
DINT: Fast In-Kernel Distributed Transactions with eBPF

Yang Zhou∗ Xingyu Xiang†∗ Matthew Kiley Sowmya Dharanipragada‡ Minlan Yu
Harvard University †Peking University ‡Cornell University

Abstract
Serializable distributed in-memory transactions are important
building blocks for data center applications. To achieve high
throughput and low latency, existing distributed transaction
systems eschew the kernel networking stack and rely heavily
on kernel-bypass networking techniques such as RDMA and
DPDK. However, kernel-bypass networking techniques gener-
ally suffer from security, isolation, protection, maintainability,
and debuggability issues, while the kernel networking stack
supports these properties well, but performs poorly.

We present DINT, a kernel networking stack-based dis-
tributed transaction system that achieves kernel-bypass-like
throughput and latency. To gain the performance back under
the kernel stack, DINT offloads frequent-path transaction op-
erations directly into the kernel via eBPF techniques without
kernel modifications or customized kernel modules, avoiding
most of the kernel stack overheads. DINT does not lose the
good properties of the kernel stack, as eBPF is a kernel-native
technique on modern OSes. On typical transaction workloads,
DINT even achieves up to 2.6× higher throughput than us-
ing a DPDK-based kernel-bypass stack, while only adding at
most 10%/16% average/99th-tail unloaded latency.

1 Introduction
Serializable distributed transactions are important program-
ming abstractions and building blocks for distributed data
center applications, such as object store and online transac-
tion processing (OLTP) systems. With the advance of battery-
backed DRAM [14] and fast NVRAM [10], the bottleneck
of distributed in-memory transactions shifts from the stor-
age to the networking. This has spurred extensive research
on how to implement fast distributed in-memory transac-
tions using kernel-bypass networking techniques, such as
RDMA [14, 29, 82] and DPDK [6, 28]. One of the key as-
sumptions for these works is that kernel-bypass is the key to
realizing fast distributed in-memory transactions that match
the underlying hardware speed.

However, kernel-bypass is not a panacea—it essentially
trades security [69], isolation [38,39], protection [3,63], main-
tainability [53,79], and debuggability [70,79] for performance.
In addition to these issues, kernel-bypass techniques such as

∗Equal contribution

DPDK usually burn one or more CPU cores for busy-polling
even at low loads; this is usually non-acceptable in public
cloud deployments due to per-core pricing [80]. These issues
collectively have led to the well-known Open vSwitch giving
up DPDK-based dataplane designs recently [79].

Instead, we choose to embrace the kernel networking
stack with interrupt-driven packet processing. The kernel
networking stack provides nice properties of good security,
isolation, protection, maintainability, debuggability, and load-
aware CPU scaling—but not performance. Its poor perfor-
mance mainly comes from three sources: heavy-weight net-
working stack traversing [19, 89], user-kernel context switch-
ing [89], and interrupt handling.

This paper therefore asks: can we remove such kernel stack
overheads while keeping all of its nice properties for dis-
tributed in-memory transactions? To this end, we follow a
decade-old methodology called extensible kernels [4], and
realize it in modern OS kernels without any kernel code modi-
fications or customized kernel modules. The key enabler is the
eBPF technique that allows users to run customized functions
easily, safely, and efficiently inside the kernel networking
stack at run time. With eBPF, we can run transaction process-
ing logic at the early stage of the kernel networking datapath
without going to the user space, avoiding most of the kernel
networking stack functions and user-kernel context switching.
For the overhead of interrupt handling, it could be amortized
by adaptive batching [3] that the kernel networking stack
NAPI [34] already did. Besides the potential performance
benefit, eBPF is a kernel-native technique shipped with and
well-maintained by each release of modern Linux kernels.
Due to its safety and kernel-native nature, it has been rapidly
adopted by applications and cloud vendors [2, 16, 55]. For
example, Meta runs over 40 eBPF programs on every server
with ∼100 loaded on demand [75].

We introduce DINT1, which accelerates distributed transac-
tion systems using eBPF. DINT handles as many transactions
as possible in the kernel to improve their critical path per-
formance. In distributed transaction systems, a transaction
usually involves three components in its critical path: it first
acquires various locks from a lock manager, then reads rele-
vant key-values from a key-value store and does local updates,
next logs key-value updates to a log manager, and finally com-

1DINT as a noun is an archaic word, meaning force and power.



mits key-value updates to the key-value store. Offloading the
three components to eBPF is challenging because eBPF has
a constrained programming model (for kernel safety).

To address this challenge, our key idea is to redesign
transaction-related data structures following the principle of
kernel-offloading for frequent critical paths to guarantee high
performance, and use user space programs as backups for
rare paths to support full functionalities.

First, the lock manager normally maintains many locks with
efficient indexing and complex locking operations. However,
it is hard for eBPF to handle hash collision during indexing,
because eBPF only allows statically-bounded loops. Further, it
is also hard to maintain shared lock states because eBPF does
not support common synchronization primitives like Mutex.
To address these issues, the DINT lock manager embraces
lock sharing to avoid the slow and complex hash collision
handling, and directly leverages low-level eBPF atomics to
implement transaction locking.

Second, the key-value store normally stores a large num-
ber of key-values with different sizes, and requires frequent
lookups and updates. However, eBPF does not support dy-
namic memory allocations, causing low memory efficiency
for the key-values. To address these issues, the DINT key-
value store directly stores small key-values, which dominate
in transaction workloads [12, 47, 77], in kernel memory us-
ing a set-associative cache, while leaving large key-values
to the user space, avoiding dynamic memory allocations in
eBPF. DINT further designs a write-back mechanism with
Bloom filters [5] to efficiently handle most key-value lookups
and updates in the kernel, while guaranteeing the key-value
consistency across the user and kernel.

Third, for the log manager, DINT designs efficient per-CPU
log buffers to record logs directly in eBPF, while supporting
log replaying from the user space during failure recovery.

We evaluate DINT on two OLTP workloads: a read-
intensive TATP workload [47] and a write-intensive Small-
Bank workload [77]. DINT achieves up to 2.6× higher
throughput than using a recent well-engineered kernel-bypass
stack based on DPDK (i.e., Caladan [17]), while only adding
at most 10% and 16% unloaded latency for the average and
99th-tail respectively. We achieve even higher throughput
mainly because the kernel-bypass baseline builds a high-level
abstraction for packets that incurs packet copy overhead be-
tween network buffers and application buffers, while DINT di-
rectly modifies incoming packets and forwards back. DINT’s
designs are also generic to transaction protocols to some
extent—it easily supports an OCC (opportunistic concurrency
control) protocol for the read-intensive workload and a 2PL
(two-phase locking) protocol for the write-intensive workload.

In summary, this paper makes three contributions:
• We design and implement a high-performance distributed

transaction system under the widely-deployed kernel net-
working stack and the widely-available common commod-
ity NICs, with the key idea of kernel offloading via eBPF.

Coordinator

P1
B1a
B1b

P2
B2a
B2b

1. Read + lock 2. Validate 3. Log 4. Commit 
backup

[Replicated]
Log manager

Shard 2

Shard 1

5. Commit 
primary

Figure 1: The FaSST [29] transaction protocol with two data shards
and three-way replication. P = primary and B = backup. This exam-
ple transaction reads from the shard 1 and writes to the shard 2.

• We design a state synchronization mechanism for the key-
value cache across the kernel and user space that efficiently
handles consistency and write-backs.

• We are the first to experimentally show that a distributed
transaction system under the kernel networking stack can
achieve kernel-bypass-like performance and latency.
DINT has some limitation: it currently targets UDP un-

reliable transport protocol to simplify packet processing in
eBPF. Some research work [76] on designing offload-friendly
reliable transports might help address our limitation.

2 Background

2.1 Distributed Transactions
We focus on serializable distributed transactions over a repli-
cated sharded in-memory key-value store with replicated log-
ging to handle failures. Along with recent works [14, 29, 72,
82] in this space, we assume logging into fast persistent stor-
age like battery-backed DRAM or NVRAM (instead of disks)
to match in-memory transaction speed, and having a sepa-
rate fault-tolerance configuration manager to handle machine
failures off the critical path of transaction processing. These
works usually employ transaction protocols consisting of opti-
mistic concurrency control (OCC) and two-phase commit for
distributed atomic commit, and primary-backup replication
to support high availability. Below, we briefly go through the
critical path of one of such protocols from FaSST [29].

In the FaSST transaction protocol, each transaction has
a set of keys to read (i.e., read-set) and a set of key-values
to write (i.e., write-set), and a transaction coordinator issues
transaction requests to finish each transaction. As shown in
Figure 1, the primary in each shard runs a lock manager; both
the primary and backups run a replicated key-value store; a set
of servers run a replicated log manager (could just be on the
primary and backups). To finish a transaction, the transaction
coordinator executes the following phases:
1) Read+lock: the coordinator reads all values + locks +

versions for the read-set and locks all key-values for the
write-set. If any key-value in the two sets is already locked,
the transaction aborts. The coordinator buffers key-value
writes/updates locally.

2) Validate: the coordinator reads again all locks + versions



in the read-set, and checks if any read-set value has been
changed or locked since the first phase. If so, the transac-
tion aborts.

3) Log: the coordinator writes a transaction record contain-
ing the write-set’s key-values and their versions into the
replicated log manager.

4) Commit backup: the coordinator updates the write-set
values to corresponding backup replicas.

5) Commit primary: the coordinator updates the write-set
values to corresponding primary replicas, increments key-
value versions, and unlocks key-values.

Besides the OCC, there are many more concurrency control
protocols for serializable distributed transactions. Another
well-known one is two-phase locking (2PL) used in Span-
ner [9]; it locks before each read and write, and is suitable for
write-intensive workloads. More advanced protocols include
MDCC [40], Tapir [87], Janus [58], ROCOCO [57], which
reduces the number of transaction phases by co-designing
concurrency control and replication, and allows more concur-
rency by tracking fine-grained transaction dependencies.

Distributed transactions inside a data center typically have
bottlenecks on the networking stack. For example, when we
run the above transaction protocol using a typical OLTP work-
load under the kernel UDP stack (see §5.2 for a detailed
setup), we observe 64% of CPU time is spent on traversing
the kernel networking stack, 16% is on the user-kernel context
switching, and 12% is on the interrupt handling. This further
motivates the huge performance benefits of kernel offloading
by avoiding kernel stack overheads.

2.2 eBPF in Kernel Networking Stack
eBPF basics: eBPF (extended Berkeley Packet Filter) is a
kernel-native mechanism to let users write safe, customized
programs that run inside the OS kernel without kernel code
modifications or customized kernel modules. Users typically
write a high-level C-like eBPF program that gets compiled
into low-level eBPF bytecode by Clang/LLVM. Users can
then load the eBPF bytecode to predefined attachment points
or the so-called eBPF hooks in the kernel. Upon loading, the
kernel will first verify if the eBPF bytecode meets the safety
(e.g., no out-of-bounds memory accesses) and liveness (i.e.,
it will always terminate in finite steps) requirements. If so,
the kernel will compile the eBPF bytecode to native machine
code, and run it in a kernel-embedded virtual machine in an
event-driven manner; otherwise, the kernel will reject it.

The Linux kernel networking stack has two main eBPF
hooks: XDP (eXpress Data Path) [21, 67] and TC (Traffic
Control) [50]. The XDP hook only works for ingress pack-
ets, and triggers the eBPF program immediately after the
NIC driver receives the packet upon NIC interrupts, before
sk_buff [35] creation. The TC hook works for both ingress
and egress packets, and triggers the eBPF program between
the NIC driver layer and UDP/TCP layers. For ethernet packet
forwarding, TC has lower performance than XDP, as it has

Lock mgr

KV store

Log mgr

Request 
parser

Transaction 
server

Bookkeeping

Transaction
Client

Maintaining 
spilled KVs

Kernel space User space

Frequent path

Rare path

Req
ue

st

Response

XDP

TC

UDP 
sockets

Figure 2: DINT’s high-level architecture.

run more kernel networking stack functions.
eBPF maps: eBPF programs are event-driven, therefore
program states that cross different invocations must be stored
in a global heap-like memory region—eBPF maps are exactly
for this purpose. eBPF maps are a variety of built-in data
structures in the kernel to maintain eBPF program states with
various eBPF helper functions. An eBPF map could contain
up to 232−1 elements each with maximum 232−1 bytes, with
total size bounded by the server memory; it must be declared
and created statically with a fixed size. Typical eBPF maps
include arrays, per-CPU arrays, stacks, and queues [49], with
lookup and update functions [32]. The power of eBPF maps
is that they can be shared among different eBPF programs
and user-space processes. For example, the eBPF program
attached to XDP can share an eBPF map with another program
on TC and even with a user-space process.
eBPF programming constraints: Due to the safety and
liveness verification by the kernel, eBPF programming has
some constraints. Perhaps the most important one is not sup-
porting dynamic memory allocations, as correctly handling
memory allocation failure and verifying no memory leaks are
challenging for eBPF. The second constraint is that eBPF only
supports statically-determined bounded loops to ensure live-
ness. Finally, eBPF lacks high-level thread synchronization
primitives such as Mutex. This is because eBPF code runs
inside the kernel, and arbitrary/unexpected kernel sleeping
by Mutex is dangerous. Instead, eBPF only supports spinlock
(i.e., bpf_spin_lock [48]) with deep constraints that make
it less useful: one cannot call any functions (including built-
in eBPF helper functions) while holding the lock, and must
release the lock before forwarding/dropping the packet.

3 DINT Design
Figure 2 shows the high-level architecture of DINT. DINT
assumes an asymmetric transaction model or the so-called
client-side transaction model, similar to [42, 56, 60, 87]. In
this model, each transaction client, as the transaction coor-
dinator, sends transaction requests to transaction servers to
finish locking, key-value, and logging operations, and then re-
ceives responses. As described in Section 6, DINT could also
support the symmetric model used in [14, 29, 82]. Like prior
works, DINT shards transactions states (i.e., locks, key-values,
and logs) among servers, and uses three-way replication and
logging for high availability. DINT is generic to a variety



of transaction protocols, and currently supports two differ-
ent ones: a 2PL-based protocol and an OCC-based protocol
similar to FaSST [29].
Offloading request frequent path to kernel: To achieve
high-performance transaction processing, DINT offloads
frequent-path states and operations into the kernel, avoiding
kernel stack overheads. Each DINT transaction server main-
tains most of its transaction states in the kernel memory via
eBPF maps, and serves most of its transaction requests di-
rectly in the kernel via an eBPF program attached to the XDP
hook. Since eBPF programs cannot generate new packets by
themselves, DINT reuses the request packet by modifying its
payload to carry the response message, and forwards it back
to clients as the response.
Userspace as backups: To support the full functionalities of
transaction processing, DINT handles rare-path states and op-
erations in the user space. Each DINT transaction server runs
a user-space process listening on UDP sockets to receive and
handle a small portion of transaction requests that cannot be
served directly in the kernel. Transaction responses returned
from the user-space process will go through a bookkeeping
eBPF program attached to the TC hook, which helps maintain
transaction states in eBPF maps, e.g., releasing some internal
locks (not transaction locks).

DINT uses UDP protocol between transaction clients and
servers to allow easy parsing of transaction requests and re-
sponses in eBPF programs. While UDP protocol is lossy,
packet losses happen rarely in modern data centers as shown
by prior works [28, 29, 65]. When packet losses happen dur-
ing severe network hardware failures, DINT would detect
such losses using coarse-grained client-side timeouts and han-
dle them by the transaction protocols, similar to FaSST [29].
DINT targets accelerating the handling of transaction request-
s/responses that can fit into one ethernet packet, i.e., up to
9KB for jumbo frames. This works well for transactions with
mostly small key-values, which are quite common in many
transaction processing workloads [12,29,47,77,82]. For large
key-values, DINT could just pass them to the user-space pro-
cess to handle, at the cost of lower throughput.

3.1 DINT Lock Manager
The DINT lock manager is responsible for the transaction con-
currency control, i.e., controlling how multiple transaction
clients concurrently access individual key-values. Such con-
currency control mainly involves quickly indexing lock states
by lock IDs and maintaining the shared lock states. These two
operations are challenging for the constrained programming
model in eBPF that lacks dynamic memory allocations, only
supports bounded loops, and has nearly no high-level thread
synchronization primitives like Mutex (§2.2). For example,
lock state indexing usually requires implementing a hash table
in eBPF; however, handling hash collisions is nearly impos-
sible or very inefficient in eBPF for either open hashing that
requires dynamically allocating a new hash table entry or

closed hashing that may require unbounded loops.
To support efficient lock state indexing and shared lock

state maintenance in eBPF, DINT leverages two techniques:
• lock sharing to avoid handling hash collisions. Lock sharing

means two lock IDs may get mapped to and use the same
lock state. DINT further designs a mechanism to avoid
possible deadlocks during lock sharing.

• leveraging low-level eBPF atomics [23] to carefully syn-
chronize shared states operations.

Lock sharing: DINT leverages eBPF array maps (i.e.,
BPF_MAP_TYPE_ARRAY [32]) to implement static tables of
lock states in the kernel space. Typical lock states include
lock status bits, sharer counters (for read-write locks), etc.
Each lock ID gets mapped to one shared lock state in the
table via a hash function, and later lock acquiring/releasing
operations just work on this lock state. Lock sharing avoids
handling tricky hash collisions, at the cost of slightly increas-
ing the failure probability when acquiring locks.

However, deadlocks could happen if a transaction client
tries to acquire two locks that get mapped to the same lock
state (assuming exclusive locking). This is because: the first
acquiring operation succeeds, while the second acquiring fail-
s/blocks; however, the first acquiring will not release the lock
until the transaction finishes, while the second acquiring al-
ways blocks the transaction progress. To resolve such possible
deadlocks, DINT lets the lock manager check if any two ex-
clusive lock acquiring operations on the same lock state come
from the same transaction client, by maintaining a holder
client ID (e.g., IP and port pair) for each exclusive lock; if so,
the lock manager directly returns a locking success message.

By leveraging low-level eBPF atomics, DINT supports
a variety of locking mechanisms for concurrency control
protocols, including the basic read-write locking for 2PL
and version-based locking for OCC, in a fail-and-retry man-
ner [8,18,83]. Supporting more advanced concurrency control
protocols [40, 57, 58, 87] is also possible in DINT, as they are
essentially underpinned by the two basic locking mechanisms;
we discuss further in Section 6.
Read-write locking: This locking mechanism includes two
types of locks: exclusive locks and shared locks. Transaction
clients send lock acquiring/releasing requests with lock IDs
to the lock manager, and the manager responds with either
success or failure. Lock acquiring requests may receive fail-
ure responses, while lock releasing requests always receive
success responses. If a client receives a failure response, it
will re-send the lock acquiring request again after an optional
period of time, until receiving the success response (i.e., fail-
and-retry).

To implement the read-write locking, the DINT log man-
ager maintains a per-lock spinlock bit, a per-lock counter that
counts how many sharers hold the lock, and a per-lock status
bit indicating if this lock is held exclusively. Upon receiv-
ing an exclusive lock acquiring request, the lock manager
looks up the corresponding spinlock bit and executes eBPF



Bucket 
lock

Bloom 
filter Keys Versions Valid

bits
Dirty 
bitsValues

Bucket

Overflow buckets
in user space

Kernel buckets
(an eBPF map)

…

Figure 3: The layout of the key-value store in DINT (assume using
the version-based locking).

atomics to check if it can acquire the spinlock. It runs the
__sync_val_compare_and_swap() function inside eBPF
to atomically test-and-set the spinlock bit. This function gets
compiled into corresponding ISA-specific operations and is
equally efficient as in the user space. If the lock test-and-set
succeeds, which means the lock state is not being modified
by other transaction clients, the load manager will check the
exclusiveness status bit—if the bit is clear, it will set the bit
and return a success response; in any other cases, a failure
response is returned to let the client retry. Handling the ex-
clusive lock releasing and shared lock operations involves
similar atomic operations.
Version-based locking: Version-based locking is widely
used in recent high-performance distributed transactions sys-
tems [14, 29, 82], together with the OCC protocol to avoid
locking operations for key-value reads. It involves version
checking to make sure the read key-values used in a transac-
tion are not stale (see §2.1).

To implement version-based locking, DINT maintains a
table for the lock status bit indexed by the lock ID, and main-
tains a per-key-value version counter in a key-value store that
we discuss in the next Section. Every read operation directly
reads the key-value and corresponding version from the key-
value store. Every write operation tries to test-and-set the lock
status bit (i.e., exclusive lock); if test-and-set fails, the transac-
tion aborts. After acquiring all write locks and then finishing
all transaction writes locally, the transaction coordinator reads
the key-value versions again and compares them with the old
versions. If the two version vectors do not change, the coor-
dinator can successfully log and commit the transaction, and
increment the versions; otherwise, the transaction aborts.

3.2 DINT Key-Value Store
The DINT key-value store maintains the mapping between
keys and values, and supports various operations like GET,
INSERT, UPDATE, and DELETE. Conventional user-space
key-value store [54, 71] would normally maintain a hash in-
dex that maps keys to dynamically-allocated values. Unfortu-
nately, this design does not work for eBPF that lacks dynamic
memory allocations.

Figure 3 illustrates how DINT addresses this challenge
by storing key-values into an in-kernel set-associative cache
backed by a fixed-size eBPF map, while spilling overflowed
key-values (includes corresponding versions) into the user
space. The eBPF map contains many kernel buckets indexed

by the key via a hash function, and each bucket stores multiple
key-values and valid bits (denoting whether a key-value field
stores object data)2. By default, DINT stores 4 key-values per
kernel bucket. Inside each kernel bucket, DINT stores keys
contiguously for better cache locality during lookups; DINT
provisions each value field with a fixed size that can cover
most of the transaction objects (e.g., dozens of bytes in TPC-C
and SmallBank workloads [82, Table 3]). Any kernel bucket
that gets too many key-values will spill some key-values into
the user space (putting into the overflow buckets); any key-
value that cannot fit into the fixed value field in the kernel
bucket will also spill into the user space.

A kernel bucket contains a bucket-level lock implemented
using eBPF atomics to synchronize concurrent key-value op-
erations on the same bucket. We note that this lock is different
from the transaction locks in Section 3.1. Each key-value
operation will first try acquiring the bucket lock before touch-
ing the bucket data, in a fail-and-retry manner. Most of the
time, the key-value operation finishes directly in eBPF and
returns the response to clients, before which it releases the
bucket lock. In rare cases where its interested key-value is
in the user space, the operation needs to pass the operation
request/packet to the user-space process via the UDP sockets.
Under such cases, the operation still holds the bucket lock
when going to the user space, and only releases the lock when
it returns to eBPF. By “returns to eBPF”, we mean that the
response packet sent back by the user-space process will trig-
ger an eBPF program attached to the TC egress hook, which
releases the bucket lock.

However, to support high-performance key-value opera-
tions in this kernel-user-hybrid key-value store, we must ad-
dress two additional challenges:
• How to efficiently perform INSERT and UPDATE opera-

tions while maintaining read-all-write consistency? Prior
eBPF-offloaded key-value store BMC [19] adopts a simple
write-through cache design and performs well when all op-
erations are GETs. However, in workloads like TATP [47]
where 20% of transactions involve INSERTs/UPDATEs,
BMC would perform poorly because every such operation
will go to the user space.

• How to minimize the chance of going to the user space,
especially when clients issue many GET requests for non-
existing keys? Non-existing key lookups would require
enumerating all keys mapped to the kernel bucket includ-
ing those spilled into the user space, incurring high kernel
stack overheads. Such lookups are common in transaction
workloads; e.g., 68.75% of GETs for TATP’s largest table
target non-existing keys.

To this end, DINT designs a write-back mechanism that lazily
and efficiently maintains the read-after-write consistency, and
leverages a per-kernel-bucket Bloom filter to avoid frequently
going to the user space for non-existing key lookups.

2Maintaining the valid bit for each key-value should be straightforward;
for conciseness, we do not explicitly describe it unless necessary.



3.2.1 Write-Back Key-Value Store in eBPF

As shown in Figure 3, a kernel bucket contains a dirty bit for
each stored key-value, indicating whether the value is different
from the user space; a key-value that only exists in eBPF will
always have the dirty bit set. Below, we go through how DINT
efficiently realizes each of the key-value operations across
eBPF and the user space. A recurring theme in the design of
each operation is that: DINT tries to support the majority of
key-value operations directly in eBPF by leveraging the dirty
bit, while maintaining consistency.
GET (Figure 4a): For simplicity, we assume the looked-up
key exists in the key-value store; we describe the non-existing
case in the next Section. In the frequent path (a) where the
GET operation finds the key in the kernel bucket, DINT di-
rectly returns the requested value to the client. In the rare
path (b) where the GET operation does not find the key: if the
kernel bucket is full, DINT chooses one existing key-value to
evict following a certain policy (described later) to make a
space for the looked-up key-value; otherwise, DINT chooses
one dirty key-value (if any) for lazily writing back to the user
space. DINT then optionally piggybacks the chosen key-value
on the packet and forwards it to the user-space process; DINT
uses the bpf_xdp_adjust_tail() function [48] to increase
the packet size for piggybacking. Once the process receives
the request packet, it will look up the key-value in the over-
flow buckets, and send back the response packet to the client
via the UDP sockets. For the piggybacked key-value, the user-
space process will update it into the overflow buckets. Finally,
the response packet goes through the TC egress eBPF pro-
gram, which clears the dirty bit of the piggybacked key-value
(if any), and fills the requested key-value into an empty or
non-dirty key-value field in the kernel bucket.
INSERT (Figure 4b): For simplicity, we assume the to-be-
inserted or the incoming key-value does not exist in the key-
value store; if it already exists, we could just return a insertion
failure message to the client. In the frequent path (a) where
the INSERT operation finds an empty slot in the kernel bucket,
DINT directly writes the incoming key-value there, sets an
initial version and the dirty bit, and returns to the client. In
the rare path (b) where there is no empty slot in the kernel
bucket, DINT chooses a key-value to evict. Then there will be
two cases:
• If the to-be-evicted key-value is not dirty, DINT will directly

replace it by the incoming key-value with a set dirty bit and
an initial version, and return to the client. DINT can directly
return as the to-be-evicted key-value has the same copy in
the user space, so there is no need to write it back. Since
the incoming key-value is marked dirty, a later eviction will
lazily write it back to the user space.

• If the to-be-evicted key-value is dirty, DINT will piggyback
it on the request packet, replace the bucket’s to-be-evicted
key-value by the incoming key-value with a clear dirty bit
and an initial version, then pass the request packet to the
user space. The user-space process will then update both

the evicted key-value and the incoming key-value into the
overflow buckets, and send back a response packet to the
client via the UDP sockets.

UPDATE (Figure 4c): For simplicity, we assume the to-be-
updated or the incoming key-value exists in the key-value
store; if it does not exist, we could just return an update failure
message to the client. In the frequent path (a) where the key-
value is found in the kernel bucket, DINT directly updates the
key-value there with a set dirty bit, increments the version
counter, and returns to the client3. In the rare path (b) where
the key-value is not found, DINT chooses a key-value to evict.
No matter whether the to-be-evicted key-value is dirty or
not, DINT always needs to go to the user space, in order to
fetch (and increment) the version counter corresponding to
the incoming key-value. Therefore, DINT will piggyback the
to-be-evicted key-value on the request packet, replace the
bucket’s to-be-evicted key-value by the incoming key-value
with a clear dirty bit and an undefined version, then pass the
request packet to the user space. The user-space process will
then update both the evicted key-value and the incoming key-
value into the overflow buckets, increment the version counter
of the incoming key-value, and send back a response packet
to the client via the UDP sockets. More importantly, this
response packet will piggyback the updated version of the
incoming key-value, so that the TC egress eBPF program can
update the bucket’s undefined version to the updated one.
Eviction policy: DINT currently uses a simple eviction pol-
icy: it tries to evict the first non-dirty key-value when enu-
merating the bucket; if all the key-values are dirty, it then
evicts a random key-value. Prioritizing evicting non-dirty
key-value avoids going to the user space as much as possible
(especially under INSERT operations). Randomly choosing a
key-value if all is dirty minimizes the compute for selecting
a victim key-value. Implementing a more complex eviction
policy, e.g., based on key-value accessing frequency, might
help further reduce the chance of going to the space. But such
policy should be compute-light; otherwise, it may incur per-
formance drops [19]. Recent fast cache eviction algorithms
such as QD-LP-FIFO [84] may shed light on this space, and
we leave such exploration as future work.
Remark: So far, DINT carefully leverages the dirty bits to
run the majority of key-value operations directly in eBPF,
while maintaining read-all-write consistency and correct key-
value versions. For the DELETE operation, we deliberately
leave it for the next Section to describe, as it is highly related
to how we efficiently handle non-existing key lookups.

3.2.2 Handling GETs for Non-Existing Keys
So far, in the DINT key-value store, GET requests for non-
existing keys would enumerate all keys mapped to the indexed
kernel bucket including those spilled into the user space, in-
curring high kernel stack overheads. Conventional key-value

3If the new value is too large for the kernel bucket, we will evict the
key-value to the user space.



Kernel 
bucket

User 
bucket

(a) Hit: return 
KV

(b) Miss: carry 
an evicted/dirty 
KV [optional]

(b) Fill KV in 
kernel

UDP

(a) GET.

Kernel 
bucket

User 
bucket

(a) Free slot: 
set KV and 

dirty bit

(b) Full: evict 
a dirty KV 

or 

non-dirty KV
UDP

(b) INSERT.

Kernel 
bucket

User 
bucket

(a) Hit: update 
KV; set dirty 

bit

(b) Miss: evict 
a dirty KV 

or non-dirty
(b) update 
version in 

kernel 

UDP

(c) UPDATE.

Kernel 
bucket

User 
bucket

(a) Hit: clear 
valid bit

(b) Miss: clear 
valid bit; 

reconstruct BF

(b) Fill KV and 
BF in kernel 

(b) Carry a KV 
[optional] and 

BF
UDP

(d) DELETE.

Figure 4: DINT key-value store operations. Solid thick lines indicate frequent paths, while dotted thin lines mean rare paths. BF = Bloom Filter.

stores implemented in the user space do not have such a prob-
lem because the enumeration overhead for them is only a few
more memory accesses; however, for the key-value store in
eBPF, the overhead escalates into expensive kernel network-
ing stack traversing and user-kernel context switching [19,89].

To handle non-existing key GETs efficiently, DINT main-
tains a small Bloom filter [5] in each kernel bucket, represent-
ing the membership of key-values spilled into the user space
(Figure 3). The Bloom filter is updated whenever a key-value
gets spilled into the user space. When a GET operation does
not find the looked-up key in its kernel bucket, it looks up
the Bloom filter to check if the key possibly exists in the user
space. If the Bloom filter answers no, then the GET operation
can guarantee that the key does not exist in the key-value
store, and directly return none to the client; otherwise, the
operation must go to the user space to check the overflow
buckets (see §3.2.1). Since the Bloom filter never reports an
existing key as non-existing (i.e., no false negative errors),
the above “early returning” in the GET operation is always
correct. DINT currently provisions 64 bits for the Bloom filter
in each kernel bucket, sufficient to handle dozens of spilled
key-values. To reduce the hash calculation overhead for the
Bloom filter, DINT reuses the highest six bits of the raw hash
value from the key-value store. We choose to implement our
custom Bloom filter instead of using the built-in Bloom filter
eBPF map [33], in order to avoid extra eBPF map lookup
overhead.

However, the Bloom filter design creates a challenge for
the key-value DELETE operation. This is because: when the
to-be-deleted key-value is in the user space, the DELETE
operation will need to remove the key-value from the Bloom
filter; however, the Bloom filter does not support member-
ship removal in order to guarantee no false negative errors.
To address this challenge, DINT lets the user-space process
reconstruct a new Bloom filter for the remaining key-values
whenever it deletes one, and then updates the new Bloom filter
to the kernel. Reconstructing the Bloom filter is doable, as the
user space records all the spilled key-values in its overflow
buckets. Formally, the DELETE operation works as follows.
DELETE (Figure 4d): For simplicity, we assume the to-be-
deleted key-value exists in the key-value store. In the frequent
path (a) where the INSERT operation finds the key-value in
the kernel bucket, it clears the valid bit and directly returns to
the client. In the rare path (b) where the key-value is not found
in the kernel bucket and the Bloom filter reports its existence
in the user space, the DELETE operation must forward the

request packet to the user space. The user-space process will
look up the key-value in the overflow buckets, clear its valid
bit, reconstruct a new Bloom filter based on the remaining
spilled key-values, and send back a response packet to the
client. The response packet will piggyback the new Bloom
filter and an optional spilled key-value (if existing, and this
key-value should not be covered in the new Bloom filter), and
trigger the TC egress eBPF program, which fills the Bloom
filter and key-value into the kernel bucket.

3.3 DINT Log Manager
High-performance distributed transaction systems store trans-
action logs in memory for failure recovery (assuming battery-
backed DRAM or fast NVRAM [14, 29]). The transactions
logs grow up as the transaction systems run: if they exceed the
log space (e.g., memory capacity of the machine), the trans-
action systems usually truncate the oldest logs [14] or dump
them into disks [78]; DINT follows the truncating manner.
Since the logging operation is on the transaction critical path,
DINT aims to provide a fast logging mechanism entirely in-
side the eBPF in failure-free cases, while supporting complex
offline recovery in failure cases.

To this end, DINT leverages the eBPF maps to implement
a circular log buffer abstraction entirely in the kernel. A cir-
cular log buffer allows pushing log entries to the tail to sup-
port logging operations in transaction systems; it also allows
popping log entries from the head (from the user space) to
support log replaying during failure recovery. DINT imple-
ments such a circular log buffer using a large-size eBPF ar-
ray map to store log entries, and another eBPF array map
to maintain the head and tail, both inside the kernel. These
two eBPF maps are also accessible to the user space for log
replaying. To avoid thread contentions during logging oper-
ations, DINT provisions a circular log buffer on each CPU
core. This is achieved by using the eBPF per-CPU array map
(BPF_MAP_TYPE_PERCPU_ARRAY [32]). When the log man-
ager looks up a per-CPU array map, it will automatically get
the map entry corresponding to its local CPU core.

4 DINT Implementation
Our DINT prototype consists of 2.1K lines of eBPF (for kernel
code) and 4.3K lines of C++ (for user-space code). DINT uses
Clang/LLVM-16 to compile the eBPF program into eBPF
bytecode. The eBPF bytecode gets attached to and runs inside
the XDP and TC hooks of the standard kernel networking
stack, atop unmodified Linux OSes. The user-space process



uses the standard POSIX kernel-visible threads (i.e., pthreads)
and the Linux UDP socket to receive rare-path request packets
and send response packets. Our prototype currently supports
two different transaction protocols, i.e., a 2PL-based proto-
col and an OCC-based protocol, demonstrating the genericity
of DINT’s designs to some extent. Our DINT prototype cur-
rently does not implement failure recovery to handle machine
failures; as described in Section 2.1, we assume a separate
configuration manager would handle them off the critical path,
thus not impacting the critical-path performance we focus on.

To reduce the performance impact of user-kernel context
switching when passing request packets to the user space,
DINT runs the user-space process (that handles rare-path re-
quests) on CPU cores that do not receive NIC interrupts or run
eBPF programs, similar to prior work [89]. This is achieved
by configuring the IRQ affinity of the NIC device to exclude
the rare-path handling core. Note that the rare-path handling
core does not do any busy polling and can be shared with
other applications.

To better reason about the performance of DINT, we build
two baseline transaction processing systems that run in the
user space. One baseline uses the standard kernel UDP
socket with SO_REUSEPORT enabled to reduce thread con-
tentions [19], and pthreads. Another baseline uses the UDP
stack from the kernel-bypass runtime Caladan [17] that sup-
ports DPDK-style packet busy-polling and user-space thread-
ing for fast context switching. Both baselines leverage DINT’s
performance optimizations (e.g., lock sharing) if helpful, but
without eBPF programming constraints—so that they can
handle hash collisions efficiently using state-of-the-art solu-
tions [44]. The two baselines consist of 6.1K lines of C++.

5 Evaluation
This section aims to answer the following questions:
1. What is the throughput and latency of DINT compared to

kernel-bypass approaches (§5.1 and §5.2)?
2. Can DINT support different transaction protocols on trans-

action workloads efficiently (§5.1 and §5.2)?
3. Can DINT provide load-aware CPU scaling (§5.3)?
4. What are the effects of the write-back mechanism, Bloom

filter, and rare paths on DINT’s performance (§5.6)?
Testbed: We use 13 r650 physical machines from Cloud-
Lab [15]. Each machine has two 36-core (72 logic-core) Intel
Xeon Platinum 8360Y CPUs at 2.4GHz, 256GB memory,
and a dual-port Mellanox ConnectX-6 100Gb NIC via PCIe
4.0×16. All machines are connected via a Dell Z9432F switch
under the same rack. For all experiments, we use a single CPU
in the same NUMA domain as the NIC to enforce NUMA
locality; we also use a single 100Gb NIC port, as CloudLab
currently only wires one such port of r650 to the switch.

For all experiments, each machine runs an unmodified
Ubuntu 20.04 OS. For eBPF and UDP-related experiments,
we use kernel v6.1.0 which has full support for eBPF atomics.
We use the built-in Mellanox NIC driver on Linux kernel

v6.1.0 that has a default NAPI poll budget/batch size of 64
upon each interrupt. We disable Mellanox NIC’s interrupt
coalescing feature [11], as we find it hurts latency while not
increasing throughput, similar to prior work [89]. For Caladan-
related experiments, we are not able to run the Caladan run-
time on kernel v6.1.0, as it requires a customized kernel mod-
ule that relies on specific kernels; instead, we manage to run
it on kernel v5.8.0. Since Caladan uses the kernel-bypass net-
working stack and threading, different OS kernels should not
have a significant impact on its performance.
Measurement methodology: For transaction benchmark-
ing, we use 3 machines to run transaction servers with three-
way replication and sharding; that is, each machine is the
primary for one shard and a replica for the other two. For
microbenchmarks that benchmark individual lock manager,
key-value store, and log manager, we use 1 machine to run
the microbenchmark server without replication or sharding
to understand their standalone performance. We use the rest
machines to run multiple transaction/microbenchmark clients
that issue requests in a closed-loop manner. To avoid the
client machines becoming the bottleneck, we provision 8
cores on each transaction/microbenchmark server; the client
machines further use Caladan’s kernel-bypass UDP stack and
user-space threading to generate requests. We then vary the
number of clients, and measure the achieved throughput and
client-perceived median/average and 99th-tail latency, similar
to prior transaction works [6, 42, 56, 87].
Comparison baselines: As mentioned in Section 4, we com-
pare DINT to two baseline transaction processing systems:
one is based on the Linux kernel UDP socket, another is
based on the UDP stack from the kernel-bypass runtime Cal-
adan [17]. For simplicity, we just use kernel UDP and Caladan
to refer to these two baselines respectively. The Caladan base-
line is a challenging baseline that features DPDK-style packet
busy-polling, NIC RSS to evenly spread packets among avail-
able cores, and well-implemented and efficient user-space
UDP stack and threading.

We provision the memory sizes of the user-space key-value
store (for the two baselines), eBPF key-value store (for DINT),
and lock table (for all three) to be 1.5× of the key-values/locks
in corresponding workloads, similar to FaSST [29]. By de-
fault, kernel UDP and Caladan use all provisioned cores to
handle requests, while Caladan uses one extra core to run its
scheduler. DINT devotes one core out of the provisioned cores
to handle rare-path requests (§4), while the rest cores handle
frequent-path requests.

5.1 Microbenchmarks
To understand how each DINT component compares to base-
lines, we implement a series of microbenchmarks, including
a 2PL-based and an OCC-based lock manager with skewed
locking requests (80% shared locking requests or version
reads), a key-value store with 40B skewed reads, and a log
manager with 56B writes. These microbenchmark parameters



Kernel UDP Caladan Dint

0

25

50

75

100

M
ed

ia
n 

la
te

nc
y 

(μ
s)

0

25

50

75

100

M
ed

ia
n 

la
te

nc
y 

(μ
s)

0

50

100

150

200

M
ed

ia
n 

la
te

nc
y 

(μ
s)

0

25

50

75

100

M
ed

ia
n 

la
te

nc
y 

(μ
s)

0 20 40
Throughput (Mops)

0

25

50

75

100

99
th

-ta
il 

la
te

nc
y 

(μ
s)

(a) 2PL lock manager.

0 20 40
Throughput (Mops)

0

25

50

75

100

99
th

-ta
il 

la
te

nc
y 

(μ
s)

(b) OCC lock manager.

0 10 20
Throughput (Mops)

0

50

100

150

200

99
th

-ta
il 

la
te

nc
y 

(μ
s)

(c) Key-value store.

0 20 40 60
Throughput (Mops)

0

25

50

75

100

99
th

-ta
il 

la
te

nc
y 

(μ
s)

(d) Log manager.

Figure 5: Microbenchmark load-latency curves (both median and 99th-tail).

(e.g., skewness, value size) are derived from the TATP work-
load [47]. The two lock managers and the key-value store
are provisioned with 36 million lock/key slots, while their
requests target 24 million locks/keys.
Lock manager: Figure 5a and 5b show how the latencies
(both median and 99th-tail) of the 2PL and OCC lock manager
vary with different achieved throughput for different systems,
respectively. Each system performs similarly across the two
lock managers with the OCC lock manager being slightly
faster, as version reads in OCC do not run atomic operations.
Overall, DINT achieves 3.1×-3.2× higher throughput than
Caladan, with 0%-8%/5%-55% higher unloaded median/99th-
tail latency, while kernel UDP performs much worse than
others. We notice that DINT has throughput fluctuations at
high loads; we think this is because the achieved batch size
during interrupt handling gets changed unstably.

It might be supersizing that DINT achieves even higher
throughput than the kernel-bypass Caladan system. How-
ever, this is achievable, as Caladan wraps raw UDP pack-
ets into a high-level connection-oriented abstraction (i.e.,
rt::UdpConn) for applications, which incurs packet copy
overhead between network buffers and application buffers,
thus losing some performance, while DINT directly works on
low-level UDP/ethernet packets. Additionally, each Caladan
transaction server creates a rt::UdpConn for each transac-
tion client and spawns a user-space thread to handle corre-
sponding transaction requests. Although rt::UdpConn only
maintains simple connection states with small packet copy
and user-space threading is efficient (e.g., 50ns per context
switch [61]), they still consume extra CPU time, compared
to DINT that directly modifies incoming ethernet packets and
forwards back.

In terms of latency, kernel-bypass Caladan achieves lower
minimum latency than kernel-stack DINT, e.g., 13µs vs. 14µs
of the median and 20µs vs. 23µs of the 99th-tail for the
2PL lock server. The latency gap, especially for the 99th-
tail, is mainly caused by the interrupt-driven nature of DINT,

which includes the overheads of NIC interrupt delivery and
running interrupt handler. We note that such overheads can
be effectively amortized under high loads, thus not impacting
throughput. We think the small increased latency is acceptable,
as the current data center network usually has one or a few
tens of microseconds RTT [20, 51].
Key-value store: Figure 5c shows the load-latency curves
for the key-value store. Both Caladan and DINT’s perfor-
mance gets dropped compared to the lock managers, due to
more compute in key-value operations. DINT achieves 2.17×
higher throughput than Caladan, while having 0%-7%/27%-
57% higher unloaded median/99th-tail latency. The minimum
latency for Caladan and DINT is 14µs vs. 15µs for the me-
dian, and 21µs vs. 25µs for the 99th-tail, demonstrating DINT
only incurs small interrupt handling overheads.
Log manager: Figure 5d shows the load-latency curves for
the log manager. Similarly, DINT outperforms Caladan on
throughput (by 3.6×) but sacrifices latency (by 0%-7% for
unloaded median and 5%-40% for unloaded 99th-tail). Re-
garding the absolute performance number, DINT achieves up
to 7.4 Mops per core. This translates into as low as 0.14µs per
operation/packet, demonstrating the efficiency of offloading
frequent-path operations into the kernel. Both DINT and Cal-
adan achieve higher throughput on the log manager than the
lock managers, as the serial log appending operations have
better cache locality.

5.2 Transaction Benchmarks
We now evaluate DINT and other baselines on typical OLTP
workloads, including TATP [47] and SmallBank [77]. TATP
is a read-intensive OLTP benchmark modeling database be-
haviors of telecommunication providers. It features small
key-values (8B keys and 40B values), 80% read-only transac-
tions that read one or more keys, and 20% transactions that
modify key-values. We provision 7 million TATP subscribers
sharded across the three transaction servers. Similar to prior
works [14, 29], we use the OCC-based transaction protocol



Kernel UDP Caladan Dint

0 5 10 15
Throughput (Mtps)

0

25

50

75

100

A
ve

ra
ge

 la
te

nc
y 

(μ
s)

(a) Average latency vs. tput.

0 5 10 15
Throughput (Mtps)

0

250

500

750

1000

99
th

-ta
il 

la
te

nc
y 

(μ
s)

(b) 99th-tail latency vs. tput.

Figure 6: OCC on TATP workload. Mtps = Million transactions per
second.

(see §2.1) for the read-intensive TATP workload.
SmallBank is a write-intensive OLTP benchmark model-

ing bank account transactions, with 8B keys and values, and
85% write transactions. We provision 24 million bank ac-
counts sharded across the three transaction servers. We use
a 2PL-based transaction protocol suitable for write-intensive
workloads. Compared to OCC, the 2PL-based protocol uses
read-write locks in the read+lock phase without the validate
phase; it has similar log and commit phases (§2.1).

DINT can easily support both transaction protocols by lever-
aging different lock managers and slightly changing client
behaviors, demonstrating the genericity of its designs.
TATP: Figure 6a and 6b show how the average4 and 99th-tail
transaction latencies of different systems change when vary-
ing the throughput, respectively. DINT achieves 1.9× higher
transaction throughput than Caladan with 6%-10%/12%-16%
higher unloaded average/99th-tail latency. As described in
Section 5.1, the higher throughput of DINT benefits from
directly manipulating and forwarding raw ethernet/UDP pack-
ets immediately after the NIC driver receives the packets, in
contrast to Caladan that works on a high-level connection-
oriented abstraction. Meanwhile, batching effectively amor-
tizes interrupt handling overheads in DINT, leading to a high
sustained load on transaction servers. On the other hand, such
batching inevitably causes higher latency for DINT when
compared to the kernel-bypass polling-based Caladan, i.e.,
3µs/14µs higher minimum average/99th-tail latency.

Although not an apple-to-apple comparison, we cite pub-
lished performance numbers of RDMA-based transaction sys-
tems to demonstrate the throughput achieved by DINT is
within the same order of magnitude as RDMA-based ones.
For example, FaSST reports 8.7 Mtps/machine with 14 cores
and 1 million TATP subscribers per machine [29, §6.2], while
DINT achieves 5.62 Mtps/machine with 8 cores and 2.3 mil-
lion subscribers per machine.
SmallBank: Figure 7a and 7b show the average and 99th-
tail transaction latencies of different systems when varying
transaction throughput under the SmallBank workload. DINT
achieves 2.6× higher throughput than Caladan, while only
adding 1%-5%/3%-9% unloaded average/99th-tail latency;

4We show the average rather than the median, as transaction workloads
contain many small transactions that dominate the median latency.

Kernel UDP Caladan Dint

0.0 2.5 5.0 7.5
Throughput (Mtps)

0

50

100

150

200

A
ve

ra
ge

 la
te

nc
y 

(μ
s)

(a) Average latency vs. tput.

0.0 2.5 5.0 7.5
Throughput (Mtps)

0

250

500

750

1000

99
th

-ta
il 

la
te

nc
y 

(μ
s)

(b) 99th-tail latency vs. tput.

Figure 7: 2PL on SmallBank workload.

0 5 10 15
Throughput (Mtps)

0

10

20

C
or

e 
us

ag
e Kernel UDP

Caladan
Dint

Figure 8: Core usage vs. throughput (on TATP).

the added minimum average/99th-tail latency is 2µs/5µs.
Each SmallBank transaction consists of ∼10 transaction re-
quests on average, including locking and key-value opera-
tions; therefore, DINT could sustain ∼82 million/sec request
rate on 24 cores across three machines. Therefore, DINT’s
per-core request rate, i.e., ∼3.4 mops, is also within the same
order of magnitude as RDMA two-sided operations, i.e., 3.6
mops reported by [81, Figure 3] on a ConnectX-6 NIC.

5.3 CPU Utilization
We now examine whether DINT can scale CPU usage as load
changes, avoiding burning CPU cores. We use the same TATP
workload as in Section 5.2, but provision enough number of
clients, specify different transaction rates (by adjusting the
sleeping time interval between two consecutive transaction
requests in each client), and measure the CPU core usage of
transaction servers. For kernel UDP and DINT, they rely on
NIC interrupt to wake up any sleeping kernel-visible thread
(i.e., pthread) when packets arrive. For Caladan, it supports a
CPU-efficient non-spinning mode where the dedicated sched-
uler busy polls the NIC, and wakes up sleeping user-space
threads when needed via IPIs (Inter-Process Interrupt); the
Caladan scheduler also reallocates CPU cores every 5µs for
the application process based on various load signals (e.g.,
packet and thread queueing delay [17]), to provision just-
enough CPU cores for the current load.

Figure 8 shows how the CPU core usage varies with dif-
ferent throughput for different systems. Until 5 Mtps load,
Caladan achieves the lowest core usage and can additively
allocate more cores as the throughput increases, due to its fast
core reallocation. After 5 Mtps load, DINT achieves lower
CPU usage than Caladan and can additively scale its CPU
usage to 17 Mtps, because of packet batching during inter-
rupt handling. Kernel UDP has the worst CPU scaling curve,
caused by the high overheads of frequent kernel networking
stack traversing and user-kernel context switching. Neverthe-



Dint DPDK

0 10 20
Throughput (Mtps)

0

25

50

75

100

A
ve

ra
ge

 la
te

nc
y 

(μ
s)

(a) Average latency vs. tput.

0 10 20
Throughput (Mtps)

0

250

500

750

1000

99
th

-ta
il 

la
te

nc
y 

(μ
s)

(b) 99th-tail latency vs. tput.

Figure 9: Comparing raw DPDK with DINT (on TATP).

less, to enable more efficient CPU scaling for DINT under low
loads, one way could be consolidating multiple NIC interrupts
onto fewer cores to leverage batching to reduce per-packet
processing overheads. We discuss more in Section 6.

5.4 Comparison to Raw DPDK
Figure 9 compares raw DPDK performance with DINT on
the TATP workload. Here, “raw DPDK” means busy polling
a batch of transaction packets (up to 64, similar to kernel
NAPI) from the NIC, processing transaction requests, and
then directly modifying and forwarding packets back in a
batch as responses. Therefore, it is more efficient than the
Caladan baseline, but requires busy polling all cores. Overall,
DINT achieves 71% of the raw DPDK performance with
21%-25%/24%-28% higher unloaded average/99th-tail la-
tency. The lower performance of DINT is mainly caused
by two factors: 1) DINT devotes one core (out of eight) to
the user-space process, and 2) DINT is interrupt-driven, trad-
ing some performance for better CPU efficiency by not busy
polling any core (see §5.3). We note that the curves of the
raw DPDK experience latency spikes in the middle due to
insufficient packet batching.

5.5 Comparison to More Baselines
We now compare the performance of DINT with more base-
lines that leverage other networking stacks. In particular, we
compare to eRPC [28] and AF_XDP socket [31]. eRPC is a
kernel-bypass event-driven RPC library that builds on top of
raw ethernet packets with its own efficient reliable transport
protocol. It supports both DPDK and RDMA in busy-polling
manners; our testing uses DPDK. AF_XDP is a new ker-
nel socket family that leverages eBPF/XDP to directly DMA
packet payload to a pre-registered user-space memory region,
so that user-space applications can efficiently receive and
send packets in a zero-copy manner. AF_XDP appears to ap-
plications as a set of socket APIs, so the application’s packet
processing logic can be written in a normal programming lan-
guage (e.g., C/C++, Go) without the strict kernel verification
as in eBPF. We run AF_XDP with two modes: floating where
all provisioned cores handle NIC interrupts and run transac-
tion servers, and dedicating where half of the cores handle
NIC interrupts and another half run transaction servers.

Figure 10a and 10b shows the load-latency curves of eRPC,

eRPC AF_XDP (floating) AF_XDP (dedicating) Dint

0 20 40
Throughput (Mops)

0

25

50

75

100

M
ed

ia
n 

la
te

nc
y 

(μ
s)

(a) OCC lock manager.

0 10 20
Throughput (Mops)

0

25

50

75

100

M
ed

ia
n 

la
te

nc
y 

(μ
s)

(b) Key-value store.

Figure 10: Comparing eRPC and AF_XDP with DINT.

KV workload
[Throughput (Mops)]

Write-through
(BMC [19])

Write-back Write-back+BF
(DINT)

All GETs, all exists 21.6 21.7 21.7
80% GETs, all exists 1.0 21.1 20.9

80% GETs, 31% exists 0.4 0.5 25.0

Table 1: Impact of write-back and Bloom filter. “80% GETs” and
“31% exists” are based on the TATP workload and its largest table.

AF_XDP, and DINT for the OCC lock manager and key-value
store respectively. For both applications, eRPC achieves the
lowest minimum latency—8µs lower than DINT on both ap-
plications. For the lock manager, DINT achieves the highest
throughput, and outperforms AF_XDP by 1.6× and eRPC by
2.3×. eRPC suffers from latency spikes at low loads because
of insufficient RPC batching. For the key-value store that has
more compute per operation, DINT has similar throughput as
AF_XDP while achieving 29% lower minimum latency, be-
cause of directly handling requests in the kernel without going
into the user space; DINT achieves 1.4× higher throughput
than eRPC. The throughput results for eRPC must be taken
with a grain of salt: eRPC builds a generic loss-tolerant RPC
abstraction with session management, while DINT relies on
transaction semantics to handle packet losses and works on
raw ethernet/UDP packets.

One interesting observation is that AF_XDP in the floating
model performs much worse than the dedicating mode; simi-
lar results occur for DINT on the CPU placement of rare-path
request handling process as described in Section 4. This is
caused by the high user-kernel context switching overheads
when co-locating interrupt handling and the application pro-
cess on the same cores. We discuss further in Section 6.

5.6 Design Drill-Down
5.6.1 Impact of Write-Back and Bloom Filter
Table 1 shows how the write-back and Bloom filter designs
impact DINT performance on different key-value store work-
loads. With all GETs and all keys existing, the write-through,
write-back, and write-back + Bloom filter achieve similar
throughput. Once with 20% PUTs, the write-through through-
put drops to 1.0 Mops because of handling PUTs in the user
space, while the other two keep similarly high throughput.
Furthermore, adding 68.75% key-value operations for non-



0.10
0.25

0.50
0.75

1.00
1.25

1.50
2.00

2.50

Ratio of eBPF mem

0.00

0.08

0.16

R
at

io
 o

f r
ar

e
-p

at
h 

pk
ts

(a) Rare-path ratio.

0.10
0.25

0.50
0.75

1.00
1.25

1.50
2.00

2.50

Ratio of eBPF mem

0

8

16

Th
ro

ug
hp

ut
 (M

tp
s)

(b) Throughput.

0.10
0.25

0.50
0.75

1.00
1.25

1.50
2.00

2.50

Ratio of eBPF mem

0.000

0.015

0.030

Fa
ilu

re
 ra

te
in

 lo
ck

sh
ar

in
g 

(%
)

(c) Failure rate in lock sharing.

Figure 11: Impact of varying the eBPF memory size under the TATP workload. “Ratio of eBPF memory” is against the workload dataset size
including both locks and key-values.

Interrupt collocation
Lowest unloaded

average/99p latency
Maximum
throughput

Collocating with app 35/139 µs 7.0 Mtps
Not collocating (DINT) 34/122 µs 16.9 Mtps

Table 2: Impact of collocating interrupt processing and the applica-
tion on the same cores (on TATP).

existing keys, only the write-back + Bloom filter can achieve
high throughput, as it handles most key-value operations in
the kernel, for both existing and non-existing keys.

5.6.2 Impact of Rare-Path Ratio

Figure 11a and 11b shows how different rare-path ratios (by
changing the eBPF memory size) impact DINT’s transaction
throughput. The rare-path ratio significantly impacts DINT
performance. For example, with 10% of the workload dataset
size in the eBPF memory, which gives 18% of rare-path packet
ratio, DINT only achieves 740 Kops. Once we provision the
eBPF memory to be 1.5× of the workload dataset size, similar
to how FaSST [29] provisions its hash table, there will be
only 1.7% of rare-path packet ratio, and DINT reaches 16.7
Mops. This supports the DINT’s design principle of offloading
frequent-path operations as much as possible into the kernel.

5.6.3 Impact of Lock Sharing

Figure 11c shows how the failure rate caused by lock sharing
varies with different sizes of the eBPF memory (i.e., differ-
ent sizes of the lock table). Overall, the failure rate is under
0.03%; when we provision the eBPF memory to be 1.5×
of the workload dataset size, the failure rate is only around
0.002%. This confirms that lock sharing works well on typical
OLTP workloads.

5.6.4 Impact of Interrupt Collocation with Applications

Table 2 shows how collocating interrupt processing with the
application impacts transaction latency and throughput. In-
terrupt collocation slightly increases the lowest unloaded
average/99th-tail latency by 3%/14% compared to no col-
location, because interrupt processing contends CPU cores
with application threads; it significantly reduces the maximum
throughput by 59%, as high interrupting rate easily starves the
application threads, bottlenecking the system performance.

6 Discussion and Future Work

Symmetric vs. asymmetric models: DINT adopts an asym-
metric client-side transaction model [42, 56, 60, 87], where
each transaction server “passively” handles incoming trans-
action requests. DINT then leverages eBPF/XDP to offload
transaction server operations into the kernel. In contrast, a
symmetric model [14, 29, 82] requires the transaction server
to also act as a client to issue transaction requests. This cre-
ates challenges to DINT, as eBPF/XDP itself cannot generate
new packets. Fortunately, by leveraging the AF_XDP tech-
nique (see §5.5) that provides fast packet sending function-
ality, DINT could support symmetric models efficiently. We
leave the integration of DINT with AF_XDP as future work.
Implications to networking stack research: DINT shows
that the kernel networking stack can achieve kernel-bypass-
like throughput and latency, but has worse CPU efficiency
under low loads than well-engineered kernel-bypass stacks
(§5.3). Therefore, we call for more research on optimizing the
CPU efficiency of the kernel networking stack that offloads
application operations. One idea may be smartly consolidat-
ing NIC interrupts to just-enough CPU cores by manipulating
the NIC IRQ affinity, which leverages batching during inter-
rupt handling to reduce per-packet processing overheads. This
shares the same goal as Shenango [61] and Caladan [17], but
targets the interrupt-driven kernel networking stack.

Another research problem is how to isolate the kernel stack-
offloaded operations and user-space operations, as naively
co-locating both on the same cores would cause severe per-
formance drop due to frequent user-kernel context switching
(see §4 and §5.5). DINT currently uses a simple static par-
titioning policy, but a more advanced dynamic partitioning
policy could possibly provide better performance.
Implications to transaction protocol research: Co-
designing transaction protocols with eBPF allows for both
high performance and good CPU efficiency. In this work, we
co-design an OCC/2PL-based transaction protocol in DINT.
DINT should also be able to support more advanced trans-
action protocols like MDCC [40] and Tapir [87] that essen-
tially rely on read-write and version-based locking. To sup-
port advanced protocols like ROCOCO [57] and Janus [58]
that maintain transaction dependency DAGs in the lock man-
ager, DINT would need to maintain complex graph data struc-
tures in eBPF, which calls for more co-designs to address the
challenge of eBPF programming constraints. In an attempt



to reduce CPU utilization, many transaction systems have
pushed to incorporate network offload devices like RDMA
and smartNICs [14, 73]. However, these devices are much
more expensive than commodity NICs, and come with cus-
tomized network stacks that have high maintenance overheads
in terms of engineering. DINT provides the opportunity for
accomplishing similar goals without the need for expensive
customized hardware, and provides a new point in the design
space for transaction protocol developers to explore.
Wish list for eBPF: DINT suffers from the fixed-size eBPF
maps, and no dynamic memory allocations for handling large
key-values. Therefore, the most helpful eBPF feature would
be supporting dynamic memory allocations so that offloaded
states could be more memory-efficient. Another helpful fea-
ture would be the egress XDP hook. When developing DINT,
we were thinking of using the AF_XDP socket to process
rare-path request packets (instead of the slower UDP socket);
however, AF_XDP faces troubles with the egress bookkeep-
ing of in-kernel states (§3.2), as it relies on the ingress-only
XDP while bypassing the egress TC hook. Currently, the only
way for AF_XDP to work is by calling eBPF functions in the
user space, but this suffers from high syscall overheads. If
the kernel supports the egress XDP hook, DINT could instead
leverage the faster AF_XDP socket to handle rare paths.

7 Related Work
Distributed in-memory transactions: By leveraging battery-
backed DRAM or NVRAM, distributed transactions are
no longer bottlenecked by disk IOs, but the networking
IOs. This has spurred a series of research that leverages
RDMA to implement distributed in-memory transactions, e.g.,
FaRM [14], FaSST [29], DrTM [83], DrTM+R [8], DrTM+H [82],
and Prism [6]. Rather than using RDMA that bypasses ker-
nels, DINT sticks to the most common commodity NICs with
the kernel networking stack for better security, isolation, pro-
tection, maintainability, and debuggability, without losing per-
formance.
High-performance networking stacks: The inefficiency of
traditional kernel networking stack has motivated the designs
of many kernel-bypass networking stacks, e.g., mTCP [24],
eRPC [28], Snap [51], Demikernel [86] and more [17, 30, 37,
61, 63, 74]. These stacks generally require DPDK-style busy
polling, and trades security, protection, maintainability, and
more for high performance. Instead, DINT provides compa-
rable high performance without busy polling for distributed
transaction applications, while guaranteeing kernel-based se-
curity, protection, maintainability, etc.

Perhaps the most relevant work to DINT in this space is
IX [3] which implements a protected kernel networking stack
and achieves kernel-bypass performance. To achieve high
networking performance, IX leverages adaptive batching to
amortize user-kernel transition overheads, while DINT relies
on the built-in batching of the existing kernel networking stack
to amortize interrupt handling overheads. One advantage of

DINT over IX is that DINT directly works for existing widely-
deployed Linux kernels without any kernel modifications or
customized kernel modules.
Hardware offloading for applications: Offloading network-
intensive operations to specialized hardware such as FPGA [1,
22, 41, 45], SmartNICs [36, 43, 46, 64, 72, 81], and pro-
grammable switches [13, 25, 26, 85] significantly improves
application performance. However, they are generally hard
to deploy in today’s cloud environments [28, 89], as these ad-
vanced hardware are not widely available in the public cloud.
In contrast, DINT aims to be generic and readily-deployable
without relying on any specialized hardware by leveraging the
kernel-native eBPF techniques on widely-deployed modern
Linux kernels and CPU platforms.
eBPF applications: eBPF is mostly used for packet filter-
ing [52], infrastructure monitoring [2,66], and L4 load balanc-
ing [16] in industry. Recent research has proposed more appli-
cations including: accelerating key-value stores [19], sidecar
proxies [68], Paxos [89], DBMS proxies [7], gathering con-
gestion control signals [59], guiding request scheduling [27],
offloading storage functions [88], and optimizing locks [62].
DINT is a new eBPF application targeting distributed transac-
tions.

8 Conclusion
DINT is a distributed in-memory transaction system under
the kernel networking stack, yet achieving kernel-bypass-like
throughput and latency. DINT achieves this by offloading
transaction data structures and operations into the kernel via
eBPF techniques, significantly reducing kernel stack over-
heads. Compared to a transaction system implemented using
Caladan, a well-engineered kernel-bypass networking stack,
DINT even achieves 2.6× higher throughput and only adds
10%/16% unloaded average/99th-tail latency.

More importantly, DINT challenges the conventional belief
that the kernel networking stack is not suitable for distributed
in-memory transactions, or generally, µs-scale networked ap-
plications; DINT shows that, with proper application-kernel
co-design enabled by eBPF, one important class of such ap-
plications under the kernel networking stack can achieve
kernel-bypass-like performance. DINT code is available at
https://github.com/DINT-NSDI24/DINT.

Acknowledgments
We thank our shepherd Tom Barbette and the anonymous
reviewers for their insightful comments. We thank Cloud-
lab [15] for providing us with the development and evaluation
infrastructure. We also thank Zhiying Xu and Junzhi Gong
for their helpful feedback. This work was supported in part by
ACE, one of the seven centers in JUMP 2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.
Yang Zhou is also supported by the Google PhD Fellowship.

https://github.com/DINT-NSDI24/DINT


References

[1] Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho,
Michael Ferdman, Peter Milder, and Shuai Mu. Wa-
verunner: An Elegant Approach to Hardware Acceler-
ation of State Machine Replication. In Proceedings of
USENIX NSDI, pages 357–374, 2023.

[2] The Cilium Authors. Cilium: eBPF-Based Networking,
Observability, Security. https://cilium.io/.

[3] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of
USENIX OSDI, pages 49–65, 2014.

[4] Brian N Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gün Sirer, Marc E Fiuczynski, David Becker,
Craig Chambers, and Susan Eggers. Extensibility Safety
and Performance in the SPIN Operating System. In Pro-
ceedings of ACM SOSP, pages 267–283, 1995.

[5] Burton H Bloom. Space/Time Trade-offs in Hash Cod-
ing with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[6] Matthew Burke, Sowmya Dharanipragada, Shannon
Joyner, Adriana Szekeres, Jacob Nelson, Irene Zhang,
and Dan RK Ports. PRISM: Rethinking the RDMA
Interface for Distributed Systems. In Proceedings of
ACM SOSP, pages 228–242, 2021.

[7] Matthew Butrovich, Karthik Ramanathan, John
Rollinson, Wan Shen Lim, William Zhang, Justine
Sherry, and Andrew Pavlo. Tigger: A Database Proxy
That Bounces with User-Bypass. Proceedings of the
VLDB Endowment, 16(11):3335–3348, 2023.

[8] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and General Distributed Transactions
Using RDMA and HTM. In Proceedings of ACM Eu-
roSys, pages 1–17, 2016.

[9] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s Globally
Distributed Database. ACM Transactions on Computer
Systems (TOCS), 31(3):1–22, 2013.

[10] Intel Corporation. Intel Optane Persistent Memory. ht
tps://www.intel.com/content/www/us/en/pr
oducts/docs/memory-storage/optane-persist
ent-memory/overview.html.

[11] NVIDIA Corporation. Understanding interrupt moder-
ation. https://enterprise-support.nvidia.co

m/s/article/understanding-interrupt-moder
ation.

[12] The Transaction Processing Council. TPC-C: On-Line
Transaction Processing Benchmark. https://www.tp
c.org/tpcc/.

[13] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. Netpaxos: Consensus
at Network Speed. In Proceedings of ACM SIGCOMM
Symposium on Software Defined Networking Research
(SOSR), pages 1–7, 2015.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of ACM
SOSP, pages 54–70, 2015.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
Design and Operation of CloudLab. In Proceedings of
USENIX ATC, pages 1–14, 2019.

[16] Facebook. Katran: A High-Performance Layer 4 Load
Balancer. https://github.com/facebookincubat
or/katran.

[17] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In Proceedings of USENIX OSDI,
pages 281–297, 2020.

[18] Jian Gao, Youyou Lu, Minhui Xie, Qing Wang, and Jiwu
Shu. Citron: Distributed Range Lock Management with
One-sided RDMA. In Proceedings of USENIX FAST,
pages 297–314, 2023.

[19] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating Mem-
cached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In Proceedings of USENIX NSDI, pages 487–
501, 2021.

[20] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan MG Wassel, Zhehua Wu, Sunghwan Yoo,
et al. Aquila: A unified, low-latency fabric for datacen-
ter networks. In Proceedings of USENIX NSDI, pages
1249–1266, 2022.

[21] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The eXpress Data Path: Fast
Programmable Packet Processing in the Operating Sys-
tem Kernel. In Proceedings of ACM CoNEXT, pages
54–66, 2018.

https://cilium.io/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://www.tpc.org/tpcc/
https://www.tpc.org/tpcc/
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran


[22] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In Proceedings of USENIX NSDI, pages
425–438, 2016.

[23] Brendan Jackman. Atomics for eBPF. https://lwn.
net/Articles/840224/.

[24] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
USENIX NSDI, pages 489–502, 2014.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination.
In Proceedings of USENIX NSDI, pages 35–49, 2018.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing Key-Value Stores with Fast
In-Network Caching. In Proceedings of ACM SOSP,
pages 121–136, 2017.

[27] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-Defined Schedul-
ing Across the Stack. In Proceedings of ACM SOSP,
pages 605–620, 2021.

[28] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of USENIX NSDI, pages 1–16, 2019.

[29] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185–201, 2016.

[30] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of EuroSys, pages 1–16, 2019.

[31] The Linux kernel development community. AF_XDP.
https://docs.kernel.org/networking/af_xdp.
html.

[32] The Linux kernel development commu-
nity. BPF_MAP_TYPE_ARRAY and
BPF_MAP_TYPE_PERCPU_ARRAY. h t t p s :
//docs.kernel.org/bpf/map_array.html.

[33] The Linux kernel development community.
BPF_MAP_TYPE_BLOOM_FILTER . https://do
cs.kernel.org/bpf/map_bloom_filter.html.

[34] The Linux kernel development community. NAPI. http
s://docs.kernel.org/networking/napi.html.

[35] The Linux kernel development community. struct
sk_buff. https://docs.kernel.org/networki
ng/skbuff.html.

[36] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. LineFS: Efficient SmartNIC
Offload of a Distributed File System with Pipeline Par-
allelism. In Proceedings of ACM SOSP, pages 756–771,
2021.

[37] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs First-
Class Datacenter Citizens. In Proceedings of USENIX
ATC, pages 863–880, 2019.

[38] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,
Alvin R Lebeck, and Danyang Zhuo. Understanding
RDMA Microarchitecture Resources for Performance
Isolation. In Proceedings of USENIX NSDI, pages 31–
48, 2023.

[39] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In Proceedings of USENIX NSDI, pages 287–305, 2022.

[40] Tim Kraska, Gene Pang, Michael J Franklin, Samuel
Madden, and Alan Fekete. MDCC: Multi-Data Center
Consistency. In Proceedings of EuroSys, pages 113–126,
2013.

[41] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of ACM SOSP, pages 137–152, 2017.

[42] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of ACM
SOSP, pages 104–120, 2017.

[43] Junru Li, Youyou Lu, Qing Wang, Jiazhen Lin, Zhe
Yang, and Jiwu Shu. AlNiCo: SmartNIC-accelerated
Contention-aware Request Scheduling for Transaction
Processing. In Proceedings of USENIX ATC, pages
951–966, 2022.

[44] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage. In Proceedings of
USENIX NSDI, pages 429–444, 2014.

[45] Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro,
Brent E Stephens, Hassan Wassel, and Aditya Akella.

https://lwn.net/Articles/840224/
https://lwn.net/Articles/840224/
https://docs.kernel.org/networking/af_xdp.html
https://docs.kernel.org/networking/af_xdp.html
https://docs.kernel.org/bpf/map_array.html
https://docs.kernel.org/bpf/map_array.html
https://docs.kernel.org/bpf/map_bloom_filter.html
https://docs.kernel.org/bpf/map_bloom_filter.html
https://docs.kernel.org/networking/napi.html
https://docs.kernel.org/networking/napi.html
https://docs.kernel.org/networking/skbuff.html
https://docs.kernel.org/networking/skbuff.html


RingLeader: Efficiently Offloading Intra-Server Orches-
tration to NICs. In Proceedings of USENIX NSDI, pages
1293–1308, 2023.

[46] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading Dis-
tributed Applications onto SmartNICs Using iPipe. In
Proceedings of ACM SIGCOMM, pages 318–333. 2019.

[47] IBM Software Group Information Management. Tele-
com Application Transaction Processing Benchmark.
https://tatpbenchmark.sourceforge.net/.

[48] Linux Programmer’s Manual. bpf-helpers(7). https:
//man7.org/linux/man-pages/man7/bpf-helpe
rs.7.html.

[49] Linux Programmer’s Manual. bpf(2). https://man7
.org/linux/man-pages/man2/bpf.2.html.

[50] Linux Programmer’s Manual. tc-bpf(8). https://ma
n7.org/linux/man-pages/man8/tc-bpf.8.html.

[51] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: A Microkernel Approach to Host Network-
ing. In Proceedings of ACM SOSP, pages 399–413,
2019.

[52] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture. In USENIX winter, volume 46, 1993.

[53] John McNamara. API/ABI Stability and LTS: Current
state and Future. https://www.dpdk.org/wp-con
tent/uploads/sites/35/2017/09/DPDK-Users
pace2017-Day2-2-ABI-Stability-and-LTS-Cur
rent-state-and-Future.pdf.

[54] The memcached contributors. Memcached - a Dis-
tributed Memory Object Caching System. https:
//memcached.org/.

[55] Microsoft. eBPF implementation that runs on top of
Windows. https://github.com/microsoft/ebp
f-for-windows.

[56] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a feather flock together: Scaling
RDMA RPCs with Flock. In Proceedings of ACM SOSP,
pages 212–227, 2021.

[57] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting More Concurrency from Dis-
tributed Transactions. In Proceedings of USENIX OSDI,
pages 479–494, 2014.

[58] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li.
Consolidating Concurrency Control and Consensus for
Commits under Conflicts. In Proceedings of USENIX
OSDI, pages 517–532, 2016.

[59] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal, Mo-
hammad Alizadeh, and Hari Balakrishnan. Restructur-
ing Endpoint Congestion Control. In Proceedings of
ACM SIGCOMM, pages 30–43, 2018.

[60] The University of Texas at Austin. Natacha Crooks. A
client-centric approach to transactional datastores. ht
tps://repositories.lib.utexas.edu/handle
/2152/81352.

[61] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of USENIX NSDI, pages
361–378, 2019.

[62] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Tae-
soo Kim, and Sanidhya Kashyap. Application-Informed
Kernel Synchronization Primitives. In Proceedings of
USENIX OSDI, pages 667–682, 2022.

[63] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The Operating System is the
Control Plane. ACM Transactions on Computer Systems
(TOCS), 33(4):1–30, 2015.

[64] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A Programming System for NIC-
Accelerated Network Applications. In Proceedings of
USENIX OSDI, pages 663–679, 2018.

[65] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma,
and Arvind Krishnamurthy. Designing Distributed Sys-
tems Using Approximate Synchrony in Data Center Net-
works. In Proceedings of USENIX NSDI, pages 43–57,
2015.

[66] The IO Visor Project. BPF Compiler Collection (BCC).
https://github.com/iovisor/bcc.

[67] The IO Visor Project. eXpress Data Path (XDP). https:
//www.iovisor.org/technology/xdp.

[68] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang,
and KK Ramakrishnan. SPRIGHT: Extracting the
Server From Serverless Computing! High-Performance
eBPF-Based Event-Driven, Shared-Memory Processing.
In Proceedings of ACM SIGCOMM, pages 780–794,
2022.

https://tatpbenchmark.sourceforge.net/
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DPDK-Userspace2017-Day2-2-ABI-Stability-and-LTS-Current-state-and-Future.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DPDK-Userspace2017-Day2-2-ABI-Stability-and-LTS-Current-state-and-Future.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DPDK-Userspace2017-Day2-2-ABI-Stability-and-LTS-Current-state-and-Future.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DPDK-Userspace2017-Day2-2-ABI-Stability-and-LTS-Current-state-and-Future.pdf
https://memcached.org/
https://memcached.org/
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://repositories.lib.utexas.edu/handle/2152/81352
https://repositories.lib.utexas.edu/handle/2152/81352
https://repositories.lib.utexas.edu/handle/2152/81352
https://github.com/iovisor/bcc
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp


[69] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. ReDMArk: Bypassing
RDMA Security Mechanisms. In Proceedings of
USENIX Security, pages 4277–4292, 2021.

[70] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre,
Daniel S Berger, James C Hoe, Aurojit Panda, and Jus-
tine Sherry. We Need Kernel Interposition over the
Network Dataplane. In Proceedings of ACM HotOS,
pages 152–158, 2021.

[71] Salvatore Sanfilippo. Redis: An In-Memory Database
That Persists on Disk. https://github.com/redis
/redis.

[72] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: SmartNIC-
Accelerated Distributed Transactions. In Proceedings
of ACM SOSP, pages 740–755, 2021.

[73] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: Smartnic-
accelerated distributed transactions. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, page 740–755, New York,
NY, USA, 2021. Association for Computing Machinery.

[74] ScyllaDB. SeaStar High Performance Server-Side Ap-
plication Framework. https://github.com/scyll
adb/seastar.

[75] Alexei Starovoitov. BPF at Facebook. https://kern
el-recipes.org/en/2019/talks/bpf-at-faceb
ook/.

[76] Brent E Stephens, Darius Grassi, Hamidreza Almasi,
Tao Ji, Balajee Vamanan, and Aditya Akella. TCP is
Harmful to In-Network Computing: Designing a Mes-
sage Transport Protocol (MTP). In Proceedings of ACM
HotNets, pages 61–68, 2021.

[77] The H-Store Team. SmallBank Benchmark. https:
//hstore.cs.brown.edu/documentation/depl
oyment/benchmarks/smallbank/.

[78] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy Transactions in
Multicore In-Memory Databases. In Proceedings of
ACM SOSP, pages 18–32, 2013.

[79] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben
Pfaff. Revisiting the Open vSwitch Dataplane Ten Years
Later. In Proceedings of ACM SIGCOMM, pages 245–
257, 2021.

[80] VMware. Update to VMware’s per-CPU Pricing Model
| VMware. http://web.archive.org/web/202110
23072913/https://news.vmware.com/company/
cpu-pricing-model-update-feb-2020.

[81] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen,
and Haibo Chen. Characterizing Off-Path SmartNIC
for Accelerating Distributed Systems. In Proceedings
of USENIX OSDI, pages 987–1004, 2023.

[82] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed
Transactions: Hybrid is Better! In Proceedings of
USENIX OSDI, pages 233–251, 2018.

[83] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast In-Memory Transaction Processing
Using RDMA and HTM. In Proceedings of ACM SOSP,
pages 87–104, 2015.

[84] Juncheng Yang, Ziyue Qiu, Yazhuo Zhang, Yao Yue, and
KV Rashmi. FIFO can be Better than LRU: the Power of
Lazy Promotion and Quick Demotion. In Proceedings
of ACM HotOS, pages 70–79, 2023.

[85] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast,
Centralized Lock Management Using Programmable
Switches. In Proceedings of ACM SIGCOMM, pages
126–138, 2020.

[86] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The Demikernel Datapath OS Archi-
tecture for Microsecond-Scale Datacenter Systems. In
Proceedings of ACM SOSP, pages 195–211, 2021.

[87] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Build-
ing Consistent Transactions with Inconsistent Replica-
tion. ACM Transactions on Computer Systems (TOCS),
35(4):1–37, 2018.

[88] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Jun-
feng Yang, Amy Tai, Ryan Stutsman, et al. XRP: In-
Kernel Storage Functions with eBPF. In Proceedings of
USENIX OSDI, pages 375–393, 2022.

[89] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada,
and Minlan Yu. Electrode: Accelerating Distributed
Protocols with eBPF. In Proceedings of USENIX NSDI,
pages 1391–1407, 2023.

https://github.com/redis/redis
https://github.com/redis/redis
https://github.com/scylladb/seastar
https://github.com/scylladb/seastar
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://web.archive.org/web/20211023072913/https://news.vmware.com/company/cpu-pricing-model-update-feb-2020
http://web.archive.org/web/20211023072913/https://news.vmware.com/company/cpu-pricing-model-update-feb-2020
http://web.archive.org/web/20211023072913/https://news.vmware.com/company/cpu-pricing-model-update-feb-2020

	Introduction
	Background
	Distributed Transactions
	eBPF in Kernel Networking Stack

	Dint Design
	Dint Lock Manager
	Dint Key-Value Store
	Write-Back Key-Value Store in eBPF
	Handling GETs for Non-Existing Keys

	Dint Log Manager

	Dint Implementation
	Evaluation
	Microbenchmarks
	Transaction Benchmarks
	CPU Utilization
	Comparison to Raw DPDK
	Comparison to More Baselines
	Design Drill-Down
	Impact of Write-Back and Bloom Filter
	Impact of Rare-Path Ratio
	Impact of Lock Sharing
	Impact of Interrupt Collocation with Applications


	Discussion and Future Work
	Related Work
	Conclusion

