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ABSTRACT
1
Approximate stream processing algorithms, such as Count-

Min sketch, Space-Saving, etc., support numerous applications in

databases, storage systems, networking, and other domains. How-

ever, the unbalanced distribution in real data streams poses great

challenges to existing algorithms. To enhance these algorithms, we

propose a meta-framework, called Cold Filter (CF), that enables
faster and more accurate stream processing.

Different from existing filters that mainly focus on hot items,

our filter captures cold items in the first stage, and hot items in the

second stage. Also, existing filters require two-direction commu-

nication – with frequent exchanges between the two stages; our

filter on the other hand is one-direction – each item enters one

stage at most once. Our filter can accurately estimate both cold and

hot items, giving it a genericity that makes it applicable to many

stream processing tasks. To illustrate the benefits of our filter, we

deploy it on three typical stream processing tasks and experimental

results show speed improvements of up to 4.7 times, and accuracy

improvements of up to 51 times. All source code is made publicly

available at Github [1].
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1 INTRODUCTION
In many big data scenarios, the data comes as a high-speed stream

[2–5], such as phone calls, videos, sensor data, network traffic,
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web clicks and crawls. Such data streams are often processed in a

single-pass [5–8]. In many applications, some statistical informa-

tion in each time window of the data stream is needed, such as item

frequencies [9], top-k hot items [10, 11], heavy changes [12], and

quantiles [13]. However, it is often impractical to compute exact

statistics (e.g., using hash tables), because the space and time cost

for storing the whole data stream is too high. Therefore, proba-

bilistic data structures [11, 14–25] have become more popular for

approximate processing.

The speed at which data streams arrive and their sizes, together,

make approximate stream processing challenging. First, the mem-

ory usage of the processing should be small enough to fit into the

limited-size and expensive SRAM (Static RAM, such as CPU cache),

so as to achieve high processing speed. Second, having to process

the data in a single pass highly constrains the speed at which pro-

cessing must take place. Finally, to guarantee the performance of

applications, the accuracy should be as high as possible.

Characteristics of Real Data Streams: According to our tests

on real datasets and the literature [5, 15], in practice, the items

present in real data streams often obey unbalanced distribution,

such as Zipf [26] or Power-law [27]. This means that most of the

items are unpopular (called cold items), while a few items are very

popular (called hot items). We refer to such data streams as skewed
data streams. Such characteristics pose great challenges on stream

processing tasks. Stream processing tasks can be divided into two

kinds: the first needs to accurately record both hot and cold items,

such as estimating item frequencies, and item frequency distribu-

tion. The second needs to accurately record only hot items, such

as top-k and heavy changes. Next, we show examples of three key

stream processing tasks.

Estimating Item Frequency: Estimating the frequency of each

item is one of the most classic tasks in data streams [9, 15]. Two

typical solutions are the Count-Min sketch [9] and the CM-CU

sketch [28]. They both use a number of counters of fixed size to store

the frequencies of items. If each counter is small, the frequencies

of hot items that are beyond the maximum value of the counters

cannot be recorded. This will be hardly acceptable, as hot items

are often regarded as more important in practice. If each counter is

large enough to accommodate the largest frequency, the high bits

of most counters will be wasted, as hot items are much fewer than

cold items in real data streams.

Finding Top-k Hot Items: Top-k issue is important in various

fields, including in data streams [9–11, 15]. As we cannot store all

incoming items and can only process each item once, the state-

of-the-art solution, Space-Saving [10], approximately keeps top-k
items in a data structure called Stream-Summary. Given an incoming
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Figure 1: The Cold Filter captures unpopular (cold) items
in the first stage, and forwards popular (hot) items to the
second stage.

item that is not in the Stream-Summary, Space-Saving assumes it is

a little larger than the minimum one in the Stream-Summary, and

exchanges them, so as to achieve fast processing speed. Most items

are cold, and every cold item will enter the Stream-Summary, and

could stay or be expelled. Frequent exchanges, which are incurred

by cold items and should be avoided, degrade the accuracy of the

results of top-k .

Detecting Heavy Changes: The frequencies of some items could

significantly change in a short time. Detecting such items is impor-

tant for search engines [29] and security [12, 30]. The state-of-the-

art solution is FlowRadar [30] that relies on an Invertible Bloom

Lookup Table (IBLT) [31]. It uses an IBLT to approximately moni-

tor all incoming items and their frequencies in two adjacent time

windows, then compares their frequencies and draws conclusions.

FlowRadar achieves high accuracy if there is enough memory to

record every item, which might be impractical in many scenar-

ios. Actually, in each time window, there are a large number of

cold items, which are unnecessary to be recorded, and cost more

memory than hot items.

In a nutshell, the characteristics of skewed data streams make

the state-of-the-art algorithms hardly work well or require large

amounts of resources. To address this challenge, there are several

proposed algorithms to do filtering on data streams, such as the

Augmented sketch [5], skimmed-sketch [32], etc. They use a CPU-

cache like mechanism: all items are first processed in the first stage,

and then cold items are swapped out to the second stage. The

advantage is that hot items could have fewer memory accesses. In

deed, it is difficult to catch hot items accurately, because all hot

items are initially cold and stored in the second stage, and then

become hot. Therefore, existing algorithms need to be implemented

using two-direction communication, with frequent exchanges and

communication between the two stages. Existing filters using two-

direction communication have the following shortcomings: 1) they

use a heap or a table in the first stage, and thus often need many

memory accesses to process each item; 2) the first stage can capture

only a few hot items (e.g., 32 hot items in the Augmented sketch),

because more hot items need more memory accesses; 3) they make

it hard to perform pipeline parallel. Our design goal is to devise
a filter that relies on one-direction communication, and targets at
accurately estimating both hot items and cold items with a higher
processing speed.

Our Cold Filter (CF), as shown in Figure 1, uses a two-layer

sketch with small counters to accurately record the frequencies

of cold items
2
. If all the hashed counters overflow, CF will report

the incoming item as a hot item (one-direction communication),

and send it to the existing stream processing algorithms (e.g., the
CM-CU sketch, Space-Saving, and FlowRadar). We can combine

CF with different existing algorithms in different ways and gain

large benefits, and thus we call it a meta-framework. CF works with

existing algorithms with limited modifications, but significantly

improves accuracy. The first stage only uses small counters to store

the frequencies of cold items, and thus is memory efficient. By filter-

ing out a large number of cold items, the second stage concentrates

on hot items, and thus can achieve high accuracy. To enhance the

processing speed, we leverage a series of techniques, 1) aggregate-
and-report (including SIMD parallelism), 2) one-memory-access, and
3) multi-core parallelism, to enable the three key tasks to achieve a

higher processing speed. As our Cold Filter can accurately record

the information of both cold items and hot items, it is applicable to

most stream processing tasks.

2 RELATEDWORK
Sketches have been widely applied to estimating item frequency

in data streams. The most widely used sketch is the Count-Min

sketch [9]. It relies on d arrays, A1...Ad , and each array consists of

w counters. There are d hash functions, h1...hd , in the Count-Min

sketch. When inserting an item e with frequency f , the Count-Min

sketch increments all the d hashed counters, A1[h1(e)]...Ad [hd (e)],
by f . When querying an item e ′, it reports as the estimated fre-

quency of this item the minimum of the d hashed counters, i.e.,
min

1⩽i⩽d {Ai [hi (e
′)]}. Another algorithm, the CM-CU sketch [28],

achieves higher accuracy. The only difference is that CM-CU only

increments the smallest one(s) among the d hashed counters. Both

CM and CM-CU have no under-estimation error. More sketches

please refer to [15, 60–62].

The most relevant work about our Cold Filter is the Augmented

sketch [5]. It adds an additional filter (a queue with k items and

counters) to an existing sketch Φ, to maintain the most frequent

items within this filter. When inserting an item e , it scans the items

stored in the filter one by one. If e has already been in the filter, it

just increments its corresponding counter. Otherwise, it stores e
with an initial count of one if there is available space in the filter. If

there is no available space, i.e., the filter is full, it inserts this item
into the sketchΦ. During insertions, if the frequency of this item

reported byΦ is larger than the minimum value (associated with

the item e ′) in the filter, the Augmented sketch needs to expel the

item e ′ toΦ, and insert e into the filter.

3 THE COLD FILTER META-FRAMEWORK
We employ the standard streaming model, namely the cash register
model [33, 34]. Given a whole data stream S with E items and N
distinct items, where N ⩽ E. S = (e1, e2, ..., eE ), where each item

ei ∈ U = {eβ1 , eβ2 , ..., eβN }. Note that items inU are distinct, while

items inS may not. Let t be the current time point, et be the current
incoming item, and St = (e1, e2, ..., et ) be the current sub-stream.

et occurs fet [1, t] times in the current sub-stream St , and fet [1,E]

2
In deed, an optional part can exist in the first stage in Figure 1 in casemore information

is required about the cold items, i.e., not only their frequencies, although the three key

tasks in this paper do not need this part.
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times in the whole stream S. For convenience, we use fet [t] and
fet [E] for short.

Problem statement: Given a data stream S = (e1, e2, ..., eE ) and
a current time point t , the current sub-stream is St = (e1, e2, ..., et ).
For the current item et , how to accurately and quickly estimate

whether its current frequency fet [t] exceeds the predefined thresh-

old T ?

3.1 A Naive Solution
One naive solution is to use a sketchΦ (e.g., the Count-Min sketch,

the CM-CU sketch, etc.) as a CF. Specifically, we useΦ to record the

frequency of each item starting from the time point 1. For each in-

coming item, we first queryΦ, and get its estimated frequency. Then

we check whether this estimated frequency exceeds the threshold

T . However, this solution suffers from the drawback of memory
inefficiency in real data streams. Suppose T = 1000. For Φ, we
set its counter size to 16, which can count the frequency of up to

65535. But in real data streams, most items have low frequencies,

and cannot “fill up” the counters that they are hashed to. As a re-

sult, many high-order bits in most counters ofΦ are wasted, which

means memory inefficiency and suboptimal filtering performance.

If instead we could automatically allocate small counters for cold

items and large counters for hot items, then the allocated memory

can be fully utilized. This is what our proposed solution achieves.

3.2 The Proposed Solution

……

e

…

e

𝐿"

𝐿#

h(.)

g(.)

𝑤"

𝑤#

15 15 13

15 15 15

(15)

Figure 2: Data structure of two-layer CF.

As shown in Figure 2, our Cold Filter (CF
3
) consists of two layers:

a low layer L1, and a high layer L2. These two layers consist ofw1

andw2 counters, and associate with d1 and d2 hash functions (h(.)
and д(.)), respectively. The sizes of each counter at layer L1 and
layer L2 are δ1 and δ2 bits, respectively. We split the threshold T

into two parts: T = T1+T2 (1 ⩽ T1 ⩽ 2
δ1−1, 1 ⩽ T2 ⩽ 2

δ2−1). The

procedure for CF to process incoming item et is shown in Algorithm
1. Specifically, there are two processes: update and report.

Update process of CF: As shown in Algorithm 1, we use V1 and
V2 to denote the minimum value of the d1 hashed counters at the

low layer, and that of the d2 hashed counters at the high layer, re-

spectively. IfV1 < T1, CF increments the smallest hashed counter(s)

at the low layer by one (see line 4). Note that if there are multiple

counters with the same smallest value, all of them should be in-

cremented. During the update process, the values of the d1 hashed
counters could differ. However, the operation of only incrementing

the smallest counters is always narrowing the differences of values

of the d1 hashed counters. If the values of one or more of these d1
hashed counters reach T1, then all the subsequent increments will

be added to the other counters. Therefore, the ultimate state is that

all the d1 hashed counters will reach T1 concurrently. We call this

state the concurrent overflow state. When reaching this state (i.e.,
3
In the rest of this paper, “CF” refers in particular to our two-layer Cold Filter.

Algorithm 1: Stream processing algorithm for CF.

Input: The incoming item et .
Output: Update CF, and report whether fet [t ] > T .

1 V1 ← min
1⩽i⩽d1 (L1[hi (et )]);

2 if V1 < T1 then
3 foreach L1[hi (et )] (1 ⩽ i ⩽ d1) do
4 L1[hi (et )] ← max(V1 + 1, L1[hi (et )]);

5 return fet [t ] ⩽ T;

6 else
7 /∗ concurrently overflow at layer L1 ∗/
8 V2 ← min

1⩽i⩽d2 (L2[дi (et )]);
9 if V2 < T2 then

10 foreach L2[дi (et )] (1 ⩽ i ⩽ d2) do
11 L2[дi (et )] ← max(V2 + 1, L2[дi (et )]);

12 return fet [t ] ⩽ T;

13 else
14 /∗ concurrently overflow at layer L2 ∗/
15 return fet [t ] > T;

V1 = T1), CF resorts to the high layer to record the information of

this item. For the d1 hashed counters in concurrent overflow state

at the low layer, we propose a new strategy: keep them unchanged.

This strategy makes it unnecessary to use additional flags to indi-

cate the concurrent overflow state that is critical for subsequent

query operations on CF. The update process at the high layer is

analogous to the one at the low layer: If V2 < T2, CF increments

the smallest hashed counter(s) by one (see line 11).

For the current item et , if its hashed counters concurrently over-

flow at the low layer, we must have fet [t − 1] ⩽ V1
4
; if its hashed

counters concurrently overflow at the lower layer but not at the

higher layer, fet [t − 1] ⩽ V1 +V2. This is because each past item

et must increment the value of V1 + V2 by one, when V1 < T1 or
V1 = T1 ∧ V2 < T2 before updating. In fact, the potential gap be-

tween V1 or V1 +V2 and fet [t − 1] comes from the hash collisions

between this item and other items at layer L1 or L2.

Report process of CF: Simply put, if the hashed counters concur-

rently overflow at both layers before updating, CF reports fet [t] >
T ; otherwise, CF reports fet [t] ⩽ T . Note that fet [t] = fet [t−1]+1.
We formally present the report process as follows:

(1) If V1 < T1 (line 2 in Algorithm 1), we have: fet [t − 1] ⩽ V1 <
T1 < T . Thus, we report fet [t] ⩽ T .

(2) If V1 = T1 but V2 < T2 (line 8), we have: fet [t − 1] ⩽ V1 +V2 <
T1 + T2 = T . Thus, we also report fet [t] ⩽ T .

(3) If V1 = T1 and V2 = T2 (line 13), two cases are possible:

(a) fet [t − 1] ⩾ T , and thus fet [t] definitely exceeds T . We

should report fet [t] > T .
(b) fet [t − 1] < T , but the hash collisions lead to V1 = T1 and

V2 = T2. We should report fet [t] ⩽ T .
Unfortunately, it is not easy to differentiate these two cases. For

the benefit of space and time efficiency, we choose to report

fet [t] > T only.

4fet [t − 1] is the frequency of item et before updating, and fet [t ] = fet [t − 1] + 1.
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Example: As shown in Figure 2, we set d1 = d2 = 3,δ1 = δ2 =
4,T1 = T2 = 15. For incoming item et : 1) If its three hashed counters
at layer L1 are 15, 15, 13. We get V1 = min{15, 15, 13} = 13. Then,

we increment the third hashed counter at layer L1 by one, and

report fet [t] ⩽ T . 2) If its three hashed counters at layer L1 are
15, 15, 15 (in blue color). We get V1 = min{15, 15, 15} = 15 = T1.

Then, we need to access layer L2. Assume its three hashed counters

at layer L2 are 15, 15, 15. We get V2 = min{15, 15, 15} = 15 = T2.

Then, we need to report fet [t] > T .
This solution leads to no false negative and only a small portion

of false positives. If fet [t] does exceed the threshold T , CF will

definitely identify this excess (no false negative). For a small portion

of items whose frequencies fet [t] do not exceed the threshold T ,

CF may draw wrong conclusions (false positives).

Here we use a numerical example to further illustrate the advan-

tages of our proposed two-layer CF over the naive solution. Suppose

T = 1000. For Φ in naive solution, we set its counter size to 16

bits. Recall that w denotes the number of counters in Φ. For our
proposed two-layer CF, we set δ1 = 4,δ2 = 16,T1 = 15,T2 = 985.

We allocate 50% memory to layer L1, and 50% memory to layer L2.
Obviously, thew1 of two-layer CF is twice thew ofΦ. Therefore, at
layer L1, the two-layer CF can achieve lower hash collisions, and

thus fewer cold items will be misreported. Since the average proba-

bility that one item accesses layer L2 is very low (often less than

1/20 in real data streams when δ1 = 4), layer L2 still has low-level
hash collision. Further experiments about the selection of layer

number are provided in §6.4.3.

3.3 Optimization 1: Aggregate-and-report
In real data streams, some items often appear many times across

multiple continuous time points [35, 36]. This is called stream burst,
which provides an opportunity to accelerate CF. We propose a

strategy called aggregate-and-report. The key idea of this strategy

is to add an another small filter to aggregate the bursting items before
CF, and then report the aggregated items and their frequencies (often
much larger than one) to CF under certain conditions. This small filter

can be implemented in different ways. A typical one is what the

Augmented sketch does: scanning the whole queue and expelling

the item with the minimum frequency. However, this method will

suffer from low speed if the queue is large. What is worse, it needs

two-direction processing – frequent exchanges between the filter

and the sketch behind it, which is costly. In contrast, we implement

a one-direction filter by using a modified lossy hash table [37]: each

item is hashed into a bucket, and each bucket consists of several

items and their corresponding frequencies. We use SIMD (Single

Instruction Multiple Data) [38] to scan a specific bucket.

ABucket

… …

AKey-value Cell

e

Bucket Scan
via SIMD

Figure 3: SIMD-based bucket scan.

Figure 3 shows the data structure of our implementation of

aggregate-and-report. There are db buckets, each bucket consists of

wc cells, and each cell is used to store a Key-Value pair. The key part

records the item ID, while the value part records the aggregated

frequency that has been accumulated during a time window when

the corresponding item resides in this bucket. For each incoming

item, we use a hash function to locate a bucket. Within this hashed

bucket, we perform the bucket scan operation:

(1) if the key part of one cell matches with the ID of the incoming

item, we increment the corresponding value part;

(2) otherwise, if there are available cells, we insert the current item

with frequency of 1 into the new cell;

(3) otherwise, we expel one cell of this bucket in a global round-

robin fashion (across the db buckets): replace the key part of

this cell with the ID of the incoming item, and set the value

part of this cell to one. The expelled item with its aggregated

frequency from the bucket will be inserted into CF.

Also, at the end of each time window, we need to flush all items

in all buckets into CF. Let faдд be the value of reported aggregated

frequency of an arbitrary item. Since faдд is often larger than one,

we need to make some modifications to Algorithm 1. Recall that

V1 and V2 denote the minimum value of the hashed counters at the

two layers, respectively. Algorithm 3 in the appendix shows the

procedure for CF to process the reported item with its aggregated

frequency from the aggregate-and-report phase. The principle of

the modified algorithm is unchanged. The difference lies in how CF

with aggregate-and-report strategy reaches the concurrent overflow

state. We need to check whether faдд > T1−V1 or faдд−(T1−V1) >
T2 − V2 to determine whether the hashed counters concurrently

overflow at layer L1 or L2. Note that the item frequency reported

to the specific stream processing algorithm (the CM-CU sketch,

Space-Saving, FlowRadar, etc.) by CF with aggregate-and-report

strategy is faдд − (T1 −V1) − (T2 −V2), instead of the default of 1

in Algorithm 1.

The bucket scan operation can be efficiently implemented with

the SIMD instructions. The detailed procedure is shown in Algo-

rithm 4 in the appendix. The TZCNT [39] in Algorithm 4 is an

instruction added to the x86 instruction set with the Haswell micro-

architecture. It returns the number of trailing 0-bits in the argument.

3.4 Optimization 2: One-memory-access
Each incoming item needs to access layer L1, and a few items

need to access layer L2. Accessing layer L1 requires d1 memory

accesses and hash computations, and is highly likely to become the

bottleneck of the system. To handle this bottleneck, we propose

the one-memory-access strategy tailored for only layer L1. Before
discussing this strategy, we need to introduce one critical fact. In

our implementation, we set the size of each counter at the lower

layer δ1 to 4 (with T1 of 15), and adjust δ2 at the higher layer

to accommodate the threshold T required by the specific stream

processing algorithm (the CM-CU sketch, Space-Saving, FlowRadar,

etc.). Therefore, for the lower layer, a machine word of 64 bits

contains 16 counters. 16 is often three or more times d1. Based
on this, our one-memory-access strategy contains the following

two parts: 1) we confine the d1 hashed counters within a machine

word of W bits to reduce the memory accesses; 2) We use only one

hash function to locate the d1 hashed counters and thus reduce the

hash computations. Specifically, we split the value produced by a

hash function into multiple segments, and each segment is used

to locate a machine word or a counter. For example, for layer L1
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with w1 = 2
20
, δ1 = 4 and d1 = 3 (memory usage is 1 MB), we

split a 32-bit hash value into four segments: one 16-bit segment,

and three 4-bit segments (discarding the remaining 4 bits). We use

the 16-bit value to locate one machine word at layer L1, and three

4-bit values to locate three counters within this machine word

(containing 16 = 2
4
counters). In practice, a 64-bit hash value is

always enough.

4 COLD FILTER DEPLOYMENT
4.1 Estimating Item Frequency
Key idea: For frequency estimation, we use a CF to record the

frequencies of cold items, and a sketchΦ (e.g., the Count-Min sketch,

the CM-CU sketch, etc.) to record the frequencies of hot items.

Insertion:When inserting an item, we first update CF as described

earlier. If the hashed counters concurrently overflow at both layers

before this insertion, we employ sketchΦ to record the remaining

frequency of this item.

Query: Recall that V1 and V2 denote the minimum value of the

hashed counters at the two layers, respectively. LetVϕ be the query

result of sketch Φ. When querying an item, we have three cases:

1) if the hashed counters do not concurrently overflow at layer

L1 (V1 < T1), we report V1; 2) if the hashed counters concurrently

overflow at layer L1 (V1 = T1), but not at layer L2 (V2 < T2), we
report V1 +V2; 3) otherwise, we report V1 +V2 +Vϕ .

Discussion: Next, we discuss why the sketch with CF can achieve

higher accuracy than the standard sketch. Conventional sketches

used for estimating item frequency do not differentiate cold items

from hot items. They use counters of a fixed size determined by the

largest frequency to do the counting. As hot items are much fewer

than cold ones in real data streams, the high bits of most counters

will be wasted (memory inefficiency). If we use CF to approximately

differentiate cold from hot items, then we can exploit the skew in

popularity in the counters. For hot items, we use another sketch

with big counters to record its frequency. For cold items, CF with

small counters provides more accurate estimation, as it leverages a

similar updating strategy as the CM-CU sketch while containing

many more counters. By employing the counters with different

sizes to do the counting, we can guarantee the memory efficiency,

and thus improve the accuracy.

4.2 Finding Top-k Hot Items
Prior art: There are two kinds of approaches to find top-k hot

items: sketch-based and counter-based [40]. Sketch-based methods

use a sketch (e.g., the Count-Min sketch [9], the CM-CU sketch

[28], and more [11]) to count the frequency of each item in data

streams, and a min-heap of size k to maintain the top-k hot items.

The prominent counter-basedmethods include Lossy Counting [41],

Frequent algorithm [42, 43] and Space-Saving [10]. In this paper,

we focus on Space-Saving, as it gains the most wide acceptances.

Space-Saving maintains a data structure called Stream-Summary
that consists of H (H ⩾ k) item-counter pairs. For each incoming

item e , if e has already been monitored by the Stream-Summary, it

just increments its corresponding counter. Otherwise, it inserts e
into the Stream-Summary if there is available space. If there is no

available space, it creates new space by expelling the item with the

minimum count (Cmin ) from the Stream-Summary, and stores e
with count of Cmin + 1 in this space. During queries, Space-Saving

returns the top-k hot items from the Stream-Summary according

to their recorded frequencies (i.e., the values in their counters).

Key idea: To enhance the performance of Space-Saving, we use a

CF to prevent the large number of cold items from accessing the

Stream-Summary.

Insertion:When inserting an item, we first update CF as described

before. If the hashed counters concurrently overflow at both layers

before this insertion, we will feed this item to Space-Saving.

Report: Below, we show how to report top-k hot items. After pro-

cessing all the items in data streams, we get the IDs and recorded

frequencies of the top-k hot items from the Stream-Summary. Their

estimated frequencies will be the corresponding recorded frequen-

cies plus T . For the above procedures, we need to guarantee that

the frequency of the kth hottest item is larger than the threshold T .

In practice, to get the kth largest frequency, we use the kth largest

frequencies from previous measurement periods to predict the kth

largest frequency of the current measurement period using EWMA
[44], with some history weight. Obviously, the larger T is, the more

accurate the results will be. Therefore, we set T = F × α (α → 1),

where F is the predicted frequency.

Discussion: Next, we discuss why Space-Saving with CF can

achieve higher accuracy than standard Space-Saving. Standard

Space-Saving processes each item identically: each incoming item

needs to be fed to the Stream-Summary. Unfortunately, the large

number of cold items will lead to many unnecessary exchanges

in the Stream-Summary, making the recorded frequencies highly

over-estimated, since each exchange leads to one increment op-

eration in the counter associated with the expelled item. High

over-estimation of frequencies further leads to many incorrect ex-

changes in the Stream-Summary. As a results, the accuracy of stan-

dard Space-Saving will degrade. If we use CF to filter out the large

number of cold items, fewer incorrect exchanges will occur in the

Stream-Summary, and the accuracy of both recorded frequencies

and Space-Saving can be improved.

4.3 Detecting Heavy Changes
Prior art: Heavy changes refer to the items that experience abrupt

changes of frequencies between two consecutive time windows.

We also call these items the culprit items. Formally, assume the

data stream during the first time window has the frequency vector

f1 =< f1e1 , f1e2 , ..., f1eL > where f1ei denotes the frequency of

item ei (picked from the universeU = {e1, e2, ..., eL}). Similarly, we

have f2 =< f2e1 , f2e2 , ..., f2eL > during the second time window.

For item ei , if | f1ei − f2ei | ⩾ ϕ · D, where ϕ is a predetermined

threshold and D =
∑L
j=1 | f1ej − f2ej |, it is called a heavy change.

Note that computing D, the L1 difference of f1 and f2, is a well-
studied problem [45]. The k-ary sketch [46] can efficiently capture

the difference between f1 and f2, but requires a second pass to

obtain the IDs of culprit items. The reversible sketch [47], based on

the k-ary sketch, can infer the IDs of culprit items in time complexity

of O(L0.75), which depends on the ID space of items and could be

large in practice. Therefore, we will not focus on it in this paper.

Recent work – FlowRadar [30], encodes fast each distinct item and

its frequency in an extended IBLT (Invertible Bloom Lookup Table)

[31] with the aid of a Bloom filter [48], and decodes them in time

complexity of O(n) where n is the number of distinct items. When
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the number of hash functions used in the extended IBLT is set to 3,

FlowRadar can decode all the items with a very high probability,

ifmc > 1.24n wheremc is the number of cells in IBLT. Obviously,

FlowRadar can be used for detecting heavy changes, by comparing

the two decoded item sets.

Key idea: To enhance the performance of FlowRadar, we use a CF

to prevent the large number of cold items from accessing FlowRadar.

Insertion: During the first time window, when inserting an item,

we first update CF as described before. If the hashed counters con-

currently overflow at both layers before this insertion, this item

needs to be inserted into FlowRadar. At the end of this time win-

dow, we employ new instances of CF and FlowRadar. The insertion

process during the second time window is the same as that during

the first time window.

Report: Below, we show how to report heavy changes. At the end

of the second time window, we decode the two IBLTs associated

with each time window in FlowRadar. Let S1 and fI1 be the item set

and frequency vector decoded from the first IBLT, respectively. For

each item e ∈ S1, f
I
1e is its recorded frequency in IBLT. Similarly,

we get S2 and fI2 from the second IBLT. Recall thatV1 andV2 denote
the minimum value of the hashed counters at the two layers in

CF, respectively. For an arbitrary item e ∈ S1 ∪ S2, we define the
function Q1(.) for the first CF as follows: 1) if the hashed counters

do not concurrently overflow at layer L1 (V1 < T1), Q1(e) = V1;
2) otherwise, Q1(e) = V1 + V2. Similarly, we define Q2(.) for the

second CF. The procedure for detecting heavy changes is shown

in Algorithm 2. Note that we need to guarantee T ⩽ ϕ × D. Given
this constraint, 1) items that do not access FlowRadar in either time

window have their frequencies in both time windows definitely

lower than or equal to T , and thus their frequency changes will not

exceed T ⩽ ϕ × D; 2) the IDs and frequencies of the other items in

the two time windows can be answered by IBLTs and CFs.

Algorithm 2: Detecting heavy changes.

Input: S1, fI1, Q1(.) and S2, fI2, Q2(.).

Output: The culprit item set C .

1 C ← ∅;
2 foreach e ∈ S1 ∪ S2 do
3 /∗ f1e : e’s frequency in the first time window ∗/
4 if e ∈ S1 then f1e ← f I

1e + T ;

5 else f1e ← Q1(e) ;
6 /∗ f2e : e’s frequency in the second time window ∗/
7 if e ∈ S2 then f2e ← f I

2e + T ;

8 else f2e ← Q2(e) ;
9 if |f1e − f2e | ⩾ ϕ · D then C ← C ∪ {e } ;

10 return C ;

Discussion: Next, we discuss why FlowRadar with CF requires

less memory than the standard FlowRadar. According to the litera-

ture [30], the memory usage of the IBLT in FlowRadar should be

proportional to the number of distinct items it records. Therefore,

the large number of distinct cold items will incur large memory

consumption for the standard FlowRadar. If we use CF to filter out

the cold items, the number of distinct items that FlowRadar needs

to record will be largely reduced, and much memory can be saved.

5 FORMAL ANALYSIS OF CF
Given a time window [1,E], the data stream S = (e1, e2, ..., eE )
contains E items with N unique items eβ1 , eβ2 , ..., eβN . Within this

time window, we construct a CF with threshold T(= T1 + T2)

for the data stream. Before we get into the formal analysis of the

performance of CF, we first need to depict the frequency distribution

of this data stream.

Definition 5.1. For each time point j ∈ [E]5, let Ik [j] be the subset
of items whose current frequency is greater or equal to k . Formally,
Ik [j] = {eβi | feβi [j] ⩾ k, i ∈ [N ],k ∈ Z+}6. Let ∆k [j] be Ik [j] −
Ik+1[j]. We only assume that the values of |Ik [E]|, ∀k ∈ N+ are
known.

Consider the whole time window [1,E]. The hot items whose

frequencies fe [E] are larger than T will finally be identified as

hot items. The only error CF makes is in letting some cold items

whose frequencies fe [E] are smaller or equal to T “pass”. We say

that these items are misreported to the specific stream processing

algorithms. Let Imr be the subset consisting of these misreported

items. To depict the filtering performance of CF formally, we define

the misreport rate Pmr as follows:

Pmr = |Imr |/(|I1[E]| − |IT+1[E]|). (1)

For the Pmr of CF (without optimizations), we first focus on

analyzing the CM-CU sketch and then use the analysis to handle

the two-layer CF. Below, we use the theories of standard Bloom

filter to derive the Pmr of CM-CU.

The Standard Bloom Filter: A standard Bloom filter [48] can

tell whether an item appears in a set. It is made of a w-bit array

associated with d hash functions. When inserting an item, it uses

the d hash functions to locate d hashed bits, and sets all these bits

to one. When querying an item, if all the d hashed bits are one, it

reports true; otherwise, it reports false. The standard Bloom filter

only has false positive errors, no false negative errors. It may report

true for some items that are not in the set, but never reports false

for an item that is in the set. Givenw , d and n, the false positive rate
Pf p of a standard Bloom filter is known to be:

Pf p (w, d, n) =

[
1 −

(
1 −

1

w

)nd ]d
≈

(
1 − e−

nd
w

)d
(2)

We have the following lemma:

Lemma 5.1. Function P f p (w,d,x) =
1

x
∑x−1
i=0 Pf p (w,d, i), ∀x ∈

N+ is a monotonic increasing function of x .

The detailed proof is provided in Appendix B.1.

Multi-layer Bloom Filter: To bridge the Bloom filter with CM-

CU, we introduce a new data structure called multi-layer Bloom
filter, used to estimate item frequency. The multi-layer Bloom filter

is an array of standard Bloom filters with the samew , d and hash

functions. Each Bloom filter has its level equal to its index in the

array from 1 to λ. When inserting an item, we check whether the

level-1 Bloom filter reports true: 1) if it reports false, we just set thed
hashed bits in the level-1 Bloom filter to one, and the insertion ends;

2) if it reports true, we need to check whether the level-2 Bloom

5[E] = {1, 2, ..., E }.
6Z+ is the set of non-negative integers.
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filter reports true, and rely on the result to determine whether we

should end the insertion or continue to check the level-3 Bloom

filter. Such operations will continue until the Bloom filer at level λ′

reports false and we set the d hashed bits at this level to one. When

querying an item, we find (from the low level to the high level) the

last Bloom filter that reports true for this item. Then we report the

level of this Bloom filter as the estimated frequency of this item.

Equivalence Between Multi-layer Bloom Filter and CM-CU:
The multi-layer Bloom filter is equivalent to CM-CU if they have the
same hash functions andw = w1, d = d1, λ = 2

δ1 − 1. Therefore, if
we want to analyze the misreport rate of CM-CU, we can rely on

the one of the multi-layer Bloom filter.

For each time point j ∈ [E], let ( ˆfeβ
1

[j], ˆfeβ
2

[j], ..., ˆfeβN [j]) be

the current estimated frequencies (of all distinct items) reported by

the multi-layer Bloom filter.

Definition 5.2. For each time point j ∈ [E], let Jk [j] be the subset
of items such that each item’s current estimated frequency is larger
than or equal to k . Formally, Jk [j] = {eβi |

ˆfβi [j] ⩾ k, i ∈ [N ],k ∈

Z+}.

Lemma 5.2. The item subsets Ik [j] and Jk [j], defined in Defini-
tion 5.1 and 5.2, have the following relation:

|Ik [j] | ⩽ | Jk [j] | ⩽ |Ik [j] | +
k−1∑
i=1

[
( |Ii [j] | − |Ii+1[j] |) ×

i∏
u=1

P f p (w, d, | Jlu [j] |)

]
(3)

where l1, ..., lu , ..., lk−1 is the permutation of 1, 2, ...,k −1 that makes
sequence P f p (w,d, |Jlu [j]|) in descending order.

The detailed proof is provided in Appendix B.2. Since

P f p (w,d,x) is a monotonic increasing function of x , |Jk [j]| can

be bounded recursively by this lemma. Let |Jk [j]|
L
and |Jk [j]|

U
be

the lower bound and upper bound of |Jk [j]|, respectively.

Bound of Pmr of Multi-layer Bloom Filter (λ = T): Generally,
its Pmr is associated with the distribution of the appearance order of

each item in the whole data streams. We can use Gaussian, Poisson

or other distributions to model it. Without loss of generality, we

employ the random order model [49, 50] defined as follows:

Definition 5.3 (Random order model). Let P be an arbitrary
frequency distribution over distinct item setU = {eβ1 , eβ1 , ..., eβN }.
At each time point, the incoming item in the stream is picked inde-
pendently and uniformly at random from U according to P.

Theorem 5.3. Under the random order model, the misreport rate
of the multi-layer Bloom filter is bounded by:

Pmr ⩾

λ∑
k=1

{[
1 −

k∏
u=1

(
1 −

λ∏
i=u

Pf p (w, d, | Jli [tu ] |
L )

)]
× |∆k [E] |

}
|I1[E] | − |Iλ+1[E] |

Pmr ⩽

λ∑
k=1

{[
1 −

k∏
u=1

(
1 −

λ−u+1∏
i=1

Pf p (w, d, | Jli [tu ] |
U )

)]
× |∆k [E] |

}
|I1[E] | − |Iλ+1[E] |

(4)

where l1, ..., li , ..., lλ is the permutation of 1, 2, ..., λ that makes se-
quence Pf p (w,d, |Jli [tu ]|) in descending order, and |Jli [tu ]|

L and
|Jli [tu ]|

U can be calculated by Eq. 3 and

|Ili [tu ] | =
(2u − 1)

2k
× |Ili [E] | (1 ⩽ i ⩽ λ, 1 ⩽ u ⩽ k ⩽ λ) (5)

We provide the detailed proof in the Appendix B.3.

The Bound of Pmr of CF: For (two-layer) CF, since it has two

distinct layers with different parameter settings, we define a unified

function for its false positive rates at different layers.

Definition 5.4. For each time point j ∈ [E],

PUpf ( | Jx [j] |) =

{
Pf p (w1, d1, | Jx [j] |) (1 ⩽ x ⩽ T1)

Pf p (w2, d2, | Jx [j] |) (T1 + 1 ⩽ x ⩽ T)

P
U
pf ( | Jx [j] |) =



1

| Jx [j] |

| Jx [j ]|−1∑
i=0

Pf p (w1, d1, i) (1 ⩽ x ⩽ T1)

1

| Jx [j] |

| Jx [j ]|−1∑
i=0

Pf p (w2, d2, i) (T1 + 1 ⩽ x ⩽ T)

(6)

where |Jk [j]| is bounded in the following lemma:

Lemma 5.4. The item subsets Ik [j] and Jk [j], defined in Defini-
tion 5.1 and 5.2, have the following relation:

|Ik [j] | ⩽ | Jk [j] | ⩽ |Ik [j] | +
k−1∑
i=1

[
( |Ii [j] | − |Ii+1[j] |) ×

i∏
u=1

P
U
f p ( | Jlu [j] |)

]
(7)

where l1, ..., lu , ..., lk−1 is the permutation of 1, 2, ...,k −1 that makes
sequence P

U
f p (|Jlu [j]|) in descending order.

The detailed derivation process for this lemma is similar to

Lemma 5.2, hence we omit it. Similarly, we can get |Jk [j]|
L
and

|Jk [j]|
U

from this lemma.

6 PERFORMANCE EVALUATION
6.1 Experimental Setup
Datasets:

1) IP Trace Datasets:We use the anonymized IP trace streams

collected in 2016 from CAIDA [51]. Each flow is identified by its

source IP address (4 bytes). We use the first 256M packets (items)

from this trace, and uniformly divide them into 8 sub-datasets, each

of which has around 0.4M distinct items.

2) Web Page Datasets:We downloaded the raw dataset from

the website [52]. This dataset is built from a crawled collection of

web pages. Each item (4 bytes) records the number of distinct terms

of one web page. We use the first 256M items from the raw dataset,

and uniformly divide them into 8 sub-datasets, each of which has

around 0.9M distinct items.

These two types of datasets have the same number of items, but

have different numbers of distinct items, because they have different

item frequency distributions. After each of them is divided into 8

sub-datasets, the two types of sub-datasets have different numbers

of distinct items, 0.4M vs. 0.9M. For all the experiments conducted

on the above two types of datasets, we will plot their 5
th

and 95
th

percentile error bars across the corresponding 8 sub-datasets.

3) Synthetic Datasets:We generated 11 datasets following the

Zipf [26] distribution with various skewness (from 0.0 to 3.0 with

a step of 0.3). Each dataset has 32M items and different numbers

of distinct items depending on the skewness. The length of each

item in each dataset is 4 bytes. The generator’s code comes from an

open source performance testing tool named Web Polygraph [53].

Implementation: We have implemented CM (Count-Min for

short), CM-CU, min-heap, SS (Space-Saving), FR (FlowRadar), AS-

ketch (Augmented sketch) and our CF (including two speed opti-

mizations) in C++. The hash functions are implemented from the
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Table 1: Parameter setting for CF.
T2 db wc M1 : M2

CM/CM-CU [9, 28] 241 1000 16 13 : 7

Space-Saving [10] – 96 16 7 : 13

FlowRadar [30] 241 200 16 13 : 7

32-bit Bob Hash (obtained from the open source website [54]) with

different initial seeds.

Parameter Setting: LetMcf be the memory of CF,Mar the mem-

ory of the aggregate-and-report component, and M1 (resp.M2) the

memory of layer L1 (resp. L2) in CF. We haveMcf = Mar +M1+M2.

For each task, we set d1 = d2 = 3,δ1 = 4,δ2 = 16,T1 = 15 in CF.

Table 1 lists the other (part of) parameter setting for each task. The

remaining setting is as follows:

1) Estimating Item Frequency:We compare four approaches:

CM, CM-CU, CM-CU with ASketch, and CM-CU with CF. For each

of the four CM/CM-CU sketches, we allocate 2MB of memory (Mt ),

use 3 hash functions
7
, and set the counter size to 32 bits. For CM-CU

with ASketch, we set its filter size to 32 items as the original paper

[5] recommends.

2) Finding Top-k Hot Items: We compare four approaches:

CM with heap, CM-CU with heap, SS, and SS with CF. We do not

compare the above approaches with ASketch, because it can only

capture a small number of hottest items (around 32 items) while

we will vary k starting from 32 to 1024. Recall that H denotes

the number of item-counter pairs in SS. For SS with CF, we set

H = 2.5k,Mcf = 200KB. We use the actual frequency of the kth

hottest item from one extra dataset (e.g., the 9th IP trace or web

page dataset) as the prediction of that of the experimental datasets.

Let F be the predicted frequency. We set T = F × 0.90. SS uses a

linked list and a hash table to implement the Stream-Summary data

structure, and achievesO(1) time complexity on average. Each item-

counter pair needs around 100 bytes memory on average (including

pointers and unoccupied space for handling hash collisions quickly).

Therefore, for SS, we set H = 2.5k +Mcf /(100bytes) = 2.5k + 2048
for a fair comparison. CM/CM-CU with heap maintains k item-

counter pairs in its heap, and uses a hash table for item lookup.

Each item-counter pair needs around 100 bytes memory on average.

Therefore, we allocate Mcf + 2.5k ∗ 100bytes − k ∗ 100bytes =
Mcf + 150k bytes memory to CM/CM-CU.

3) Detecting Heavy Changes: We compare two approaches:

FR, and FR with CF. For both, we set the numbers of hash functions

in the Bloom filter and IBLT to 3 (recommended by [31, 57]). We set

Mcf = 200KB. LetMbf andMib be the memory of the Bloom filter

and IBLF, respectively. We set Mbf : Mib = 1 : 9, as FR achieves

the best performance according to our tests in such setting.

Computation Platform: We conducted all the experiments on a

machine with two 6-core processors (12 threads, Intel Xeon CPU

E5-2620 @2 GHz) and 62 GB total DRAM memory. Each processor

has three levels of cache memory: one 32KB L1 data caches and

one 32KB L1 instruction cache for each core, one 256KB L2 cache

for each core, and one 15MB L3 cache shared by all cores.

7
The authors in literature [55, 56] recommend using small number of hash functions.

6.2 Metrics
Average Absolute Error (AAE) in Frequency Estimation and
Top-k: 1

|Ψ |
∑
ei ∈Ψ | fi − f̂i |, where fi is the real frequency of item

ei , f̂i is its estimated frequency, andΨ is the query set. Here, we

query the whole dataset by querying each distinct item once.

Precision Rate (PR) in Top-k and Heavy Changes: ratio of the
number of correctly reported instances to the number of reported

instances.

Recall Rate (CR) in Heavy Changes: ratio of the number of

correctly reported instances to the number of correct instances.

Memory Threshold (Tm ) in Heavy Changes: the least total

memory usage of FlowRadar (with CF) when the F1 score [58]

(= 2×PR×CR
PR+CR ) reaches 99%.

Speed: mega-operations (insertions or queries) per second (Mops).

All the experiments about speed are repeated 100 times to ensure

statistical significance.

6.3 Evaluation on Three Key Tasks
6.3.1 Estimating Item Frequency.

Accuracy (Figure 4(a)-(b)): Our results show that the AAE of CM-

CU with CF is about 9.8, 5.2 and 5.2 times, and 12.5, 7.3 and 7.3

times lower than CM, CM-CU and CM-CU with ASketch when the

percentage of CF memory,Mcf /Mt , is set to 90% on two real-world

datasets, respectively. ASketch improves the accuracy of CM-CU a

little on both datasets. We further study how the skewness of syn-

thetic dataset affects the accuracy, see Figure 4(c). Here,Mcf /Mt is

fixed to 90%. We find that CM-CU with CF achieves higher accuracy

than the other three approaches, irrespective of the skewness.

Insertion Speed (Figure 5(a)-(b)): Our results show that the in-

sertion speed of CM-CU with CF is about 2.5, 2.9 and 3.4 times,

and 1.6, 1.7 and 3.4 times faster than CM, CM-CU and CM-CU with

ASketch when Mcf /Mt is set to 90% on two real-world datasets,

respectively. ASketch lowers the insertion speed of CM-CU, due

to dynamically capturing hot items in its filter on both datasets.

We further study how the skewness of synthetic dataset affects the

insertion speed, see Figure 5(c). Here, again, Mcf /Mt is fixed to

90%. When skewness > 1.358, CM-CU with CF achieves a higher

insertion speed than the other three approaches. The reason why

CM-CU with CF on synthetic datasets cannot achieve such high

speedup as on the IP trace datasets is that the appearance order

of items in synthetic datasets is fully randomized (while stream

burst often happens in real data streams, see §3.3), which largely

weakens the aggregating performance of the aggregate-and-report

component and degrades the speed.

Query Speed (Figure 6(a)-(b)): Our results show that the query

speed of CM-CU with CF is about 1.1, 1.1 and 1.3 times, and 1.3, 1.3

and 1.5 times faster than CM, CM-CU and CM-CU with ASketch

whenMcf /Mt is set to 90% on two real-world datasets, respectively.

On both datasets, the query speed of CM-CU with CF is higher than

the other three approaches. The reason is that the one-memory-

access strategy significantly speeds up the query process for the

large number of cold items, improving the overall query speed. We

further study how the skewness of synthetic dataset affects the

8
The literature [59] reported skewness > 1.4 in real data streams.
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Figure 4: AAE vs. percentage of CF memory on two real-world datasets, and vs. skewness of synthetic dataset.
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Figure 5: Insertion speed vs. percentage of CF memory on two real-world datasets, and vs. skewness of synthetic dataset.
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Figure 6: Query speed vs. percentage of CF memory on two real-world datasets, and vs. skewness of synthetic dataset.
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Figure 7: Precision rate vs. k on two real-world datasets, and vs. skewness of synthetic dataset.
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Figure 8: AAE on real-world and synthetic datasets.

query speed, see Figure 6(c). Here,Mcf /Mt is fixed to 90%. When

skewness > 0.45, CM-CU with CF achieves a higher query speed

than the other three approaches.

6.3.2 Finding Top-k Hot Items.
The aforementioned four approaches have the same query pro-

cess, and thus we skip query speed below.

Accuracy (Figure 7(a)-(b)): Our results show that SS with CF

achieves precision rate above 99.8% on two real-world datasets.

SS with CF achieves higher and more stable accuracy than the

other three approaches on both datasets. We further study how

the skewness of synthetic dataset affects the precision rate, see

Figure 7(c). Here, k is set to 256. When skewness is 0, all approaches

have precision rates of 0. The reason is that on uniform datasets

(skewness = 0), the frequencies of top-k hot items are very close to

those of other items, leading to difficulties of differentiating them

from others. When skewness ⩾ 0.3, SS with CF achieves precision

rates above 99.9%. We finally test the AAE for frequencies of the

correctly reported items on different datasets, see Figure 8(a)-(b).

On all datasets, SS with CF achieves a much lower AAE than the

other three approaches.

Insertion Speed (Figure 9(a)-(b)): Our results show that the in-

sertion speed of SS with CF is about 3.7, 3.9 and 1.9 times, and 1.6,

1.7 and 1.2 times faster than CM with heap, CM-CU with heap and

SS when k is set to 256 on two real-world datasets, respectively.

We then study how the skewness of synthetic dataset affects the

insertion speed of SS, see Figure 9(c). Here, k is set to 256. When

skewness ⩾ 0.6, SS with CF achieves a higher insertion speed than

the other three approaches.

6.3.3 Detecting Heavy Changes.
We detect heavy changes using threshold ϕ of 0.04% between

the first 16M and the second 16M items of the considered datasets.

Since the value of ϕ does not affect the performance much in our

experiments, we omit the figures when varying ϕ.
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Figure 9: Insertion speed vs. k on two real-world datasets, and vs. skewness of synthetic dataset.
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Figure 10: Tm and insertion speed on real-world and synthetic datasets.
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Figure 13: Impact of different optimizations on the accuracy and speed of Count-Min, CM-CU, Space-Saving and FlowRadar.
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Figure 14: Impact of memory budget of CF on the accuracy of CM-CU, Space-Saving and FlowRadar.
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Figure 15: Impact of memory budget of CF on the speed of CM-CU, Space-Saving and FlowRadar.

MemoryConsumption (Figure 10(a)-(b)):Our results show that

the memory threshold (Tm ) of FR with CF is about 12.6 times and

22.4 times lower than FR on two real-world datasets, respectively.

The major reason for such memory reduction is that one hot item

consumes the same memory in FR as one cold item; CF makes only

hot items (which are much fewer than cold ones) and a small portion

of cold items fed to FR (§4.3), and thus the memory usage for FR

to record items is largely reduced. We can get the same accuracy,

since CF accurately records the frequencies of cold items.

Insertion Speed (Figure 10(c)-(d)): Our results show that the

insertion speed of FR with CF is about 4.7 times and 1.8 times faster

than FR on two real-world datasets, respectively.

Query Speed: Our results show that the query speed of FR with

CF is about 18.3 times and 39.2 times faster than FR on two real-

world datasets, respectively. The average query time on the IP trace

datasets for FR and FR with CF is 547ms and 30ms, respectively.

On Web page datasets, the average query time is 1066ms and 27ms,

respectively. Due to space limitations, we do not plot them.

6.4 Sensitivity Analysis
We use two metrics, namely accuracy improvement and speedup (for
insertion), to uniformly depict the performance of all considered

stream processing algorithms. For ease of presentation, we define

them specially to make a larger value always mean higher per-

formance. For CM and CM-CU, their accuracy improvements are
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both defined to be AAEpure/AAEwith CF . For SS, its accuracy im-

provement is defined to be PRwith CF /PRpure . For FR, its accuracy
improvement is defined to be Tmpure /Tmwtih CF . For all the four al-

gorithms, their speedups are defined to be speedwith CF /speedpure .

6.4.1 Impact of Different Optimizations.
In this subsection, we focus on the impact of different optimiza-

tions on Pmr , and accuracy improvements and speedups of CM,

CM-CU, SS, and FR. We also evaluate how Agg (aggregate-and-

report for short) solely influences the performance of these four

algorithms. We setM1 +M2 = 1MB, db = 1000 for each CF, and the

CF
CF+Agg

CF+Oma

CF+Agg+Oma0.0

0.1

0.2

0.3

0.4

P m
r(

%
)

IP trace Web page

Figure 12: Impact of differ-
ent optimizations on Pmr .

rest of parameters are the same

as in §6.1. In this subsection, CF

refers to the pure Cold Filter

without any optimization.

Impact on Pmr (Figure 12):
Here, we set T = 256. We ob-

serve that both Agg and Oma

(one-memory-access) elevate

the Pmr . The reason is that in

Agg, the appearance order of

items witnessed by CF is changed, which could influence the Pmr ;

in Oma, word constraint degrades the Pmr .

Impact on Accuracy Improvement (Figure 13(a)-(b)): In aver-

age, on both datasets, for CM and CM-CU, the percentages of ac-

curacy improvement contributed by CF, Agg, and Oma are around

140%, 0%, and −40%, respectively; for SS and FR, they are around

100%, 0%, and 0%. In other words, CF helps each algorithm achieve

the maximum accuracy improvement, while Agg does not improve

the accuracy of each algorithm; Oma degrades the accuracy of CM

and CM-CU, and makes little impact on the accuracy of SS and FR.

Impact on Speedup (Figure 13(c)-(d)): In average, on both

datasets, for CM, the percentages of speedup contributed by CF,

Agg, and Oma are around −73%, 150%, and 23%, respectively; for

CM-CU, they are around −64%, 142%, and 22%; for SS, they are

around 11%, 68%, and 21%; for FR, they are around 11%, 72%, and

17%. In other words, CF degrades the speed of CM and CM-CU,

while it improves the speed of SS and FR; Agg improves the speed

largely; Oma improves the speed.

In most cases, adding CF degrades the processing speed, such

as adding CF to CM/CM-CU, CM/CM-CU+Agg, SS, or FR, because

the overhead of processing every item in CF is larger than the

benefit of only processing hot items in the existing algorithms.

However, when adding CF to SS+Agg or FR+Agg, the processing

speed increases. The reason behind is as follows. Whether CF+Agg

is faster than Agg depends on whether Agg and CF cooperate well,

while the latter depends on the two factors of existing algorithm: 1)

the value of T required by it (T is the frequency threshold for items

to pass CF), and 2) the processing speed of it. Specifically, SS has a

high T (see §4.2). This makes CF cooperate well with Agg: CF filters

out many more cold items while Agg works better for hot items. FR

is much slower than CM/CM-CU (see Figure 5(a) and 10(c)). This

makes the cooperation of CF and Agg gain larger benefits: existing

algorithms only process hot items with aggregated frequencies.

Summary: 1) Pure CF plays the main role in improving the ac-

curacy, while Agg is the primary factor in improving the speed;
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Figure 16: Impact of memory budget of CF on Pmr .

2) CF+Agg+Oma achieves both high accuracy and high speed; 3)

For the stream processing algorithms that require high T or are

relatively slow, adding CF to Agg improves the speed.

6.4.2 Impact of Memory Budget of CF.
Next, we focus on the impact of memory budget of CF (i.e.,

M1+M2 and db ) on Pmr , and accuracy improvements and speedups

of CM-CU, SS, and FR. We set M1 +M2 = 1MB and db = 1000 by

default, and the rest of parameters are the same as in §6.1.

Impact on Pmr (Figure 16(a)-(b)): Here, we set T = 256. When

M1 +M2 ⩾ 0.5MB, Pmr decreases to around 0.1% on both datasets.

Besides, db makes little impact on the Pmr on both datasets.

Impact on Accuracy Improvement (Figure 14(a)-(d)): For CM-

CU, on both datasets, largerM1+M2 leads to higher accuracy, while

the opposite is the case for FR. The reason for such opposite case

is the following: largerM1 +M2 helps reduce more memory in FR

(due to lower Pmr ), but leads to the increasing of Tm (recall that

Tm contains M1 + M2), while the latter is much larger than the

former. The accuracy improvement of SS remains unchanged on

both datasets, since it has reached 100%. Actually, largerM1 +M2

does influence SS by lowering its AAE (not covered in figures due

to space limitation). Besides, db makes little impact on the accuracy

improvement of each algorithm on both datasets.

Impact on Speedup (Figure 15(a)-(d)):M1 +M2 makes little im-

pact on the speedup of each algorithm on both datasets. Larger

db leads to a higher speedup of each algorithm on both datasets,

except that on web page datasets, the speedup begins to decrease a

little when db > 2000. The reason for such decreasing is twofold: 1)

the cache performance declines as the memory of Agg increases; 2)

the aggregating performance of Agg nearly reaches the maximum.

Summary: 1)M1+M2 mainly influences accuracy, whiledb mainly

influences speed; 2) For CM-CU, larger M1 + M2 leads to higher

accuracy; for SS,M1 +M2 makes little impact on its precision rate;

for FR, relatively smallM1 +M2 brings lower Tm .

6.4.3 Impact of Parameter Setting in CF.
Below, we focus on the impact of parameter setting (including

layer number,M1/(M1+M2), δ1 : δ2, hash number, and T ) in CF on

Pmr , and accuracy improvements and speedups of CM-CU, SS, and

FR. Since the accuracy improvement and speedup behave similarly

on both datasets, we only show their figures on the IP trace datasets.

We setM1 +M2 = 1MB and db = 1000, and the rest of parameters

are the same as in §6.1 by default, unless otherwise specified. Dur-

ing varying layer number, we equally divide the memory across

different layers; all the layers except for the highest one have 4-bit

counters with Oma; all the layers have the same number of hash

functions. During varying layer number and δ1 : δ2, the counter
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Figure 17: Impact of parameter setting in CF on Pmr .
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Figure 18: Impact of parameter setting in CF on the accuracy of CM-CU, Space-Saving and FlowRadar.
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Figure 19: Impact of parameter setting in CF on the speed of CM-CU, Space-Saving and FlowRadar.

size in the highest layer is set according to the value of T required

by all the three algorithms.

Impact on Pmr (Figure 17(a)-(e)): Two layers and δ1 : δ2 = 4 : 16

lead to the minimum Pmr ; LargerM1/M1 +M2 leads to larger Pmr ;

Larger number of hash functions and larger T lead to smaller Pmr .

Impact on Accuracy Improvement (Figure 18(a)-(e)): For CM-

CU, two layers and δ1 : δ2 = 4 : 16 lead to the maximum accuracy

improvement; when M1/(M1 + M2) is around 55%, the accuracy

improvement achieves the maximum (the corresponding ratio on

web page datasets is around 70%); larger number of hash functions

leads to higher accuracy, but such impact is not remarkable when

hash number is larger than 4; when T ⩾ 256, its accuracy improve-

ment remains almost unchanged. For SS and FR, layer number,

M1/(M1 + M2), δ1 : δ2, and hash number make little impact on

their accuracy (actually, when M1/(M1 +M2) is around 35%, the

AAE of SS achieves the minimum); the accuracy improvement of

SS increases gradually as T increases, and when T reaches near

the frequency of the kth hottest item, the accuracy improvement

achieves the maximum (not covered in figures); when T ⩾ 256, the

accuracy improvement of FR remains almost unchanged.

Impact on Speedup (Figure 19(a)-(e)): For each of three algo-

rithms, larger numbers of layers and hash functions lead to lower

speed;M1/(M1 +M2) and δ1 : δ2 make little impact on the speed;

larger T leads to a higher speed, but such impact is not remarkable.

Summary: 1) Two layers, δ1 : δ2 = 4 : 16 and 3 or 4 hash functions

are recommended to achieve both high accuracy and high speed;

2)M1/(M1 +M2) for CM-CU should be in the range of 55% − 70%;

M1/(M1 +M2) for SS should be around 35%;M1/(M1 +M2) makes

little impact on the performance of FR; 3) T makes little impact on

the performance of CM-CU and FR;T for SS should be set according

to the predicted frequency of the kth hottest item.

7 CONCLUSION
In this paper, we propose a meta-framework named Cold Filter to

enhance existing approximate stream processing algorithms. Our

meta-framework is applicable to various stream processing tasks,

and improves the accuracy and speed at the same time. We also

present how to deploy it on three key stream processing tasks in-

cluding estimating item frequency, finding top-k hot items, and

detecting heavy changes. Experimental results show that it signif-

icantly improves their processing speed and accuracy compared

with the state-of-the-art solutions. Our Cold Filter meta-framework

can be applied to many more approximate stream processing tasks,

such as distribution of item frequencies, heavy hitters, information

entropy, etc., and improve their performance. All source code is

released at Github [1].
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APPENDIX
A ALGORITHM

Algorithm 3: Stream processing algorithm for CF with

aggregate-and-report strategy.

Input: The reported item et with its aggregated frequency faдд .
Output: Update CF, and return whether fet [t ] > T .

1 V1 ← min
1⩽i⩽d

1
(L1[hi (et )]);

2 if V1 + faдд ⩽ T1 then
3 foreach L1[hi (et )] (1 ⩽ i ⩽ d1) do
4 L1[hi (et )] ← max(V1 + faдд, L1[hi (et )]);

5 return fet [t ] ⩽ T;
6 else
7 /∗ concurrently overflow at layer L1 ∗/
8 foreach L1[hi (et )] (1 ⩽ i ⩽ d1) do
9 L1[hi (et )] ← T1 ;

10 ∆1 ← T1 −V1 ;
11 faдд ← faдд − ∆1 ;

12 V2 ← min
1⩽i⩽d

2
(L2[дi (et )]);

13 if V2 + faдд ⩽ T2 then
14 foreach L2[дi (et )] (1 ⩽ i ⩽ d2) do
15 L2[дi (et )] ← max(V2 + faдд, L2[дi (et )]);

16 return fet [t ] ⩽ T;
17 else
18 /∗ concurrently overflow at layer L2 ∗/
19 foreach L2[дi (et )] (1 ⩽ i ⩽ d2) do
20 L2[дi (et )] ← T2 ;

21 ∆2 ← T2 −V2 ;
22 faдд ← faдд − ∆2 ;

23 return fet [t ] > T;

Algorithm 4: Scanning a bucket with 16 cells through the SSE2
SIMD instructions.

Input: The incoming item e , and the start address p of the key part

array in the hashed bucket.

Output: Return the index of the matched key or −1.

1 /∗ load the item ID into a SSE2 register ∗/
2 const __m128i item = _mm_set1_epi32 (e );
3 /∗ convert address type ∗/
4 __m128i * keys_p = (__m128i *) p ;
5 /∗ compare the item ID with the 16 keys ∗/
6 __m128i a_comp = _mm_cmpeq_epi32(item, keys_p[0]);

7 __m128i b_comp = _mm_cmpeq_epi32(item, keys_p[1]);

8 __m128i c_comp = _mm_cmpeq_epi32(item, keys_p[2]);

9 __m128i d_comp = _mm_cmpeq_epi32(item, keys_p[3]);

10 /∗ get the final matching results ∗/
11 a_comp = _mm_packs_epi32(a_comp, b_comp);

12 c_comp = _mm_packs_epi32(c_comp, d_comp);

13 a_comp = _mm_packs_epi32(a_comp, c_comp);

14 int matched = _mm_movemask_epi8(a_comp);

15 /∗ return index or −1 according to matched ∗/
16 if matched , 0 then return TZCNT(matched) ;

17 else return −1;

B PROOF
B.1 Proof of Lemma 5.1

Proof. Obviously, Pf p (w,d,n) given by Eq. 2 is a monotonic

increasing function of the non-negative variable n. And the outputs
of this function locate in the window [0, 1]. For convenience, we

use sequence {ai } to donate Pf p (w,d, i). To prove Lemma 5.1, we

need to prove:

∀k ∈ N+, 1
k

k−1∑
i=0

ai <
1

k + 1

k∑
i=0

ai

⇔ (k + 1)
k−1∑
i=0

ai < k
k∑
i=0

ai

⇔

k−1∑
i=0

ai < kak

(8)

Since ai is a monotonic increasing sequence, we have a0 < ak ,a1 <
ak , ...,ak−1 < ak , ∀k ∈ N+. Adding up these k inequalities, we get∑k−1
i=0 ai < kak , ∀k ∈ N+. Therefore, the lemma holds. □

B.2 Proof of Lemma 5.2
Proof. The lower bound Jk [j] ⩾ Ik [j] can be easily observed.

Given an incoming item e , in most cases, the Bloom filter reports 0

(false) and 1 (true) before and after inserting e , which is equivalent

to incrementing the estimated frequency of e by one. Therefore, we
have: Jk [j] ⩾ Ik [j].

The upper bound of |Jk [j]| is related to the function P f p (), which
is called past false positive rate. This function solves the following

problem: given an initial standard Bloom filter withw and d , and
x distinct items, for each coming distinct item, we check whether

the Bloom filter reports true for this item, and then insert it into

the Bloom filter regardless. After processing all the x distinct items,

how many distinct items are expected to be reported true by the

Bloom filter? The answer is P f p (w,d,x) × x . We consider the false

positive rate of every item. For the ith (1 ⩽ i ⩽ x) incoming item,

its false positive rate equals to Pf p (w,d, i − 1), since these are total
i − 1 items inserted into the Bloom filter previously. Therefore, the

total number of distinct items that are expected to be reported true

is

∑x−1
i=0 Pf p (w,d, i) = P f p (w,d,x) × x .

We consider the specific process of inserting all E items into the

multi-layer Bloom filter. The contributions to Jk [j] derive from the

following k parts: 1) items in set Ik [j]; 2) items in set Ik−1[j] − Ik [j]
and experiencing one or more false positives from level 1 to level

k − 1; 3) items in set Ik−2[j] − Ik−1[j] and experiencing two or more

false positives from level 1 to level k−1; ...; k) items in set I1[j]−I2[j]
and experiencing k − 1 false positives from level 1 to level k − 1. For
the first part, the set size is |Ik [j]|; For the second part, the set size

is |Ik−1[j]| − |Ik [j]|, and the maximum probability of experiencing

such false positives is P f p (w,d, |Jl1 [j]|); For the third part, the set

size is |Ik−2[j]| − |Ik−1[j]|, and the maximum probability of experi-

encing such false positives is P f p (w,d, |Jl1 [j]|) × P f p (w,d, |Jl2 [j]|);

...; For the kth part, the set size is |I1[j]| − |I2[j]|, and the probabil-

ity of experiencing such false positives is

∏k−1
u=1 P f p (w,d, |Jlu [j]|);

Considering all the above k parts, the lemma holds. □
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B.3 Proof of Theorem 5.3
Proof. According to the frequencies of misreported items, we

divide the Pmr into λ parts: P
1

mr , P
2

mr , ..., P
λ
mr , where P

k
mr (1 ⩽ k ⩽

λ) denotes the misreport rate of the item set∆k [E] = {ei | fi [E] = k}.
Obviously, we have∆k [E] = Ik [E]−Ik+1[E] and |∆k [E]| = |Ik [E]|−
|Ik+1[E]|. Pmr is given by:

Pmr =

∑λ
k=1

(
Pkmr × |∆k [E]|

)
∑λ
k=1 |∆k [E]|

=

∑λ
k=1

(
Pkmr × |∆k [E]|

)
|I1[E]| − |Iλ+1[E]|

(9)

In order to derive Pkmr (1 ⩽ k ⩽ λ), we consider one arbitrary item

e ∈ ∆k [E]. The item e appears in data streams k times during the

time window [1,E]. Let t1, t2, ..., tk be the k appearance time points.

Let Pk,umr (1 ⩽ u ⩽ k ⩽ λ) be the misreport rate of the item set

Jk [E] in the time point tu . Obviously, if misreports do not happen

in all the k time points, then the item e will not be misreported

during the time window [1,E]. Therefore, Pkmr is given by:

Pkmr = 1 −

k∏
u=1

(
1 − Pk,umr

)
(1 ⩽ k ⩽ λ) (10)

Next, we focus on the Pk,umr (1 ⩽ u ⩽ k ⩽ λ). For the item e , just
before the time point tu , it has appeared in data streams u − 1 times.

If the misreport about e happens exactly in the time point tu , this
item must experience λ −u + 1 false positives from level 1 to level λ

in the multi-layer Bloom filter. Therefore, Pk,umr can be bounded by:

Pk,umr
L
⩽ Pk,umr ⩽ Pk,umr

U
(1 ⩽ u ⩽ k ⩽ λ) (11)

where

Pk,umr
L
=

λ∏
i=u

Pf p (w,d, |Jli [tu ]|), P
k,u
mr

U
=

λ−u+1∏
i=1

Pf p (w,d, |Jli [tu ]|)

(12)

Considering that Pf p (w,d,x) is a monotonic increasing function

about the variable x , we can use Lemma 6.1 to further lower bound

Pk,umr
L
and upper bound Pk,umr

U
as following:

Pk,umr
L
⩾

λ∏
i=u

Pf p (w,d, |Jli [tu ]|
L), Pk,umr

U
⩽

λ−u+1∏
i=1

Pf p (w,d, |Jli [tu ]|
U )

(13)

Then we need to know this sequence: |Jl1 [tu ]|, |Jl2 [tu ]|, ..., |Jlλ [tu ]|
in each time point tu (1 ⩽ u ⩽ k ⩽ λ). Recall that |Jli [tu ]| (1 ⩽ i ⩽
λ) can be calculated recursively by the |Ili [tu ]| (see Eq. 3). Therefore,
we only need to get |Ili [tu ]| (1 ⩽ i ⩽ λ). Under the random order

model, for item e , the data streams can be uniformly partitioned

into k small data streams, each of which contains total E/k items

with N /k distinct items. Correspondingly, the time window [1,E]

is uniformly partitioned into k small time windows: [1, Ek ], [
E
k +

1, 2Ek ], ..., [
(k−1)E

k + 1,E]. The item e appears in the middle of each

time windows. In other words, t1 =
E
2k , t2 =

3E
2k , ..., tk =

(2k−1)E
2k .

The item subset Ili [tu ] is also uniformly distributed across and

within these k time windows. Therefore, we have:

|Ili [tu ]| =
(2u − 1)

2k
× |Ili [E]| (1 ⩽ i ⩽ λ, 1 ⩽ u ⩽ k ⩽ λ) (14)

Considering Eq. 9, 10, 11, 12, 13 and 14, the theorem holds. □

C ANALYSIS OF ONE-MEMORY-ACCESS
Still employing the random order model, we analyze the misreport

rate of CF with our one-memory-access technique. One-memory-

access constrains the d1 hashed counters to a size of one word,

which makes Eq. 2 (false positive rate of standard Bloom filter) not

applicable to layer L1 if we use the same derivation method (see

§ 5). Therefore, we need to recompute the false positive rate of the

so-called one-memory-access Bloom filter. The one-memory-access

Bloom filter (omaBF ) consists of aw-bit array. The picking scheme

of d hashed bits is: 1) choose a word with size of Wbf , 2) choose

d hashed bits uniformly from this word. In particular, we have

Wbf =W/δ1. Let l be the number of words in thisw-bit array. We

have l = w/Wbf . Assume the number of distinct items inserted

into this Bloom filter is n. Given w , d , n and Wbf , according to

literature [57], the false positive rate of one-memory-access Bloom

filter is:

Poma
f p (w, d, n, Wbf ) =

n∑
x=0


(
n
x

) (
1

l

)x (
1 −

1

l

)n−x ©­«1 −
(
1 −

1

Wbf

)xd ª®¬
d  (15)

We redefine PUpf (x) and P
U
pf (x) as follows:

Definition C.1. For each time point j ∈ [E],

PUpf (|Jx [j]|) =


Poma
f p (w1,d1, |Jx [j]|,

W

δ1
) (1 ⩽ x ⩽ T1)

Pf p (w2,d2, |Jx [j]|) (T1 + 1 ⩽ x ⩽ T)

P
U
pf (|Jx [j]|) =


1

|Jx [j]|

| Jx [j] |−1∑
i=0

Poma
f p (w1,d1, i,

W

δ1
) (1 ⩽ x ⩽ T1)

1

|Jx [j]|

| Jx [j] |−1∑
i=0

Pf p (w2,d2, i) (T1 + 1 ⩽ x ⩽ T)

(16)

The rest of the derivation is the same as Lemma 5.4 (getting

|Jk [j]|
L
and |Jk [j]|

U
, and then obtaining the bound of the misreport

rate of CF with one-memory-access). We also omit it.

D ANALYSIS OF CM-CUWITH CF
Now, we give the theoretical analysis of the CM-CU sketch with

CF (with two optimizations) for estimating item frequency. We use

the same notations and assumptions employed in §5. We use wϕ
and dϕ to denote the number of counters per array and the number

of arrays in the CM-CU sketch (Φ), respectively.

D.1 Proof of No Under-estimation Error
When processing a data stream, our CF records the frequency or

part of the frequency of each item. At the end of each measurement

period, the frequency of each item is divided into up to three parts

that locate in the two layers of CF and the CM-CU sketch, respec-

tively. These three parts are all recorded and queried by the same

approach as the CM-CU sketch. Since the CM-CU sketch has no

under-estimation error [18], the estimated frequency assembled by

these three parts is also free of under-estimation. Therefore, the CM-

CU sketch with CF has no under-estimation error. Note that this

property does not rely on any assumptions about the distribution

of item frequency or appearance order.
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D.2 Error Bound
We first consider the error bound of the CM-CU sketch with CF

plus one-memory-access strategy, and then illustrate how this error

bound can be generalized to be applicable to the aggregate-and-

report strategy. We consider the two layers of CF and the CM-CU

sketch as three multi-layer Bloom filters with different parameter

settings. The literature [18] shows that the Bloom filter with par-

titioning (e.g., dϕ segments in Φ) has the same asymptotic false

positive rate with standard one without partitioning. Here, we con-

sider them as the same. Therefore, we define a unified function

about its false positive rates of different layers as follows:

Definition D.1. For each time point j ∈ [E],

P
ϕ
pf

U
(|Jx [j]|) =


Poma
f p (w1,d1, |Jx [j]|,

W

δ1
) (1 ⩽ x ⩽ T1)

Pf p (w2,d2, |Jx [j]|) (T1 + 1 ⩽ x ⩽ T)

Pf p (wϕ ,dϕ , |Jx [j]|) (x ⩾ T + 1)

P
ϕ
pf

U
(|Jx [j]|) =



1

|Jx [j]|

| Jx [j] |−1∑
i=0

Poma
f p (w1,d1, i,

W

δ1
) (1 ⩽ x ⩽ T1)

1

|Jx [j]|

| Jx [j] |−1∑
i=0

Pf p (w2,d2, i) (T1 + 1 ⩽ x ⩽ T)

1

|Jx [j]|

| Jx [j] |−1∑
i=0

Pf p (wϕ ,dϕ , i) (x ⩾ T + 1)

(17)

Using the same approach as before, we get |Jk [j]|
U
.

Theorem D.1. For an arbitrary item eβi (i ∈ [N ]), let feβi and
ˆfeβi be its real and estimated frequency during the time window [1,E],
respectively. Let V be

∑N
i=1 feβi . Let l1, ..., lu , ... be the permutation

of 1, 2, ... that makes the sequence Pϕf p
U
(|Jlu [E]|

U ) in descending
order. We have the following accuracy guarantee about the CM-CU

sketch with CF (with one-memory-access):

Pr [ ˆfeβi − feβi ⩽ ⌈εV ⌉] ⩾ 1 −

⌈εV ⌉∏
u=1

P
ϕ
f p

U
(|Jlu [E]|

U ) (18)

Proof. We employ the equivalence between CF and multi-layer

Bloom filter to complete the proof. For convenience, let ∆ be ⌈εV ⌉.
For an arbitrary item eβi (i ∈ [N ]), we consider the upper bound

of Pr [ ˆfeβi − feβi > ∆]. ˆfeβi − feβi > ∆ means the item ei experi-

ences false positives at least ∆ + 1 times (at different layers in the

multi-layer Bloom filter). This probability is upper-bounded by the

multiple multiplications of the ∆ + 1 maximum false positive rates

among all the layers in the multi-layer Bloom filter. Besides, we also

need to find an appearance order for item eβi with the frequency

of feβi to achieve the worst case (maximum) false positive rate.

Intuitively, the worst case happens, when the feβi instances of item

eβi all appear at the end of the measurement period (or near the

time point E), since CF is most heavily loaded at this time point.

Therefore, we can use the false positive rate instead of the past false

positive rate to depict the upper bound of Pr [ ˆfeβi − feβi > ∆]:

Pr [ ˆfeβi − feβi > ∆] ⩽
∆+1∏
u=1

P
ϕ
f p

U
(|Jlu [E]|)

<

∆∏
u=1

P
ϕ
f p

U
(|Jlu [E]|) ⩽

∆∏
u=1

P
ϕ
f p

U
(|Jlu [E]|

U )

(19)

Converting the less-than and greater-than signs, the theorem holds.

□
Consider the aggregate-and-report strategy. Obviously, the

aggregate-and-report strategy only changes the appearance or-

der of some items. Since in Theorem D.1 we pick the appearance

order that results in the worst case false positive rate to derive the

error bound, this error bound is also applicable to CF with the two

optimizations.
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