And to be
specific, we fix d at 4, like prior parts of the experiment. Figure
11 reveals the ARE with different width of all sketches, and it
shows that as the width increases, the ARE declines steadily.

In the experiment of parameter d, our experimental results
show that with a fixed width and different numbers of arrays,
the ARE of the CM-ABC sketch is always smaller than that
of the CM sketch. Figure 12 shows how the ARE changes of
both sketches as d increases.

D. Applied to the CU Sketch
Now we evaluate the performance of the CU sketch before

and after using the ABC framework, and we call the sketch
after using the ABC framework CU-ABC sketch. And all the
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parameter settings are the same as the previous parts. Due
to space limitation, we only present the experimental results
on real datasets. Furthermore, note that the CU sketch does
not support deletion operation, thus we ignore the deletion
experiments for the CU sketch.

1) Relative Error and the Empirical CDF: The experimen-
tal results show that our ABC framework works pretty well,
and 75.52% items of the CU-ABC sketch have no error, while
only 43.13% items of the CU sketch. Figure 13 reveals that the
CDFs of both sketches, which indicates that our framework has
a remarkable advantage.

For uniform datasets, our experimental results show that
both sketches work well on this occasion, and no item suffers a
relative error higher than 0.75. Figure 14 shows that more than
85% items suffer no error for both sketches and the difference
of the performance of these sketches is negligible.

2) Relative Error with Insertions: Our experimental results
show that the ARE of the CU-ABC sketch is 3.02 ⇠ 4.49 (with
a mean of 3.47) times smaller than that of the CU sketch.
Figure 15 shows the ARE of both sketches with different
numbers of insertions for real datasets, and it shows that the
CU-ABC sketch has an advantage for different numbers of
insertions.

3) Effect of Sketch Parameters: In the experiment of pa-
rameter w, our experimental results show that the accuracy of
our CU-ABC sketch is much better than that of the CU sketch.
Figure 16 shows the result of this part of the experiment. As w

increases, the ratio between the ARE of the CU-ABC sketch
and that of the CU sketch declines to 0.3, i.e., the accuracy of
the CU-ABC sketch is at least 3 times better than that of the
CU sketch.

In the experiment of parameter d, our experimental results
show that the ratio between the ARE of the CU sketch and the
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Fig. 18. Throughput vs. # threads

CU-ABC sketch ranges from 2.0 to 10.0. Figure 17 shows the
results of relative errors as d increases.

E. Speed Evaluation

In this section, we focus on the speed evaluation of the
sketches using our ABC framework on multi-core CPU. Our
experimental results on the multi-core CPU platform show that
the query speed of CM and CU sketches are similar to those
after using our ABC framework. Therefore, we only show
the speed results of sketches after using our framework. We
insert 10M items from real datasets and query 100K random
items for these two sketches. Besides, we repeat each query
operation 100 times and use the average value to minimize
accidental errors.

Our experimental results show that the query speeds of both
two sketches grow almost linearly as the number of threads
increases. The query speeds of these two sketches can reach 30
Mqps (mega-queries per second). As shown in Figure 18, the
query speeds of these two sketches achieve around 2.5Mqps
for 100K queries with one thread, which achieves similar
speed as the CM sketch and the CU sketch do. When using
22 threads, the query speeds of these two sketches reach the
peak. This phenomenon can be explained by the fact that our



CPU has 2⇥6 cores with Hyper-Threading, which can handle
2 ⇥ 6 ⇥ 2 = 24 concurrent threads, and there are some small
deviations from the theoretical peak because the main thread
responsible for detecting the query speed would occupy one
or two cores. Furthermore, it can be inferred that the query
speed of these two sketch could grow almost linearly with
more CPU cores.

VI. CONCLUSION

Sketches have been applied to various fields and achieved
great success. However, existing sketches can seldom handle
the overflow problem of counters well, especially when sketch-
es work for non-uniform datasets. As a result, existing sketches
have to allocate more bits for each counter so as to alleviate
the problem. However, this incurs much more memory usage
but still cannot solve this problem in the worst case. To
address this problem, in this paper, we propose a novel sketch
framework - the ABC sketch framework, which exhibits good
scalability and can be applied to most existing sketches. Using
our ABC framework, sketches only use a few bits for each
counter but achieve higher accuracy for non-uniform datasets.
The key idea of our ABC framework is to borrow space
from the adjacent counters by operations of bits-borrowing and
combination when a counter is going to overflow. We applied
the ABC framework to two typical sketches: the CM sketch
and the CU sketch as case studies. We carried out extensive
experiments, and experimental results show that the sketches
after using the ABC framework significantly outperform those
that not using the framework. We believe that our ABC
framework can be applied to many more sketches and other
similar data structures.

REFERENCES

[1] “Source code of ABC models.” http://net.pku.edu.cn/⇠yangtong/pages/
ABC.html.

[2] C. C. Aggarwal and S. Y. Philip, “On classification of high-cardinality
data streams.” in SDM, vol. 10. SIAM, 2010, pp. 802–813.

[3] G. Cormode and M. Garofalakis, “Sketching streams through the net:
Distributed approximate query tracking,” in Proc. VLDB, 2005.

[4] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1530–
1541, 2008.
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