
1

On the Evolutionary of Bloom Filter False
Positives - An Information Theoretical Approach

to Optimizing Bloom Filter Parameters
Zhuochen Fan, Gang Wen, Zhipeng Huang, Yang Zhou, Qiaobin Fu, Tong Yang, Member, IEEE

Alex X. Liu, Fellow, IEEE and Bin Cui, Senior Member, IEEE

Abstract—The fundamental issue of how to calculate the false positive probability of widely used Bloom Filters (BF), from which
the conventional wisdom is to derive the optimal value of k, remains elusive. Since Bloom gave the false positive formula in 1970,
in 2008, Bose et al. pointed out that Bloom’s formula is flawed; and in 2010, Christensen et al. pointed out that Bose’s formula is
also flawed and gave another formula. Although Christensen’s formula is perfectly accurate, it is time-consuming and impossible to
calculate the optimal value of k. Based on the following observation: for a BF with m bits and n elements, if and only if its entropy
is the largest, its false positive probability is the smallest, we propose the first approach to calculating the optimal k without any false
positive formula. Furthermore, we propose a new and more accurate upper bound for the false positive probability. When the size of a
Bloom Filter becomes infinitely large, our upper bound turns equal to the lower bound, which becomes Bloom’s formula and deepens
our understanding towards it. Besides, we derive the bounds of correct rate of Counting Bloom Filters (CBFs) by applying our proposed
formulas about BFs to them.

Index Terms—Bloom Filter, false positive, information entropy, compression, upper bound, lower bound, Counting Bloom Filter

✦

1 INTRODUCTION

1.1 Motivation

ABloom Filter (BF) is a compact data structure used
for quickly checking whether an element belongs

to a set or not [1]. Given a set S of n elements, we
create a bit array A of length m as follows. First, we
initialize each bit of A to 0, then for each element
x ∈ S , we use k hash functions to compute k hash
values: h1(x), h2(x), · · · , hk(x) where each hash value is
in the range [1,m]. Second, for each 1 ⩽ i ⩽ k, we
let A[hi(x)] = 1. The resulting bit array A is called
the BF for set S. To query whether y ∈ S, we first

• Zhuochen Fan, Zhipeng Huang and Bin Cui are with School of Computer
Science and National Engineering Laboratory for Big Data Analysis
Technology and Application, Peking University, Beijing 100871, China.
E-mail: {fanzc, huangzpp, bin.cui}@pku.edu.cn

• Gang Wen is with School of Mathematical Sciences, Peking University,
Beijing 100871, China. Co-primary authors: Zhuochen Fan and Gang
Wen. Email: jnwengang@pku.edu.cn

• Corresponding author Tong Yang is with School of Computer Science and
National Engineering Laboratory for Big Data Analysis Technology and
Application, Peking University, Beijing 100871, China, and also with Peng
Cheng Laboratory, Shenzhen 518066, China.
Email: yangtongemail@gmail.com

• Yang Zhou is with School of Engineering and Applied Sci-
ences, Harvard University, Cambridge, MA 02138, USA. E-mail:
yangzhou@g.harvard.edu

• Qiaobin Fu is with Google Inc., Mountain View, CA 94043, USA. This
work was performed by the author while pursuing the Ph.D. degree with
Boston University. E-mail: qiaobinf@gmail.com

• Alex X. Liu is the President of the Software Engineering Institute and
the Chief Security Officer of the Midea Group, Foshan 528311, China.
Email: alexliu@midea.com

use the same k hash functions to compute k hash val-
ues: h1(y), h2(y), · · · , hk(y). Second, we check whether
the corresponding k bits in A are all 1s (i.e., whether
A[h1(y)]∧A[h2(y)]∧ · · · , A[hk(y)] = 1 holds); if yes, then
y ∈ S may probably hold and we can further check
whether y ∈ S; if no, then y ∈ S definitely does not
hold. The cases that the BF shows that y ∈ S may hold
but actually y /∈ S are called false positives (FP). The
FP probability f can be calculated from n, k, and m.
Thus, given a set of n elements and the required FP
probability f , we can calculate the relationship between
k and m. Based on the calculated relationship between
k and m, we can properly trade off between space and
speed: smaller m means smaller space, and smaller k
means the smaller number of hash function calculations.
In typical BF applications, as m is determined by the
memory budget for the BF, with known values of n and
f , we calculate the optimal value for the only unknown
parameter k.

As set membership query is a fundamental operation
in many applications [2], and BFs have the advantages
of small memory consumption, fast query speed, and no
false negatives, BFs have been widely used in networks,
databases, data mining and analysis, and machine learn-
ing, etc. In terms of networks, BFs have applications in
web caching [3]–[5], sensor networks [6]–[8], data center
networks [9]–[11], cloud computing [12]–[14], and more
[15]–[17]. In terms of databases, BFs have applications
in key-value stores [18]–[23], privacy-preserving record
linkage [24]–[29], block chain [30]–[32], and more [33]–
[35]. In addition to the above, BFs also have applica-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

2

tions that cannot be underestimated in data mining and
analysis [36]–[42], and machine learning [43]–[47]. Most
applications with set membership query can potentially
be optimized using BFs [48].

Although BFs have been widely used in many appli-
cations, the fundamental issue of how to calculate FP
probability remains elusive. Properly calculating the FP
probability of BF is critical because it is used to calculate
the optimal value of the important parameter k, the
number of hash functions. In [1], Bloom gave a formula
for calculating the FP probability with known param-
eters n, k, and m. Based on Bloom’s formula, we can
also easily compute the optimal value of the parameter
k when m and n are known. This formula has been
believed to be correct until 2008 when Prosenjit Bose
et al. pointed out that Bloom’s formula is flawed and
gave a new FP formula [49]. Interestingly, two years later,
Ken Christensen et al. pointed out that Bose’s formula is
also flawed and gave a new FP formula [50]. So far, it is
believed that Christensen’s formula is perfectly accurate.
However, Both Bose’s and Christensen’s FP formulas are
too complicated to calculate the optimal value of k from
given values of n and m.

1.2 Main Contributions
While the conventional wisdom is to derive the optimal
value of BF parameter k from the FP probability, in this
paper, we propose the first approach to calculating the
optimal k without any FP formula. We first observe that
for a BF with m bits and n elements, if and only if its
entropy is the largest, its false positive probability is
the smallest, according to information entropy theory.
Based on this observation, our approach is to derive
a formula for calculating the optimal k by letting the
entropy equal to 1. We also propose another method to
calculate FP probability by deriving the left and right
limit expressions of FP probability. We prove that when
m goes to infinity, the left and right limits are the same,
which is essentially the FP probability. Interestingly, our
derived FP formula is the same as Bloom’s formula in
[1]. This deepens our understanding of Bloom’s formula:
it is perfectly accurate when m is infinitely large, and it
is practically accurate when m is sufficiently large.

In summary, we make three key contributions in this
paper. First, we propose an information theoretical ap-
proach to calculating the optimal value of BF parameter
k without calculating FP probability. Second, we propose
a new upper bound which is much more accurate than
state-of-the-art. When m is infinitely large, our upper
bound becomes the same as the lower bound. This result
formally proves that Bloom’s formula is practically ac-
curate when m is sufficiently large. Third, we conducted
experiments to validate our findings. In particular, we
show that the error of Bloom’s formula is negligibly
small when m is large. Furthermore, we release our
source code of Bloom Filters at GitHub [51]. The rest
of this paper proceeds as follows. In Section 2, we
introduce the evolutionary on FP probability. In Section

3, we show the derivation of the optimal number of
hash functions using the information entropy theory. In
Section 4, we present a new upper bound of the false
positive probability of Bloom Filters. In Section 5, we
derive the bounds of correct rate of Counting Bloom
Filters (CBFs) [3] through our proposed formulas about
Bloom Filters. In Section 6, we conduct experiments to
evaluate the error of Bloom Filters. We conclude the
paper in Section 7.

2 PRIOR ART ON BF FALSE POSITIVES

In this section, we review the prior art on calculating
the false positive probability of Bloom Filters. Table 1
summarizes the notations used in this paper.

TABLE 1: Symbols frequently used in this paper
Symbol Description

S Set of elements
m BF size
n Number of elements in S
k Number of hash functions
k∗ Optimal number of hash functions
f False positive probability

fbloom False positive probability calculated by Bloom
fbose False positive probability calculated by Bose
fchrist False positive probability calculated by Christensen
ftrue True false positive probability of BF

FP false positive
BF Bloom Filter

2.1 Bloom’s False Positive Formula
In 1970, Bloom calculated the false positive probability of
a Bloom Filter as follows [1]. Given a set S of elements,
let n be the number of elements in S, k be the number
of hash functions, and m be the number of bits in the
Bloom Filter A constructed from set S. In querying an
element x, the false positive happens when the Bloom
Filter reports that x ∈ S (i.e., A[hi(x)] = 1 holds for each
1 ⩽ i ⩽ k), but actually x /∈ S. Consider an arbitrary bit
A[b] in A. For any element in S and any hash function
hi (1 ⩽ i ⩽ k), the probability that this element is not
hashed to bit A[b] by hi is 1− 1/m. As S has n elements
and each element is hashed k times, the probability of
A[b] = 0 is p′:

p′ =

(
1− 1

m

)kn

(1)

Thus, the probability of A[b] = 1 is 1− (1− 1/m)kn. For
any element x /∈ S, the probability that the false positive
happens for x, i.e., the probability of A[h1(y)]∧A[h2(y)]∧
· · · , A[hk(y)] = 1, is calculated as follows:

fbloom =

(
1−

(
1− 1

m

)kn
)k

(2)

which can be approximated by (1− e
−nk
m)k.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

3

2.2 Bose’s Derivation
In 2008, Bose et al. pointed out that the last step
in Bloom’s derivation is flawed because for any ele-
ment x /∈ S , the k events A[h1(x)] = 1, A[h2(x)] =
1, · · · , A[hk(x)] = 1 are not actually independent [49].
Although for each bit A[hi(x)] (1 ⩽ i ⩽ k), after inserting
n elements into array A, the probability of A[hi(x)] = 1 is
1−(1−1/m)kn, for the probability of A[h1(y)]∧A[h2(y)]∧
· · · , A[hk(y)] = 1 to be (1 − (1 − 1/m)kn)k, the k events
A[h1(x)] = 1, A[h2(x)] = 1, · · · , A[hk(x)] = 1 need to be
independent. Observing the dependency of the k events
A[h1(x)] = 1, A[h2(x)] = 1, · · · , A[hk(x)] = 1, Bose et al.
derive the following false positive formula:

fbose =
1

mk(n+1)

m∑
i=1

iki!

(
m

i

){
kn
i

}
(3)

where {
kn
i

}
=

1

i!

i∑
j=0

(−1)
i−j

(
i

j

)
jkn (4)

Bose et al. derived asymptotically closed forms for the
upper and lower bounds of the above formula:

fbloom < fbose ⩽ fbloom ×

(
1 +O

(
k

p

√
lnm− k ln p

m

))
(5)

where p = 1− p′ = 1−
(
1− 1

m

)kn

. These bounds hold

under the condition that

k

p

√
lnm− k ln p

m
⩽ c (6)

for some constant c < 1. Bose et al. further showed that
for k ⩾ 2, fbose is strictly larger than fbloom, and the lower
bound converges to fbloom when m becomes infinitely
large.

2.3 Christensen’s Derivation
In 2010, Christensen et al. pointed out that Bose’s formula
has a mistake that the term (−1)j should be (−1)i−j ,
but the lower and upper bounds in Eq. 5 are correct.
Christensen et al. derived the finally correct false positive
formula for Bloom Filters as follows:

fchrist =
m!

mk(n+1)

m∑
i=1

i∑
j=1

(−1)i−j jknik

(m− i)!j!(i− j)!
(7)

Although Christensen’s formula is perfectly accurate,
it is not much useful in practice. First, given the Bloom
Filter parameters n, m, and f , it is difficult to calculate
the optimal k value as Christensen’s formula does not
give a closed form expression for calculating the optimal
k. Second, given the Bloom Filter parameters n, m, and k,
the algorithm by Christensen et al. takes O(knm) time to
calculate the false positive probability f , which is time-
consuming.

2.4 Grandi’s Derivation
In 2018, Grandi proposed the γ-transform [52] approach
to analyze the false positive probability [53], and further
derived the false positive formula as follows:

fgrandi =

m∑
x=0

(x

m

)k (m
x

) x∑
j=0

(−1)j
(

x
j

)(
x− j

m

)kn

(8)
where x represents the number of bits set to 1 in the
Bloom Filter.

3 COMPUTING THE OPTIMAL K

Traditionally, the optimal number of hash functions is
derived through finding the extrema of the asymptotic
formula of fbloom given in Eq. 2 as follows:

k∗bloom =
m

n
ln 2 (9)

However, as we have discussed, the underlying for-
mula for FP probability is not fully correct. In this
section, we first present the important theorems that
correlate information entropy and the false positive rate
of Bloom Filters. Then we propose a method of deriving
the optimal value of k by minimizing the FP probability
given the value of BF size m and number of inserted
elements n.

3.1 Information Entropy Basis
Information Entropy: In information theory, information
entropy is used to measure the uncertainty of a random
variable. In this paper, we use Shannon entropy [54],
which measures the value of the information contained
in a variable. Entropy is typically measured in bits, nats,
or bans [55]. For a variable with s events with the
probabilities of p1, p2, · · · , ps. The information entropy
E is defined as:

E = −
s∑

i=1

pilog2
1

pi
(10)

Property of Information Entropy: For any variable or
message, if its information entropy is not at the maxi-
mum, it can be compressed without information losses.
For a random variable, the larger the uncertainty is,
the bigger the information entropy is. Suppose an m-
bit string variable is compressed to m′-bit string vari-
able without loss of information, the entropy E of the
Bloom Filter remains the same. However, the average
information containing in each bit, which is e = E/m
will increase to e′ = E/m′. Then, we have me = m′e′.
According to the information entropy formula (Eq. 10),
we can obtain the information entropy e′ of one bit of a
BF as follows, where p′ is defined in Eq. 1.

e′ = − (p′ log2 p
′ + (1− p′) log2(1− p′)) (11)

We illustrate the relationship between entropy e′ and
p′ in Figure 1. We can observe that the entropy of an

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

4

Entropy

p'=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

p'

E
n
tr

o
p
y

Fig. 1: Information entropy of a BF.

m-bit sequence reaches the maximum value of 1 when
p′ = 0.5, i.e., the probability of each bit in the BF being
1 (or 0) is 50%.

3.2 An Important Global Assumption
What must be said before our formal analysis is that
we assume after compression without information loss,
a Bloom Filter is still a Bloom Filter. In other words,
we assume the properties of query and insertion of the
Bloom Filter should be persisted. Of course that’s a very
strong assumption, and we have not given a rigorous
proof. However, since the results of our analysis based
on this assumption are in perfect agreement with our
experiments, we state it here as an open question.

3.3 Relation Between False Positive Probability and
Information Entropy
We now show the relation between the false positive
probability and information entropy. We first present a
lemma and some definitions.

Lemma 1. Given a BF, suppose n and k keep unchanged,
when m becomes larger, the FP probability gets smaller.

Proof. When n and k are fixed, for larger m, the prob-
ability of each bit being 1 in the BF becomes smaller,
i.e., p′ becomes smaller; thus, the FP probability gets
smaller.

Definition 1. Bloom Filter variable. The false positive rate
of Bloom Filters is determined by m, n, and k. For different
n elements, the m-bit string varies. Thus, when the values
of m, n, k are given, the m-bit string is a random variable
(similar but slightly different from the mathematical definition
of random variable)1. When the n elements are given, the m-
bit string is a random variable instance. Therefore, when the

1. Although we still use the phrase “random variable” for conve-
nience, we want to point out that it is indeed a non-standard usage
of the term “random variable.” We want to say that m-bit strong is
indeed a measurable function, mapping from the total sample space
to Rm. Random variable in mathematics is a term whose mapping
value is restricted to C.

values of m, n, k are given, we call it a Bloom Filter Variable
(BFR). Since it is a random variable, we can compute its
information entropy.

Definition 2. Equivalent Bloom Filter variables. Given two
Bloom Filters variables v1 and v2, for the same n elements,
there are a pair of BFR instances. Given a set with n elements,
if these pairs of BFR instances always report the same result:
true or false for any input element, we say v1 and v2 are
equivalent.

Theorem 1. Given a Bloom Filter variable v1 with parameters
m, n, and k, if its information entropy is not at the maximum,
there must exist a smaller equivalent Bloom Filter variable v2
with parameters m′, n and k, where m′ < m.

Proof. For v1, the parameters are m, n, k. Suppose its
k hash functions are h1(·), h2(·), . . . , hk(·). Since the as-
sumption is that the information entropy of v1 is not at
the maximum, according to the property of information
entropy, v1 can be compressed without information loss.
After compression, suppose the new random variable
has a length of m′(m′ < m), we name it v2. Note that
during the compression, the information value m ∗ e
keeps unchanged; thus, the length of the compressed
message has a minimum value. Here v1 and v2 are
two variables consisting of bits, and we can treat them
as two integer variables. We use In(v1) and In(v2) to
represent the integer value of v1 and v2. Furthermore,
we use |In(v1)| represents the length of v1, then we have
|In(v1)| = m, |In(v2)| = m′. Because we compress v1
and get v2, this can be regarded as a function g(·). In
other words, g(In(v1)) = In(v2). We can also obtain v1
by equation In(v1) = g−1(In(v2)).

At this stage, we consider the new Bloom Filter vari-
able v2, the parameters are m′, n, and k. Note that we
use k different hash functions, and the k hash functions
are

g−1(In(v2)) ≪ h1(y) ≫ (|g−1(In(v2))| − h1(y)− 1),

g−1(In(v2)) ≪ h2(y) ≫ (|g−1(In(v2))| − h2(y)− 1),

. . .

g−1(In(v2)) ≪ hk(y) ≫ (|g−1(In(v2))| − hk(y)− 1)
(12)

where ‘≪’ represents the left shift operator, and ‘≫’
represents the right shift operator.2

Given an input element y, we can compute the above
k values only using v2 and hi(·) without v1. Then we
need to prove that for any incoming element y, v2 reports
the same k-bit value. With formula 12, we use equation
v1 = g−1(In(v2)) and m = |g−1(In(v2))|. These k hash
functions are simplified as

2. The symbols ‘≪’ and ‘≫’ shift all the binary bits of a number to
the left/right by several bits, respectively. On the premise that the
number does not overflow, shifting left by x bits is equivalent to
multiplying by 2 to the power of x, and shifting right by x bits is
equivalent to dividing by 2 to the power of x. For example, shifting
the integer 6 (‘0110’ in binary) to the left by 1 bit is equivalent to the
integer 12 (‘1100’ in binary), and shifting the integer 6 to the right by
1 bit is equivalent to the integer 3 (‘0011’ in binary).

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

5

v1 ≪ h1(y) ≫ (m− h1(y)− 1),

v1 ≪ h2(y) ≫ (m− h2(y)− 1),

. . .

v1 ≪ hk(y) ≫ (m− hk(y)− 1)

(13)

Here 1 ⩽ i ⩽ k and 0 ⩽ hi(y) ⩽ m−1. Here v1 ≪ hi(y) ≫
(m − hi(y) − 1) actually means the value of hi(y)-th bit
of v1. This is the same as the k hash functions as v1.
Therefore, v1 and v2 are equivalent.

Theorem 2. Given a Bloom Filter variable, if and only if its
information entropy is at the maximum, its FP probability is
at the minimum.

Proof. First, we prove that if the FP probability is at the
minimum, then its average information entropy (Eq. 11)
must be at the maximum. Given a Bloom Filter variable
v1 with parameters m, n, k. Since the assumption is
that the average information entropy of v1 is not at the
maximum, according to Theorem I, there exists a smaller
Bloom Filter variable v2 with parameters m′, n, k. Since
v2 and v1 are equivalent, their FP probabilities are the
same, we name it f . At this stage, we enlarge the size
of v2 a little from m′ to m′′, where m′ < m′′ < m.
According to Lemma 1, we know the FP probability of
v2 becomes smaller than f . This means that for v1, there
exists a BF variable with a smaller size and a smaller FP
probability. Therefore, the FP probability of v1 is not at
the minimum. This means that if its average information
entropy is not at the maximum, then the FP probability
is definitely not at the minimum. The contrapositive is
that if the FP probability is at the minimum, then its
average information entropy must be at the maximum.

Second, we prove that if its average information en-
tropy is at the maximum, the FP probability is at the min-
imum. Given a Bloom Filter variable v1 with parameters
m, n, k. Since the assumption is that the FP probability
of v1 is not at the maximum, there exists an optimal
Bloom Filter variable v0 with parameters m, n, k′, where
k′ ̸= k, the average information entropy of v0 is at the
maximum. According to Eq. 11 and Figure 1, the p′ of
v0 is 0.5 whereas the p′ of v1 is not because they have
different value of k. Therefore, the average information
entropy of BF1 is not at the maximum. This means if
the FP probability is not at the minimum, its average
information entropy must be not at the maximum. The
contrapositive is that if its average information entropy
is at the maximum, the FP probability is at the minimum.

3.4 Computing the Optimal k

According to Theorem 2, when the average information
entropy of the Bloom Filter variable is at the maximum,
the FP probability is at the minimum. Recalling the
definition of p′ in Eq. 1, one can use this interpretation
to find k∗, i.e., the optimal number of hash functions.
From Figure 1, we know that when p′ is 0.5, E reaches

the maximum value 1. By setting the value of p′ to 0.5,
we have

p′ =

(
1− 1

m

)k∗n

= 0.5 (14)

Further, we have:

k∗ = − ln 2

n
/ ln

(
1− 1

m

)
(15)

This formula is very close to the formula of k∗ obtained
by Bloom. When x is very small, ln(1 + x) ≈ x, and

therefore −1/ ln(1− 1

m
) ≈ m, resulting the same term as

in Eq. 9.

Theorem 3. Given any BF variable, when m and n are
fixed, the FP probability f is a function of k, we represent
it f(k). Then f(k) is a well-defined function which has only
one minimum value.

Proof. Given a Bloom Filter variable v1 with parameters
m, n, k1, its entropy is E1. Given another Bloom Filter
variable v2 with parameters m, n, k2, its entropy is E2.
(1) For any k1 < k2 ⩽ k∗, according to Eq. 1, Eq. 11 and
Figure 1, we know p′1 < p′2 ⩽ 0.5. We compress v1 to v3
with parameters m3, n, k1. To make v3’s entropy equal to
E2, m3 should be mE1/E2. In this case, the entropy of v3
is equal to that of v2. When the entropy of BF variables
is less than 0.5, the same entropy leads to the same p′. In
other words, p′3 = p′2. Because v2 has more hash functions
(k2 > k1), the FP probability of v2 is smaller than that
of v3. While v3 and v1 have the same FP probability,
therefore, the FP probability of v2 is smaller than that
of v1. In other words, for any k (k < k∗) increasing,
the FP probability of BFs decreases. (2) For any k∗ ⩽
k1 < k2, according to Eq. 1, Eq. 11 and Figure 1, we
know p′1 > p′2 ⩾ 0.5. Using the similar derivation, we
can derive that the FP probability of v2 is larger than
that of v1. According to the above two cases, we know
that given any BF variable, when m and n are fixed,
the FP probability f is a function of k, we represent it
f(k). So f(k) is a well-defined function, which has a unique
minimum value.

4 ASYMPTOTIC FORM OF THE FP PROBABIL-
ITY

In this section, we derive a new approach to computing
the asymptotic form for the FP probability of BFs. The
new derivation is based on partitioned Bloom Filters (pBF)
that are used frequently to carry out parallel queries. Its
underpinning principle is simple: the BF is divided into k
even partitions, and each hash function only acts on one
of the partitions, respectively. The probability that one
bit of the BF array remains 0 after inserting n elements
in the BF becomes the following as now each hash maps
into m

k separate bits.

p′partition =

(
1− k

m

)n

(16)

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

6

It is intuitive that the FP probability of partitioned BF
is a little bigger than that of BF. Unfortunately, there is
no strict proof. Here we show one proof method, which
is based on the following Lemma.

Lemma 2. For m > 1, k > 1, n > 1, m > k,

(
1− k

m

)n

<

(
1− 1

m

)kn

(17)

Proof. Directly application of Bernoulli inequality.

The above lemma shows that p′partition < p′true or
equivalently 1 − p′partition > 1 − p′true. Thus, we know
that with the same parameters, the FP probability of the
pBF will be larger than that of the standard BF ftrue,
i.e., fpartition > ftrue. In addition, Bose’s bounds in Eq.
5 state that the precise value of FP probability for a BF
ftrue is larger than fbloom, i.e., ftrue > fbloom. Therefore,
we have the following upper and lower bounds:

fpartition > ftrue > fbloom (18)

For a partitioned BF, the probability that one bit of
the array is still 0 p′ is shown in Eq. 16. Different from
standard Bloom Filters, for a partitioned Bloom Filter, the
event E(h1 = 1), E(h2 = 1), E(h3 = 1), ..., E(hi−1 = 1) is
independent of the event E(hi−1 = 1), where E(hi−1 =
1) means that the event that the position of hi−1(x)
is 1 because each hash function is responsible for one
partition, and has no impact on each other. Therefore,
we have

fpartition = (1− p′partition)
k =

(
1−

(
1− k

m

)n)k

(19)

Then, the formula 18 becomes

(
1−

(
1− k

m

)n)k

> ftrue >

(
1−

(
1− 1

m

)nk
)k

(20)

Then, we use the well known limit formula:

lim
x→∞

(
1− 1

x

)−x

= e (21)

Asymptotically, when m becomes large, we already
know that fbloom converges to the term in Eq. 2. Nev-
ertheless, the upper bound has also an asymptotic be-
haviour as the following, which is the same term as the
lower bound limit.

lim
m→∞

(
1−

(
1− 1

m

)nk
)k

=
(
1− e−nk/m

)k
(22)

Through the Sandwich Theorem (also known as squeeze
theorem) we obtain the following equation, which is
similarly to Christensen and Bose:

our upper bound

Bose's upper bound

lower bound

10 100 1000 104 105
0.0082

0.0083

0.0084

0.0085

0.0086

0.0087

0.0088

0.0089

n

bo
un

d

Fig. 2: Upper and lower bound for ftrue for k = 7
and m = 10n.

Bose's upper bound ratio

Our upper bound ratio

10 100 1000 104 105
10-5

10-4

0.001

0.01

0.1

1

n

U
pp

er
bo

un
d

ra
tio

Fig. 3: Bounds error ratio for Bose’s bound and the
bound derived in this paper for k = 7 and m = 10n.

lim
m→∞

ftrue =
(
1− e−nk/m

)k
(23)

This means that when m is large, the Bloom’s formula
can be used with negligible error. However, we still need
to evaluate what means m being large. We will do this by
comparing the two bounds we have in hand: the one
from Bose and the one we derived in this paper. We
show in Figure 2 that the two upper bounds along with
the lower bound obtained for k = 7 and m = 10n as a
function of n, the number of elements inserted in the
BF. As can be seen, the upper bound derived in this
paper and the lower bound fbloom converge relatively
fast for n = 9, while the upper bound derived by Bose
has a much slower convergence. We can see this better
by looking at the behavior of the bounds error ratio
β, defined as β = upper bound−lower bound

lower bound , for the two
bounds in Figure 3.

As can be seen, the gap between our derived upper

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

7

bound and fbloom is decreasing polynomially at a con-
stant speed, while Bose’s bound has a lower speed of
convergence. In order to extend this observation, we
show in Figure 4 the evolution of the bounds error ratio
for a BF with m = 10000, n = 1000 and varying k.

Bose's upper bound ratio

Our upper bound ratio

0 5 10 15 20
10-5

10-4

0.001

0.01

0.1

1

k

U
pp

er
bo

un
d

ra
tio

Fig. 4: Bounds error ratio for Bose’s bound and the
bound derived in this paper for m = 10000, n =
1000 and varying k.

As expected, error involved with using fbloom in-
creases with the number of hash functions k increases.
However, it can be seen that the convergence behavior
of the bounds derived in this paper is much better than
the one obtained by Bose.

5 CORRECT RATE OF COUNTING BLOOM FIL-
TERS

The Counting Bloom Filter (CBF) [3], one widely used
variant of standard Bloom Filter, replaces each bit with
one counter, supporting estimating the frequency of each
element in a multiset. Specifically, given a multiset S of
n distinct elements with their corresponding frequencies,
we create a counter array A of length m as follows. First,
we initialize each counter of A to 0, then for each element
x ∈ S, we use k hash functions to compute k hash values:
h1(x), h2(x), . . . , hk(x) where each hash value is in the
range [1,m]. Second, for each 1 ⩽ i ⩽ k, we let A[hi(x)] =
A[hi(x)] + 1. Let fx be the frequency of element x in
multiset S . Therefore, the step of A[hi(x)] = A[hi(x)] +
1 for each 1 ⩽ i ⩽ k will occur fx times. The resulting
counter array A is called the CBF for multiset S. To query
the frequency of an element y in multiset S, we first use
the same k hash functions to compute k hash values:
h1(y), h2(y), . . . , hk(y). Second, we report the minimum
value of the k counters: A[h1(x)], A[h2(x)], . . . , A[hk(x)]
as the estimated frequency of this element. Obviously,
the estimated frequency reported by the CBF is always
larger than or equal to the real frequency for any element
in multiset S. The case that the estimated frequency from
the CBF is equal to the real frequency for one element
is called the correct case. The probability of such case
happening is called the correct rate of the CBF (Cr).

The calculation of the correct rate of CBFs can benefit
from our derivation of the false positive probability of
standard Bloom Filter. In querying an element x, the cor-
rect case happens when there exists at least one hashed
counter (among A[h1(x)], A[h2(x)], . . ., A[hk(x)]) that is
not hashed by any elements in multiset S \ {x · fx}. The
contrapositive is that the correct case does not happen
when all the k hashed counters are also hashed by some
elements in multiset S \ {x · fx}. Consider an arbitrary
counter A[b] in A. For any distinct element in S \{x · fx}
and any hash function hi (1 ⩽ i ⩽ k), the probability
that this element is not hashed to counter A[b] by hi is
1−1/m. As S\{x·fx} has n−1 distinct elements and each
distinct element is hashed k times, the probability that
A[b] is not hashed by any element in multiset S \{x ·fx}
is pc:

pc =

(
1− 1

m

)k(n−1)

(24)

Thus, the probability that A[b] is hashed by some ele-
ments in multiset S \ {x · fx} is 1− (1− 1/m)k(n−1). The
probability that all the k hashed counters are also hashed
by some elements in multiset S \ {x · fx} is answered by
ftrue with element number of n−1. We denote ftrue|n−1

as ftrue with element number of n− 1, and get:

1− Cr = ftrue|n−1 ⇒ Cr = 1− ftrue|n−1 (25)

Applying Eq. 20, we can get the upper and lower bounds
of the Cr of CBFs:

1−

(
1−

(
1− k

m

)n−1
)k

< Cr < 1−

(
1−

(
1− 1

m

)(n−1)k
)k

(26)

6 EXPERIMENTAL RESULTS

In this section, we first validate our proposed formula
of optimal k (Eq. 15). Second, we compare our proposed
upper bound of the FP probability of BFs (Eq. 20) with
Bose’s upper bound (Eq. 5). Third, we validate our
proposed upper and lower bounds of the correct rate
of CBFs (Eq. 26).

6.1 Experimental Setup

Datasets: We use four kinds of datasets: 1) IP Trace
Dataset; 2) Data Center Dataset; 3) Network Dataset; 4)
Synthetic Dataset. The details are as follows.
1) IP Trace Dataset: The IP Trace Dataset contains
anonymized IP traces collected in 2016 by CAIDA [56].
Each item contains a source IP address (sip, 4 bytes) and
a destination IP address (dip, 4 bytes), 8 bytes in total.
We treat each sip-dip pair as an ID.
2) Data Center Dataset: The Data center dataset [57]
contains traces collected from the data centers in [58].
Each item (4 bytes) represents the ID of the trace.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

8

3) Network Dataset: The network dataset contains users’
posting history on the stack exchange website [59]. Each
item (4 bytes) represents the ID of each user.
4) Synthetic Dataset: We generate a synthetic dataset
that follows the Zipf [60] distribution using Web Poly-
graph [61], an open-source performance testing tool. The
length of each item ID is 4 bytes, and the skewness of
the dataset is 1.5.
The operations on the above datasets: For BF, we regard
each distinct ID as an element in the aforementioned set.
We use (part of) the first 100/1.5/0.17/0.23M3 distinct IDs
to construct BFs, and query the next 300/4.5/0.51/0.69M
distinct IDs to get the empirical FP probabilities of
these BFs. For CBF, we regard each distinct ID and
its occurrence number as a distinct element and the
corresponding frequency in the aforementioned multiset,
respectively. We use (part of) the first 100/1.5/0.17/0.23M
distinct IDs and their occurrence numbers in the current
trace to construct CBFs, and query their frequencies to
get the empirical correct rates of these CBFs.
Implementation: We have implemented the standard
Bloom filter in C++. We use the Bob Hash (obtained from
the open source website [62]) with different initial seeds
to implement the hash functions in BFs as recommended
by literature [63]. All the implementation source code is
made publicly available at GitHub4.

6.2 Optimal k Formula Validation

6.2.1 Optimal k vs. n
Figure 5(a)-5(d) plot the empirically and theoretically
optimal k with different n for m = 500M, 7.5M, 0.85M,
1.15M. Our results show that the optimal k calculated from
our new formula follows the empirically optimal k very well,
regardless of the values of n. We observe that the optimal
k calculated from our new formula is very close to the
one calculated from the formula obtained by Bloom.

6.2.2 Optimal k vs. m
Figure 6(a)-6(d) plot the empirically and theoretically
optimal k with different m for n = 50M, 0.75M, 0.085M,
0.115M. Our results show that the optimal k calculated from
our new formula follows the empirically optimal k very well,
regardless of the values of m. We observe that the optimal
k calculated from our new formula is very close to the
one calculated from the formula obtained by Bloom,
especially when m becomes larger.

6.3 Upper Bound Comparison

6.3.1 Upper Bound vs. n
Figure 7(a)-7(d) plot the empirical results, Bloom’s the-
oretical results, Bose’s upper bounds, and our upper
bounds of FP probability with different n for m = 500M,
7.5M, 0.85M, 1.15M and k = 6. Our results show that
our upper bounds of FP probability follows the empirical FP

3. They correspond to the 4 datasets mentioned above, respectively.
4. https://github.com/pkufzc/Bloom-Error-TKDE

probability very well, regardless of the values of n. We find
that all above four results almost coincide with each
other, which demonstrates the tightness of bounds in
Eq. 5 and 20. To compare upper bound of Bose and ours
more intuitively, in Figure 8(a)-8(d), we plot the bounds
error ratios β, defined as β = upper bound−lower bound

lower bound , of
these two upper bounds with different n for m = 500M,
7.5M, 0.85M, 1.15M and k = 6. Our results show that the
bounds error ratio of our upper bound is 23070.7 times lower
than that of Bose’s upper bound on average. We find that
our upper bound almost coincides with the lower bound,
which demonstrates the superiority of our upper bound.

6.3.2 Upper Bound vs. m
Figure 9(a)-9(d) plot the empirical results, Bloom’s the-
oretical results, Bose’s upper bounds, and our upper
bounds of FP probability with different m for n = 50M,
0.75M, 0.085M, 0.115M and k = 6. Our results show that
our upper bounds of FP probability follows the empirical FP
probability very well, regardless of the values of m. Figure
10(a)-10(d) plot the bounds error ratios of these two
upper bounds with different m for n = 50M, 0.75M,
0.085M, 0.115M and k = 6. Our results show that the
bounds error ratio of our upper bound is 18838.9 times lower
than that of Bose’s upper bound on average. We find that our
upper bound almost coincides with the lower bound,
regardless of the values of m.

6.3.3 Upper Bound vs. k
Figure 11(a)-11(d) plot the empirical results, Bloom’s
theoretical results, Bose’s upper bounds, and our upper
bounds of FP probability with different k for n = 50M,
0.75M, 0.085M, 0.115M and m = 500M, 7.5M, 0.85M,
1.15M. Our results show that our upper bounds of FP
probability follows the empirical FP probability very well,
regardless of the values of k. Figure 12(a)-12(d) plot the
bounds error ratios of these two upper bounds with
different k for n = 50M, 0.75M, 0.085M, 0.115M and m
= 500M, 7.5M, 0.85M, 1.15M. Our results show that the
bounds error ratio of our upper bound is 14571.0 times lower
than that of Bose’s upper bound on average.

6.4 Cr Formula Validation
Figure 13(a)-13(d), Figure 14(a)-14(d), and Figure 15(a)-
15(d) plot the correct rates of CBFs with different values
of n, m, and k, respectively. Our results show that our
lower and upper bounds of the correct rate of CBFs follow the
empirical correct rates very well, regardless of the values of n,
m, and k.

7 CONCLUSION

In this paper, we discuss the evolutionary of the formula
of Bloom Filter. Three formulas of false positive probabil-
ity are presented: Bloom’s formula, Bose’s formula, and
Christensen’s formula. There is an error in the deduction
process of Bloom’s formula, and a minor error in Bose’s
formula. Christensen’s formula is correct, but the false
positive must be caculated using an iterative table-based

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

https://github.com/pkufzc/Bloom-Error-TKDE

9

0 2 0 4 0 6 0 8 0 1 0 00

1 0

2 0

3 0

4 0

Op
tim

al k

n (M)

 E m p i r i c a l l y o p t i m a l k
 T h e o r e t i c a l l y o p t i m a l k o f B l o o m
 T h e o r e t i c a l l y o p t i m a l k o f o u r s

(a) IP trace

0 0 . 4 0 . 8 1 . 2 1 . 60

1 0

2 0

3 0

4 0

Op
tim

al k
n (M)

 E m p i r i c a l l y o p t i m a l k
 T h e o r e t i c a l l y o p t i m a l k o f B l o o m
 T h e o r e t i c a l l y o p t i m a l k o f o u r s

(b) Data Center

0 0 . 0 3 0 . 0 6 0 . 0 9 0 . 1 2 0 . 1 5 0 . 1 80

1 0

2 0

3 0

4 0

Op
tim

al k

n (M)

 E m p i r i c a l l y o p t i m a l k
 T h e o r e t i c a l l y o p t i m a l k o f B l o o m
 T h e o r e t i c a l l y o p t i m a l k o f o u r s

(c) Network

0 0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6 0 . 2 0 . 2 40

1 0

2 0

3 0

4 0

Op
tim

al k

n (M)

 E m p i r i c a l l y o p t i m a l k
 T h e o r e t i c a l l y o p t i m a l k o f B l o o m
 T h e o r e t i c a l l y o p t i m a l k o f o u r s

(d) Synthetic

Fig. 5: Optimal k vs. n for m = 500M, 7.5M, 0.85M, 1.15M.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00

5

1 0

1 5

Op
tim

al k

m (M)

 E m p i r i c a l l y o p t i m a l k
 T h e o r e t i c a l l y o p t i m a l k o f B l o o m
 T h e o r e t i c a l l y o p t i m a l k o f o u r s

(a) IP trace

0 4 8 1 2 1 60

5

1 0

1 5

Op
tim

al k

m (M)

 E m p i r i c a l l y o p t i m a l k
 T h e o r e t i c a l l y o p t i m a l k o f B l o o m
 T h e o r e t i c a l l y o p t i m a l k o f o u r s

(b) Data Center

0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5 1 . 80

5

1 0

1 5

Op
tim

al k

m (M)

 E m p i r i c a l l y o p t i m a l k
 T h e o r e t i c a l l y o p t i m a l k o f B l o o m
 T h e o r e t i c a l l y o p t i m a l k o f o u r s

(c) Network

0 0 . 4 0 . 8 1 . 2 1 . 6 2 2 . 40

5

1 0

1 5

Op
tim

al k

m (M)

 E m p i r i c a l l y o p t i m a l k
 T h e o r e t i c a l l y o p t i m a l k o f B l o o m
 T h e o r e t i c a l l y o p t i m a l k o f o u r s

(d) Synthetic

Fig. 6: Optimal k vs. m for n = 50M, 0.75M, 0.085M, 0.115M.

0 2 0 4 0 6 0 8 0 1 0 0
0

0 . 0 5

0 . 1

0 . 1 5

FP
 pr

oba
bil

ity

n (M)

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(a) IP trace

0 0 . 4 0 . 8 1 . 2 1 . 6
0

0 . 0 5

0 . 1

0 . 1 5

FP
 pr

oba
bil

ity

n (M)

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(b) Data Center

0 0 . 0 3 0 . 0 6 0 . 0 9 0 . 1 2 0 . 1 5 0 . 1 8
0

0 . 0 5

0 . 1

0 . 1 5

FP
 pr

oba
bil

ity

n (M)

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(c) Network

0 0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6 0 . 2 0 . 2 4
0

0 . 0 5

0 . 1

0 . 1 5

FP
 pr

oba
bil

ity

n (M)

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(d) Synthetic

Fig. 7: FP probability vs. n for m = 500M, 7.5M, 0.85M, 1.15M and k = 6.

0 2 0 4 0 6 0 8 0 1 0 0
0

0 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

Bo
und

s e
rro

r ra
tio

n (M)

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(a) IP trace

0 0 . 4 0 . 8 1 . 2 1 . 6
0

0 . 0 5

0 . 1

0 . 1 5

Bo
und

s e
rro

r ra
tio

n (M)

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(b) Data Center

0 0 . 0 3 0 . 0 6 0 . 0 9 0 . 1 2 0 . 1 5 0 . 1 8
0

0 . 1

0 . 2

0 . 3

0 . 4

Bo
und

s e
rro

r ra
tio

n (M)

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(c) Network

0 0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6 0 . 2 0 . 2 4
0

0 . 1

0 . 2

0 . 3

0 . 4

Bo
und

s e
rro

r ra
tio

n (M)

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(d) Synthetic

Fig. 8: Bounds error ratio vs. n for m = 500M, 7.5M, 0.85M, 1.15M and k = 6.

algorithm with a time complexity of O(knm). What is
worse, it cannot deduce the optimal value of k. To
compute the optimal value of k, we use information
and entropy theory to deduce the exact formula of k.
To compute the false positive probability, 1) For small

m, Christensen’s formula can be used; 2) For large m,
we propose a new upper bound which is much more
accurate than state-of-the-art. Fortunately, when m is
infinitely large, our upper bound becomes the same as
the lower bound, which is Bloom’s formula. Besides, we

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

10

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

0 . 2

0 . 4

0 . 6

0 . 8

FP
 pr

oba
bil

ity

m (M)

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(a) IP trace

0 4 8 1 2 1 6
0

0 . 2

0 . 4

0 . 6

0 . 8

FP
 pr

oba
bil

ity
m (M)

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(b) Data Center

0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5 1 . 8
0

0 . 2

0 . 4

0 . 6

0 . 8

FP
 pr

oba
bil

ity

m (M)

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(c) Network

0 0 . 4 0 . 8 1 . 2 1 . 6 2 2 . 4
0

0 . 2

0 . 4

0 . 6

0 . 8

FP
 pr

oba
bil

ity

m (M)

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(d) Synthetic

Fig. 9: FP probability vs. m for n = 50M, 0.75M, 0.085M, 0.115M and k = 6.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

0 . 0 0 1
0 . 0 0 2
0 . 0 0 3
0 . 0 0 4
0 . 0 0 5

Bo
und

s e
rro

r ra
tio

m (M)

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(a) IP trace

0 4 8 1 2 1 6
0

0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 . 0 5

Bo
und

s e
rro

r ra
tio

m (M)

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(b) Data Center

0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5 1 . 8
0

0 . 0 3

0 . 0 6

0 . 0 9

0 . 1 2

Bo
und

s e
rro

r ra
tio

m (M)

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(c) Network

0 0 . 4 0 . 8 1 . 2 1 . 6 2 2 . 4
0

0 . 0 3

0 . 0 6

0 . 0 9

0 . 1 2

Bo
und

s e
rro

r ra
tio

m (M)

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(d) Synthetic

Fig. 10: Bounds error ratio vs. m for n = 50M, 0.75M, 0.085M, 0.115M and k = 6.

2 4 6 8 1 0 1 20 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

FP
 pr

oba
bil

ity

k

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(a) IP trace

2 4 6 8 1 0 1 20 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

FP
 pr

oba
bil

ity

k

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(b) Data Center

2 4 6 8 1 0 1 20 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

FP
 pr

oba
bil

ity

k

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(c) Network

2 4 6 8 1 0 1 20 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

FP
 pr

oba
bil

ity

k

 E m p i r i c a l l y F P p r o b a b i l i t y
 F P p r o b a b i l i t y o f B l o o m (l o w e r b o u n d)
 U p p e r b o u n d o f B o s e
 U p p e r b o u n d o f o u r s

(d) Synthetic

Fig. 11: FP probability vs. k for n = 50M, 0.75M, 0.085M, 0.115M and m = 500M, 7.5M, 0.85M, 1.15M.

2 4 6 8 1 0 1 2
0

0 . 0 0 1
0 . 0 0 2
0 . 0 0 3
0 . 0 0 4
0 . 0 0 5

Bo
und

s e
rro

r ra
tio

k

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(a) IP trace

2 4 6 8 1 0 1 2
0

0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 . 0 5

Bo
und

s e
rro

r ra
tio

k

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(b) Data Center

2 4 6 8 1 0 1 2
0

0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1

Bo
und

s e
rro

r ra
tio

k

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(c) Network

2 4 6 8 1 0 1 2
0

0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1

Bo
und

s e
rro

r ra
tio

k

 B o u n d s e r r o r r a t i o o f B o s e
 B o u n d s e r r o r r a t i o o f o u r s

(d) Synthetic

Fig. 12: Bounds error ratio vs. k for n = 50M, 0.75M, 0.085M, 0.115M and m = 500M, 7.5M, 0.85M, 1.15M.

derive the bounds of correct rate of Counting Bloom Fil-
ters through our proposed formulas about Bloom Filters.
All the implementation source code is made publicly
available at GitHub [51].

ACKNOWLEDGMENT

We would like to thank Siyuan Dong for his participation
in the experiments, and Yuhan Wu and Ruwen Zhang for
their participation in the discussions. We would like to

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

11

0 2 0 4 0 6 0 8 0 1 0 00 . 8 5

0 . 9

0 . 9 5

1

Co
rre

ct r
ate

n (M)

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(a) IP trace

0 0 . 4 0 . 8 1 . 2 1 . 60 . 8 5

0 . 9

0 . 9 5

1

Co
rre

ct r
ate

n (M)

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(b) Data Center

0 0 . 0 3 0 . 0 6 0 . 0 9 0 . 1 2 0 . 1 5 0 . 1 80 . 8 5

0 . 9

0 . 9 5

1

Co
rre

ct r
ate

n (M)

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(c) Network

0 0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6 0 . 2 0 . 2 40 . 8 5

0 . 9

0 . 9 5

1

Co
rre

ct r
ate

n (M)

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(d) Synthetic

Fig. 13: Correct rate vs. n for m = 500M, 7.5M, 0.85M, 1.15M and k = 6.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00 . 2

0 . 4

0 . 6

0 . 8

1

Co
rre

ct r
ate

m (M)

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(a) IP trace

0 4 8 1 2 1 60 . 2

0 . 4

0 . 6

0 . 8

1

Co
rre

ct r
ate

m (M)

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(b) Data Center

0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5 1 . 80 . 2

0 . 4

0 . 6

0 . 8

1

Co
rre

ct r
ate

m (M)

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(c) Network

0 0 . 4 0 . 8 1 . 2 1 . 6 2 2 . 40 . 2

0 . 4

0 . 6

0 . 8

1

Co
rre

ct r
ate

m (M)

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(d) Synthetic

Fig. 14: Correct rate vs. m for n = 50M, 0.75M, 0.085M, 0.115M and k = 6.

2 4 6 8 1 0 1 20 . 9 8

0 . 9 8 5

0 . 9 9

0 . 9 9 5

Co
rre

ct r
ate

k

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(a) IP trace

2 4 6 8 1 0 1 20 . 9 8

0 . 9 8 5

0 . 9 9

0 . 9 9 5

Co
rre

ct r
ate

k

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(b) Data Center

2 4 6 8 1 0 1 20 . 9 8

0 . 9 8 5

0 . 9 9

0 . 9 9 5

Co
rre

ct r
ate

k

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(c) Network

2 4 6 8 1 0 1 20 . 9 8

0 . 9 8 5

0 . 9 9

0 . 9 9 5

Co
rre

ct r
ate

k

 E m p i r i c a l l y c o r r e c t r a t e
 T h e o r e t i c a l l y u p p e r b o u n d
 T h e o r e t i c a l l y l o w e r b o u n d

(d) Synthetic

Fig. 15: Correct rate vs. k for n = 50M, 0.75M, 0.085M, 0.115M and m = 500M, 7.5M, 0.85M, 1.15M.

thank the anonymous reviewers for their valuable sug-
gestions and comments. This work is supported by Key-
Area Research and Development Program of Guang-
dong Province 2020B0101390001, National Natural Sci-
ence Foundation of China (NSFC) (No. U20A20179,
61832001).

REFERENCES
[1] B. H. Bloom, “Space/time trade-offs in hash coding with allow-

able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.
[2] M. Mitzenmacher, P. Reviriego, and S. Pontarelli, “Omass: One

memory access set separation,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 7, pp. 1940–1943, 2016.

[3] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, 2000.

[4] M. Mitzenmacher, “Distributed, compressed bloom filter web
cache server,” Jul. 19 2005, US Patent 6,920,477.

[5] M. Yoon, “Aging bloom filter with two active buffers for dynamic
sets,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 134–138,
2010.

[6] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route filtering of
injected false data in sensor networks,” IEEE J. Sel. Areas Commun.,
vol. 23, no. 4, pp. 839–850, 2006.

[7] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: a secure
sensor network communication architecture,” in Proc. ACM 6th
Int. Symp. Inf. Proces. Sensor Netw., 2007, pp. 479–488.

[8] T. Chen, D. Guo, Y. He, H. Chen, X. Liu, and X. Luo, “A bloom
filters based dissemination protocol in wireless sensor networks,”
Ad Hoc Netw., vol. 11, no. 4, pp. 1359–1371, 2013.

[9] M. Yu, A. Fabrikant, and J. Rexford, “Buffalo: bloom filter for-
warding architecture for large organizations,” in Proc. ACM Conf.
Emerg. Networking Exp. Technol., 2009, pp. 313–324.

[10] D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang, “Scalable data center
multicast using multi-class bloom filter,” in Proc. IEEE Int. Conf.
Netw. Protoc., 2011, pp. 266–275.

[11] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, “Esm: Efficient and scalable
data center multicast routing,” IEEE ACM Trans. Netw., vol. 20,
no. 3, pp. 944–955, 2011.

[12] A. Papadopoulos and D. Katsaros, “A-tree: Distributed indexing
of multidimensional data for cloud computing environments,” in
Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci., 2011, pp. 407–414.

[13] V. Roussev, L. Wang, G. Richard, and L. Marziale, “A cloud
computing platform for large-scale forensic computing,” in Proc.
IFIP Adv. Inf. Commun. Technol., 2009, pp. 201–214.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

12

[14] S. Xiong, Y. Yao, S. Li, Q. Cao, T. He, H. Qi, L. Tolbert, and
Y. Liu, “kbf: Towards approximate and bloom filter based key-
value storage for cloud computing systems,” IEEE Trans. Cloud
Comput., vol. 5, no. 1, pp. 85–98, 2014.

[15] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest
prefix matching using bloom filters,” ACM SIGCOMM Comput.
Commun. Rev., vol. 33, no. 4, pp. 201–212, 2003.

[16] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Vargh-
ese, “Beyond bloom filters: from approximate membership checks
to approximate state machines,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 36, no. 4, pp. 315–326, 2006.

[17] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu, and
Q. Dong, “Namefilter: Achieving fast name lookup with low
memory cost via applying two-stage bloom filters,” in Proc. IEEE
Conf. Comput. Commun., 2013, pp. 95–99.

[18] B. Debnath, S. Sengupta, and J. Li, “Flashstore: High throughput
persistent key-value store,” Proc. VLDB Endow., vol. 3, no. 1–2,
pp. 1414–1425, 2010.

[19] “Rocksdb - a persistent key-value store for fast storage
environments.” [Online]. Available: http://rocksdb.org/

[20] Y. Li, C. Tian, F. Guo, C. Li, and Y. Xu, “Elasticbf: Elastic bloom
filter with hotness awareness for boosting read performance in
large key-value stores,” in Proc. USENIX Annu. Tech. Conf., 2019,
pp. 739–752.

[21] N. Dayan, M. Athanassoulis, and S. Idreos, “Optimal bloom filters
and adaptive merging for lsm-trees,” ACM Trans. Database Syst.,
vol. 43, no. 4, pp. 1–48, 2018.

[22] S. Luo, S. Chatterjee, R. Ketsetsidis, N. Dayan, W. Qin, and
S. Idreos, “Rosetta: A robust space-time optimized range filter
for key-value stores,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2020, pp. 2071–2086.

[23] Y. Chai, Y. Chai, X. Wang, H. Wei, and Y. Wang, “Adaptive lower-
level driven compaction to optimize lsm-tree key-value stores,”
IEEE Trans. Knowl. Data Eng., pp. 1–14, 2020.

[24] R. Schnell, T. Bachteler, and J. Reiher, “Privacy-preserving record
linkage using bloom filters,” BMC Med. Inform. Decis. Mak., vol. 9,
no. 1, pp. 1–11, 2009.

[25] E. A. Durham, M. Kantarcioglu, Y. Xue, C. Toth, M. Kuzu, and
B. Malin, “Composite bloom filters for secure record linkage,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 12, pp. 2956–2968, 2013.

[26] D. Vatsalan and P. Christen, “Scalable privacy-preserving record
linkage for multiple databases,” in Proc. ACM Int. Conf. Inf. Knowl.
Manag., 2014, pp. 1795–1798.

[27] R. Schnell and C. Borgs, “Randomized response and balanced
bloom filters for privacy preserving record linkage,” in Proc. IEEE
Int. Conf. Data Min. Workshops, 2016, pp. 218–224.

[28] P. Christen, R. Schnell, D. Vatsalan, and T. Ranbaduge, “Efficient
cryptanalysis of bloom filters for privacy-preserving record link-
age,” in Proc. Pacific-Asia Conf. Knowl. Discov. Data Min., 2017, pp.
628–640.

[29] P. Christen, T. Ranbaduge, D. Vatsalan, and R. Schnell, “Precise
and fast cryptanalysis for bloom filter based privacy-preserving
record linkage,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 11, pp.
2164–2177, 2019.

[30] S. Jiang, J. Cao, J. A. McCann, Y. Yang, Y. Liu, X. Wang, and
Y. Deng, “Privacy-preserving and efficient multi-keyword search
over encrypted data on blockchain,” in Proc. IEEE Int. Conf.
Blockchain, 2019, pp. 405–410.

[31] T. Wang, W. Zhu, Q. Ma, Z. Shen, and Z. Shao, “Abacus: Address-
partitioned bloom filter on address checking for uniqueness in iot
blockchain,” in IEEE ACM Int. Conf. Comput. Des. Dig. Tech. Pap.,
2020, pp. 1–7.

[32] J. Han, M. Song, H. Eom, and Y. Son, “An efficient multi-signature
wallet in blockchain using bloom filter,” in Proc. ACM Symp. Appl.
Comput., 2021, pp. 273–281.

[33] B. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. Du, “Bloom-
flash: Bloom filter on flash-based storage,” in Proc. Int. Conf.
Distrib. Comput. Syst., 2011, pp. 635–644.

[34] O. Papapetrou, E. Ioannou, and D. Skoutas, “Efficient discovery
of frequent subgraph patterns in uncertain graph databases,” in
Adv. Database Technol. - EDBT, 2011, pp. 355–366.

[35] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and
A. Kemper, “Data blocks: Hybrid oltp and olap on compressed
storage using both vectorization and compilation,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2016, pp. 311–326.

[36] K. Cheng, L. Xiang, and M. Iwaihara, “Time-decaying bloom
filters for data streams with skewed distributions,” in Proc. IEEE
Int. Workshop Res. Issues Data Eng., 2005, pp. 63–69.

[37] F. Deng and D. Rafiei, “Approximately detecting duplicates for
streaming data using stable bloom filters,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2006, pp. 25–36.

[38] L. Qiu, Y. Li, and X. Wu, “Preserving privacy in association rule
mining with bloom filters,” J. Intell. Inf. Syst., vol. 29, no. 3, pp.
253–278, 2007.

[39] Y. Tian, T. Zou, F. Ozcan, R. Goncalves, and H. Pirahesh, “Joins for
hybrid warehouses: Exploiting massive parallelism in hadoop and
enterprise data warehouses.” in Proc. Int. Conf. Extending Database
Technol., 2015, pp. 373–384.

[40] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent
items in data streams,” Proc. VLDB Endow., vol. 10, no. 4, pp.
289–300, 2016.

[41] Y. Peng, J. Guo, F. Li, W. Qian, and A. Zhou, “Persistent bloom
filter: Membership testing for the entire history,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2018, pp. 1037–1052.

[42] J. Li, Z. Li, Y. Xu, S. Jiang, T. Yang, B. Cui, Y. Dai, and G. Zhang,
“Wavingsketch: An unbiased and generic sketch for finding top-k
items in data streams,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Min., 2020, pp. 1574–1584.

[43] M. M. Cisse, N. Usunier, T. Artieres, and P. Gallinari, “Robust
bloom filters for large multilabel classification tasks,” Adv. Neural
Inf. Proces. Syst., vol. 26, 2013.

[44] M. Mitzenmacher, “A model for learned bloom filters and op-
timizing by sandwiching,” Adv. Neural Inf. Proces. Syst., vol. 31,
2018.

[45] Q. Liu, L. Zheng, Y. Shen, and L. Chen, “Stable learned bloom
filters for data streams,” Proc. VLDB Endow., vol. 13, no. 12, pp.
2355–2367, 2020.

[46] J. R. Anderson, Q. Huang, W. Krichene, S. Rendle, and
L. Zhang, “Superbloom: Bloom filter meets transformer,”
CoRR, vol. abs/2002.04723, 2020. [Online]. Available: https:
//arxiv.org/abs/2002.04723

[47] R. Patgiri, A. Biswas, and S. Nayak, “deepbf: Malicious URL
detection using learned bloom filter and evolutionary deep
learning,” CoRR, vol. abs/2103.12544, 2021. [Online]. Available:
https://arxiv.org/abs/2103.12544

[48] D. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem of
counting bloom filter,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 5,
pp. 651–664, 2010.

[49] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morri-
son, M. Smid, and Y. Tang, “On the false-positive rate of bloom
filters,” Inf. Process. Lett., vol. 108, no. 4, pp. 210–213, 2008.

[50] K. Christensen, A. Roginsky, and M. Jimeno, “A new analysis of
the false positive rate of a bloom filter,” Inf. Process. Lett., vol. 110,
no. 21, pp. 944–949, 2010.

[51] “Our open source website.” [Online]. Available: https://github.
com/pkufzc/Bloom-Error-TKDE

[52] F. Grandi, “The γ-transform: A new approach to the study of
a discrete and finite random variable,” Internat. J. Math. Models
Appl. Sci, vol. 9, pp. 624–635, 2015.

[53] F. Grandi, “On the analysis of bloom filters,” Inf. Process. Lett.,
vol. 129, pp. 35–39, 2018.

[54] C. E. Shannon, “A mathematical theory of communication,” Bell
Syst. Tech. J., vol. 27, no. 3, pp. 379 – 423, 1948.

[55] L. Brillouin, “Science and information theory,” Dover Publications,
p. 293, 2004.

[56] “The caida anonymized 2016 internet traces.” [Online]. Available:
http://www.caida.org/data/overview/

[57] “The data center dataset.” [Online]. Available: http://pages.cs.
wisc.edu/∼tbenson/IMC10 Data.html

[58] T. Benson, A. Akella, and D. A. Maltz, “Network traffic charac-
teristics of data centers in the wild,” in Proc. ACM SIGCOMM
Internet Meas. Conf. IMC, 2010, p. 267–280.

[59] “The network dataset internet traces.” [Online]. Available:
http://snap.stanford.edu/data/

[60] D. M. Powers, “Applications and explanations of zipf’s law,” in
Proc. Jt. Conf. New Methods Lang. Process. Comput. Nat. Lang. Learn.,
1998, pp. 151–160.

[61] A. Rousskov and D. Wessels, “High-performance benchmarking
with web polygraph,” Software Pract Exper, vol. 34, no. 2, pp. 187–
211, 2004.

[62] “Hash website.” [Online]. Available: http://burtleburtle.net/
bob/hash/evahash.html

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

http://rocksdb.org/
https://arxiv.org/abs/2002.04723
https://arxiv.org/abs/2002.04723
https://arxiv.org/abs/2103.12544
https://github.com/pkufzc/Bloom-Error-TKDE
https://github.com/pkufzc/Bloom-Error-TKDE
http://www.caida.org/data/overview/
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://snap.stanford.edu/data/
http://burtleburtle.net/bob/hash/evahash.html
http://burtleburtle.net/bob/hash/evahash.html

13

[63] C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluation of
hash functions for multipoint measurements,” ACM SIGCOMM
Comput. Commun. Rev., vol. 38, no. 3, pp. 39–50, 2008.

Zhuochen Fan is currently pursuing the Ph.D.
degree with School of Computer Science,
Peking University, advised by Tong Yang. His
research interests include network big data,
network measurements, streaming algorithms,
Bloom Filters, and mobile computing.

Gang Wen received the B.S. degree in math-
ematics from Peking University in 2022. His
research interests include network big data,
network measurements, streaming algorithms,
Bloom Filters, and deep learning theory. He has
received the Excellent Academic Student Award
and Scholarship for two years from Peking Uni-
versity. Currently, he is a Ph.D. student majoring
in statistics at Yale University.

Zhipeng Huang received the M.S. degree from
Peking University, advised by Tong Yang. He
is interested in applying machine learning to
indexing, computer networks and data stream
processing.

Yang Zhou graduated from Peking University,
advised by Tong Yang. He is currently pursuing
the Ph.D. degree with Harvard University, ad-
vised by Minlan Yu. He is broadly interested in
streaming algorithms, networked systems, and
data-intensive systems.

Qiaobin Fu received the B.E. degree from the
Dalian University of Technology in 2011 and
the M.S. degree from the University of Chinese
Academy of Sciences in 2014. He earned his
Ph.D. degree from Boston University in 2020.
Currently, he is working at Google on network-
aware scheduling and cross-resource optimiza-
tion. His research interests focus on computer
networking, inter/intra-data center networks, and
cloud computing.

Tong Yang (Member, IEEE) received the Ph.D.
degree in computer science from Tsinghua Uni-
versity in 2013. He visited the Institute of Com-
puting Technology, Chinese Academy of Sci-
ences (CAS). Currently, he is an Associate
Professor with School of Computer Science,
Peking University. His research interests include
network big data, sketches, network measure-
ments, Bloom Filters, IP lookups, KV stores, and
hash tables. He published papers in SIGCOMM,
NSDI, SIGKDD, SIGMOD, VLDB, ICDE, INFO-

COM, USENIX ATC, TKDE, TC, TPDS, ToN, VLDB Journal, JSAC,
etc. He is currently an Associate Editor for Knowledge and Information
Systems.

Alex X. Liu (Fellow, IEEE) received his Ph.D.
degree in Computer Science from The University
of Texas at Austin in 2006, and is currently the
President of the Software Engineering Institute
and the Chief Security Officer of the Midea
Group. Before that, he was the Chief Scientist
of the Ant Group, and further before that, he
was a Professor of the Department of Computer
Science and Engineering at Michigan State Uni-
versity. He received the IEEE & IFIP William
C. Carter Award in 2004, a National Science

Foundation CAREER award in 2009, the Michigan State University
Withrow Distinguished Scholar (Junior) Award in 2011, and the Michigan
State University Withrow Distinguished Scholar (Senior) Award in 2019.
He has served as an Editor for IEEE/ACM Transactions on Networking
and an Area Editor for Computer Communications. He is currently an
Associate Editor for IEEE Transactions on Dependable and Secure
Computing and IEEE Transactions on Mobile Computing. He has served
as the TPC Co-Chair for ICNP 2014 and IFIP Networking 2019. He re-
ceived Best Paper Awards from SECON-2018, ICNP-2012, SRDS-2012,
and LISA-2010. His research interests focus on cybersecurity, cloud
computing, dependable computing, and privacy-preserving computing.
He is a Member of Academia Europaea, a Member of the European
Academy of Sciences and Art, an IEEE Fellow, an IET Fellow, an AAIA
Fellow, and an ACM Distinguished Scientist.

Bin Cui (Senior Member, IEEE) is a professor
and Vice Dean in School of CS at Peking Univer-
sity. He obtained his Ph.D. from National Univer-
sity of Singapore in 2004. His research interests
include database system architectures, query
and index techniques, big data management and
mining. He is serving as Vice Chair of Techi-
cal Commettee on Database China Computer
Federation (CCF) and Trustee Board Member
of VLDB Endowment, is also in the Editorial
Board of Distributed and Parallel Databases,

Journal of Computer Science and Technology, and SCIENCE CHINA
Information Sciences, and was an assocaite editor of IEEE Transactions
on Knowledge and Data Engineering (TKDE) and VLDB Journal. He
was awarded Microsoft Young Professorship award (MSRA 2008), CCF
Young Scientist award (2009), Second Prize of Natural Science Award
of MOE China (2014), and appointed as Cheung Kong distinguished
Professor by MOE in 2016.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200045

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on August 24,2022 at 08:54:52 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Motivation
	Main Contributions

	Prior Art on BF False Positives
	Bloom's False Positive Formula
	Bose's Derivation
	Christensen's Derivation
	Grandi's Derivation

	Computing the Optimal k
	Information Entropy Basis
	An Important Global Assumption
	Relation Between False Positive Probability and Information Entropy
	Computing the Optimal k

	Asymptotic Form of the FP Probability
	Correct Rate of Counting Bloom Filters
	Experimental Results
	Experimental Setup
	Optimal k Formula Validation
	Optimal k vs. n
	Optimal k vs. m

	Upper Bound Comparison
	Upper Bound vs. n
	Upper Bound vs. m
	Upper Bound vs. k

	Cr Formula Validation

	Conclusion
	References
	Biographies
	Zhuochen Fan
	Gang Wen
	Zhipeng Huang
	Yang Zhou
	Qiaobin Fu
	Tong Yang
	Alex X. Liu
	Bin Cui

