
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Adaptive Measurements Using One Elastic Sketch
Tong Yang , Jie Jiang , Peng Liu, Qun Huang , Junzhi Gong , Yang Zhou ,

Rui Miao, Xiaoming Li, and Steve Uhlig

Abstract— When network is undergoing problems such as
congestion, scan attack, DDoS attack, etc, measurements are
much more important than usual. In this case, traffic character-
istics including available bandwidth, packet rate, and flow size
distribution vary drastically, significantly degrading the perfor-
mance of measurements. To address this issue, we propose the
Elastic sketch. It is adaptive to currently traffic characteristics.
Besides, it is generic to measurement tasks and platforms. We
implement the Elastic sketch on six platforms: P4, FPGA, GPU,
CPU, multi-core CPU, and OVS, to process six typical measure-
ment tasks. Experimental results and theoretical analysis show
that the Elastic sketch can adapt well to traffic characteristics.
Compared to the state-of-the-art, the Elastic sketch achieves
44.6 ∼ 45.2 times faster speed and 2.0 ∼ 273.7 smaller
error rate.

Index Terms— Sketches, network measurements, elastic,
compression, generic.

I. INTRODUCTION

NETWORK measurements provide indispensable informa-
tion for network operations, quality of service, capacity

planning, network accounting and billing, congestion control,
anomaly detection in data centers and backbone networks
[2]–[16]. Recently, sketch-based solutions1 [7], [17] have been
widely accepted in network measurements [3], [4], [18], [19],
thanks to their higher accuracy compared to sampling methods
[3], [19], [20] and their speed.

Existing measurement solutions [7], [17], [19]–[25] mainly
focus on a good trade-off among accuracy, speed and memory
usage. The state-of-the-art UnivMon [3] pays attention to

Manuscript received July 24, 2018; revised May 18, 2019; accepted
August 30, 2019; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor K. Argyraki. This work was supported in part by the Primary
Research & Development Plan of China under Grant 2016YFB1000304 and
Grant 2018YFB1004403, in part by the NSFC under Grant 61672061, and in
part by the project PCL Future Regional Network Facilities for Large-scale
Experiments and Applications under Grant PCL2018KP001. The preliminary
version of this article will appear in ACM SIGCOMM 2018 [1].

T. Yang is with the Department of Computer and Science, Peking University,
Beijing 100871, China, and also with the Peng Cheng Laboratory, Shenzhen
518052, China (e-mail: yangtongemail@gmail.com).

J. Jiang, P. Liu, and X. Li are with the Department of Computer and Science,
Peking University, Beijing 100871, China (e-mail: jie.jiang@pku.edu.cn).

Q. Huang is with the Institute of Computing Technology, CAS, Beijing
100190, China (e-mail: huangqun@ict.ac.cn).

J. Gong and Y. Zhou are with Harvard University, Cambridge, MA 02138
USA (e-mail: yangzhou@g.harvard.edu).

R. Miao is with the Alibaba Group, Hangzhou 311121, China (e-mail:
miao.rui@alibaba-inc.com).

S. Uhlig is with the Networks School of EECS, Queen Mary University of
London, London E1 4NS, U.K. (e-mail: steve.uhlig@quml.ac.uk).

Digital Object Identifier 10.1109/TNET.2019.2943939
1In this paper, sketches refers to data streaming algorithms that can be used

for network measurements.

an additional aspect, generality, namely using one sketch
to process many tasks, and makes a good trade-off among
these four dimensions. Although existing work has made great
contributions, they do not focus on one fundamental need:
achieving accurate network measurements no matter how
traffic characteristics (including available bandwidth, flow size
distribution, and packet rate) vary. Measurements are espe-
cially important when network is undergoing problems, such
as network congestion, scans and DDoS attacks. In such cases,
traffic characteristics vary drastically, significantly degrading
the measurement performance. Therefore, it is desirable to
achieve accurate network measurements when traffic charac-
teristics vary a lot.

The first traffic characteristic is the available bandwidth.
In data centers, administrators care more about the state of
the whole network than a single link or node, known as
network-wide measurements [3], [19], [26]. In data centers,
administrators can deploy many measurement nodes, which
periodically report sketches to a collector [3], [19], [26]. It
requires available bandwidth for measurements, which share
the same data plane as the user traffic. However, in data
centers, network congestion is common [27]. It can happen
frequently within a single second [28] and be as large as more
than half of the network bandwidth [8]. In this case, on the
one hand, measurements are especially critical for congestion
control and troubleshooting. One cannot wait for the available
bandwidth to be sufficient to report the sketches, because
network problems should be handled immediately. On the
other hand, network measurements should not be a burden
for the network, as pointed out in [29]–[31]. A good solution
is to actively compress the sketch with little accuracy loss,
thereby reducing bandwidth usage. Therefore, it is desirable to
compress the sketch. This has not been done before in the liter-
ature. Besides passive compression during congestion, network
operators need to proactively control the measurement tasks
as well. For example, to keep service-level agreements (SLA)
during maintenance or failures [32], operators tend to reduce
measurements and leave the bandwidth for critical user traffic.

The second characteristic is the packet arrival rate (packet
rate for short) [33], [34], which could vary drastically. For
example, some routing protocols or mechanisms are proposed
to adjust the packet sending rate to optimize network perfor-
mance [35]–[37]. Also, when the network is under attack (e.g.,
a network scan or a DDoS attack), most packets tend to be
small. In this case, the packet rate is very high, even though the
available bandwidth might still be significant. The processing
speed of existing sketches on software platforms is fixed in
terms of packet rate. Therefore, it does not work well when
the packet rate suddenly becomes much higher, likely failing
to record important information, such as the IP addresses of
attackers. Therefore, in this case, it is desirable to accelerate

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0001-7019-2077
https://orcid.org/0000-0002-2387-6131
https://orcid.org/0000-0002-8939-9120
https://orcid.org/0000-0002-3082-7872
https://orcid.org/0000-0001-6251-6836

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

the processing speed by actively discarding the unimportant
information.

The third characteristic is flow size distribution. It is known
that most flows are small [38], referred to as mouse flows,
while a very few flows are large, referred to as elephant flows
[20], [31], [39]–[41]. An elegant solution is to accurately sep-
arate elephant flows from mouse flows, and use different data
structures to store them. However, the flow size distribution
varies. One might think we can predict traffic and allocate
appropriate size of memory for sketches in advance. It may
be easy to predict the number of elephant flows in one hour,
but hard at timescales of seconds or milliseconds. Therefore,
it is desirable to design an elastic data structure which can
dynamically allocate appropriate memory size for elephant
flows.

In summary, this leads us to require our sketch to be elastic:
adaptive to bandwidth, packet rate, and flow size distribution.
Besides them, there are three other requirements in measure-
ments: 1) generic, 2) fast, and 3) accurate. First, each measure-
ment node often has to perform several tasks. If we build one
data structure for each task, processing each incoming packet
requires updating all data structures, which is time- and space-
consuming. Therefore, one generic data structure for all tasks
is desirable. Second, to be fast, the processing time of each
packet should be small and constant. Third, being accurate
implies that the error rate should be small enough when using
a given amount of memory. Among all existing solutions,
no solution is elastic, and only two well known solutions claim
to be generic: UnivMon [3] and FlowRadar [26]. However,
our experimental results in Section VII show that UnivMon
is practically not accurate, while FlowRadar is not memory
efficient.

In this paper, we propose a novel sketch, namely the Elastic
sketch. It is composed of two parts: a heavy part and a light
part. We propose a separation technique named Ostracism to
keep elephant flows in the heavy part, and mouse flows in the
light part.

To make it “elastic”, we do the following. 1) To be adaptive
to bandwidth, we propose algorithms to compress and merge
sketches. First, we can compress our sketch into an appropriate
size to fit the current available bandwidth. Second, we can
use servers to merge sketches, and reduce the bandwidth
usage. 2) When the packet rate becomes high, we change
the processing method: each packet only accesses the heavy
part to record the information of elephant flows exclusively,
discarding the information of mouse flows. In this way, we can
achieve much faster processing speed at the cost of reasonable
accuracy drop. 3) As the number of elephant flows varies
and is unknown in advance, we propose an algorithm to
dynamically increase the memory size of the heavy part.

To make our solution “generic”, we do the following.
1) To be generic in terms of measurement tasks, we keep all
necessary information for each packet, but discard the IDs of
mouse flows, which is based on our observation that the IDs
of mouse flows are memory consuming but practically useless.
2) To be generic in terms of platforms, we propose a software
and a hardware version of the Elastic sketch, to make our
sketch easy to be implemented on both software and hardware
platforms. Further, we tailor a P4 version of the Elastic sketch,
given the popularity of this platform [42].

Owing to the separation and discarding of unnecessary
information, our sketch is accurate and fast: experimental
results show that our sketch achieves 44.6 ∼ 45.2 times faster

speed and 2.0 ∼ 273.7 smaller error rate than the state-of-the-
art: UnivMon [3].

In this paper, we make the following contributions:

• We propose a novel sketch for network measurements,
namely the Elastic sketch. Different from previous work,
we mainly focus on the ability of the sketch to adapt
to bandwidth, packet rate and flow size distribution. The
Elastic sketch is also generic, fast and accurate. We propose
two key techniques, one to separate elephant flows from
mouse flows, and another for sketch compression.

• We implement our sketch on six platforms: P4, FPGA, GPU,
CPU, multi-core CPU, and OVS, to process six typical
measurement tasks.

• Experimental results show that our sketch works well on all
platforms, and significantly outperforms the state-of-the-art
for each of the six tasks.

II. BACKGROUND AND RELATED WORK

A. Challenges of Adaptive Measurements

As mentioned above, when network does not work well,
the network measurement is especially important. In this case,
traffic characteristics vary drastically, posing great challenges
for measurement.

First, it is challenging to send measurement data (e.g.,
sketch) in appropriate size according to the available band-
width. When the available bandwidth is small, sending a
large sketch will cause long latency and affect user traffics.
Furthermore, all existing solutions fix the memory size before
starting measurement. The problem is how to make the sketch
size smaller than the available bandwidth, especially when
network does not work well. A naive solution is to build
sketches in different sizes for the same network traffic. For
example, one can build two sketches S1, S2 with the memory
size of M and M/2, and then we can send S2 to the collector
when the available bandwidth is small. A better solution is
to build only S1, and quickly compress it into a half. It is
not hard for the compressed S1 to achieve the same accuracy
with S2. However, it is challenging for the compressed S1 to
achieve much higher accuracy than S2, which is one design
goal of this paper.

Second, it is challenging to make the processing speed
adaptive to the packet rate, which could vary drastically during
congestion or attack. Existing sketches often have constant
processing speed, but require several or even more than
10 memory access for processing one packet. The design goal
is 2 memory accesses for processing each packet when packet
rate is low, and 1 memory access when packet rate is high.
However, it is challenging to keep high accuracy when using
only one memory access.

Third, in real network traffic, the flow size distribution
is skewed and variable. “Skewed” means most flows are
mouse flows [38], while a few flows are elephant flows [20],
[31], [39]. To achieve memory efficiency, one can manage to
separate elephant flows from mouse flows. As elephant flows
are often more important than mouse flows, it is desirable
to assign appropriate memory size for the elephant flows.
Unfortunately, the number of elephant flows is not known in
advance and hard to predict [43]. Therefore, it is challenging
to dynamically allocate more memory for the elephant flows.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: ADAPTIVE MEASUREMENTS USING ONE ELASTIC SKETCH 3

B. Generic Method for Measurements

We focus on the following network measurement tasks, and
more tasks can be found in [7], [44]–[47].

Flow Size Estimation: estimating the flow size for any flow
ID. A flow ID can be any combinations of the 5-tuple, such
as source IP address and source port, or only protocol. In this
paper, we consider the number of packets of a flow as the
flow size. This can be also used for estimating the number of
bytes for each flow: assuming the minimal packet is 64 bytes,
given an incoming packet with 120 bytes, we consider it as
� 120

64 � = 2 packets.
Heavy Hitter Detection: reporting flows whose sizes are

larger than a predefined threshold.
Heavy Change Detection: reporting flows whose sizes in

two adjacent time windows increase or decrease beyond a
predefined threshold, to detect anomalous traffic.

Flow size Distribution Estimation: estimating the distrib-
ution of flow sizes.

Entropy Estimation: estimating the entropy of flow sizes.
Cardinality Estimation: estimating the number of flows.
Generic solutions can use one data structure to support

all these measurement tasks. If the IDs and sizes of all the
flows are recorded, then we can process these tasks, but
recording all flow IDs is difficult and needs high memory
usage [19], [20]. We observe that flow IDs of mouse flows are
not necessary for these tasks. As most flows are mouse flows,
discarding IDs of mouse flows can significantly save memory
and bandwidth. For this, we need to separate elephant flows
from mouse flows. To address this problem, we leverage the
spirit of Ostracism, and propose a fast and accurate separation
algorithm. Finally, our sketch is both generic and memory
efficient.

Another meaning of generic is that the algorithm can
be implemented on various platforms. For small companies,
the traffic speed may be not high, and measurement on CPU
is a good choice. For large companies, the traffic speed could
be very high, and then hardware platforms should be used
for measurements to catch up with the high speed. Therefore,
the measurement solution should be generic, and can make
good performance trade-off on different platforms.

CounterBraids [48] is an excellent work when knowing all
flow IDs. However, we didn’t compare with it because Coun-
terBraids and the Elastic sketch focus on different goals when
measuring network traffic. There are three typical differences
between CounterBraids and Elastic. 1) For accuracy, Elastic
allows small error, while CounterBraids can achieve no error
when the allocated memory is large enough. 2) Elastic stores
only flow IDs of elephant flows, while CounterBraids does
not store any flow ID. CounterBraids works only when flow
IDs of both elephant and mouse flows are known. 3) When
knowing all flow IDs, CounterBraids can potentially handle
most existing tasks. But the paper of CounterBraids focuses
on only frequency estimation. Differently, Elastic handles six
typical frequency related tasks. From the above comparison
in three aspects, we can see that CounterBraids tries to
achieve high accuracy by using elegant mechanisms, while
Elastic focuses on handling measurement tasks under different
network conditions and achieve as high accuracy as possible.
Therefore, it is hard to compare Elastic sketch with Coun-
terBraids, because recording all flow IDs in real high-speed
streams is challenging. Besides, the light part i.e., the CM
sketch of Elastic can be replaced by CounterBraids. In this

Fig. 1. Basic version of Elastic. To insert f9, after incrementing votes−,
vote−
vote+ � λ = 8, hence f4 is evicted from the heavy part and inserted into
the light part.

way, we can achieve the same function as CounterBraids:
decoding all frequencies with no error.

UnivMon [3] is the another work to be generic, which
can be applied to several tasks. UnivMon is based on a key
method named universal streaming [49]. Accuracy is guaran-
teed thanks to the theory of universal streaming. UnivMon
can achieve good performance, however, it does not handle
the problem of variable traffic characteristics. To the best of
our knowledge, our sketch is the first work that relies on a
single data structure which is adaptive to bandwidth, packet
rate, and flow size distribution.

III. ELASTIC SKETCHES

A. Basic Version

Rationale: As mentioned above, we need to separate ele-
phant flows from mouse flows. We simplify the separation to
the following problem: given a high-speed network stream,
how to use only one bucket to select the largest flow? As
the memory size is too small, it is impossible to achieve the
exactly correct result, thus our goal is to achieve high accu-
racy. Our technique is similar in spirit to Ostracism (Greek:
ostrakismos, where any citizen could be voted to be evicted
from Athens for ten years). Specifically, each bucket stores
three fields: flow ID, positive votes, and negative votes. Given
an incoming packet with flow ID f1, if it is the same as the
flow in the bucket, we increment the positive votes. Otherwise,
we increment the negative votes, and if #negative votes

#positive votes � λ,
where λ is a predefined threshold, we expel the flow from the
bucket, and insert f1 into it.

Data structure: As shown in Figure 1, the data structure
consists of two parts: a “heavy” part recording elephant flows
and a “light” part recording mouse flows. In this paper, we use
“elephant flows” to represent flows whose sizes are larger
than a threshold T, and “mouse flows” to represent flows
whose sizes are no larger than T. The value of T is different
in different scenarios, and can be determined by network
operators. The heavy part H is a hash table associated with a
hash function h(.). Each bucket of the heavy part records the
information of a flow: flow ID (key), positive votes (vote+),
negative votes (vote−), and flag. Vote+ records the number of
packets belonging to this flow (flow size). Vote− records the
number of other packets. The flag indicates whether the light
part may contain positive votes for this flow. The light part
is a CM sketch. A CM sketch [17] consists of d arrays (L1,
L2, …, Ld). Each array is associated with one hash function,
and is composed of w counters. Given an incoming packet,
the CM sketch extracts the flow ID, computes d hash functions

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

to locate one counter per array, and increments the d counters
(we call them d hashed counters) by 1. The query is similar to
the insertion: after obtaining the d hashed counters, it reports
the minimum one.

Insertion:2 Given an incoming packet with flow ID f ,
we hash it to the bucket H[h(f)%B], where B is the number
of buckets in the heavy part. Suppose the bucket stores
(f1, vote+, f lag1, vote−). Similar to Ostracism, if f matches
f1, we increment vote+. Otherwise, we increment vote−
and decide whether to evict f1 according to the two votes.
Specifically, there are four cases:

Case 1: The bucket is empty. We insert (f, 1, F, 0) into it,
where F means no eviction has happened in the bucket. The
insertion ends.

Case 2: f = f1. We just increment vote+ by 1.
Case 3: f �= f1, and vote−

vote+ < λ after incrementing vote−
by 1 (λ is a predefined threshold, e.g., λ = 8) We insert (f, 1)
into the CM sketch.

Case 4: f �= f1, and vote−
vote+ � λ after incrementing vote−

by 1. We “elect” flow f by setting the bucket to (f, 1, T, 1),
and evict flow f1 to the CM sketch: increment the mapped
counters by vote+. Note that in this case the flag is set to T
(true), because some votes of flow f may be inserted into the
light part before f is elected.

Query: For any flow not in the heavy part, the light part
(the CM sketch) reports its size. For any flow f in the heavy
part, there are two cases: 1) The flag of f is false. Its size
is the corresponding vote+ with no error; 2) The flag of f is
true. We need to add the corresponding vote+ and the query
result of the CM sketch.

The accuracy of Elastic is high in most cases, owing to
the separation of elephant flows and mice flows. 1) There is
no error in the heavy part: for the flows with flag of false,
the recorded vote+ is the flow size with no error; for flows
with flag of true, the recorded vote+ is one part of the flow size
still with no error, while the other part is recorded in the light
with error. 2) In the light part, we do not record the flow ID,
and only record the sizes of mice flows, and thus can use many
small counters (e.g., 8-bit counters), while traditional sketch
needs to use a few large counters (e.g., 32-bit counters) to
accommodate the elephant flows. Therefore, our light part can
be very accurate. In summary, the accuracy of both elephant
and mice flows is high, and we give the formal analysis of
Elastic in Section IV.

The accuracy of Elastic drops in the worst case – elephant
collisions: when two or more elephant flows are mapped into
the same bucket, some elephant flows are evicted to the light
part and could make some mouse flows significantly over-
estimated.

Elephant collision rate: defined as the number of buckets
mapped by more than one elephant flows divided by the
total number of buckets. It is proved that the number of
elephant flows that mapped to each bucket follows a Binomial
distribution in the literature [50]. We show the following
formula of the elephant collision rate Phc.

Theorem 1: Within any bucket in the heavy part of the
Elastic sketch, the probability of elephant collisions is

Phc = 1 −
(

H

w
+ 1
)

e−
H
w (1)

2During insertions, we follow one principle: the insertion operations must
be one-directional, because it is hard to perform back-tracking operations on
hardware platforms.

Fig. 2. This is the hardware version of Elastic. The elephant collision rate
Pc(.) drops exponentially owing to the use of different hash functions for
each sub-table.

where H is the number of elephant flows, and w is the number
of buckets in the heavy part.

Proof: There are totally H elephant flows, and each flow
is randomly mapped to a certain bucket by the hash function.
Given an arbitrary bucket and an arbitrary flow, the probability
that the flow is mapped to the bucket is 1

w . Therefore, for
any bucket, the number of elephant flows that mapped to the
bucket Z follows a Binomial distribution B(H, 1

w). When H
is large (e.g., H > 100), and 1

w is a small probability, then Z
approximately follows a Poisson distribution π(H

w), i.e.,

Pr{Z = i} = e−
H
w

(
H
w

)i
i!

(2)

There are elephant collisions within one bucket iff Z � 2
for this bucket. Therefore, we have

Phc = 1 − Pr{Z = 0} − Pr{Z = 1}
= 1 −

(
H

w
+ 1
)

e−
H
w (3)

For example, when H/w = 0.1 or 0.01, the elephant
collision rate is 0.0046 and 0.00005, respectively.

Solutions for elephant collisions: Obviously, reducing the
hash collision rate can reduce the elephant collision rate.
Thus, we can use leverage the following two classic methods.
1) Multiple sub-tables (hardware version): We can use
several sub-tables in the heavy part, and each sub-table is
exactly the same as the heavy part of the basic version,
but is associated with different hash functions. As shown
in Figure 2, the elephant collision rate decreases exponentially
as the number of sub-tables increases linearly. As each sub-
table has the same operations, this version is suitable for
hardware platforms. 2) Multiple key-value pairs in one
bucket (software version): This allows several elephant flows
be recorded in one bucket, and thus the elephant collision rate
drops significantly. The differences from the basic version are:
1) All the flows in each bucket share one vote− field; 2) We
always try to evict the smallest flow in the mapped bucket. In
this way, the bucket size could be larger than a machine word,
thus the accessing of the heavy packet could be the bottleneck.
Fortunately, this process can be accelerated by using SIMD on
CPU platforms, and thus this version is suitable for software
platforms.

B. Adaptivity to Available Bandwidth

To adapt to the available bandwidth, we propose to compress
the sketches before sending them. Most flows are mouse flows,
thus the memory size of the light part is often much larger than
that of the heavy part. In this section, we will show how to
compress and merge the light part - CM sketch. In prior work,
Michael and et al. [51] proposed a method to compress bloom
filters. Our work contributes to compressing sketches.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: ADAPTIVE MEASUREMENTS USING ONE ELASTIC SKETCH 5

Fig. 3. The Equal Division Compression algorithm.

Fig. 4. Network-wide measurements. Servers can be used to merge sketches
when the network is large.

1) Compression of Sketches: To compress a sketch, our key
idea is first to group the counters, and then merge counters in
the same group into one counter.

Grouping: As shown in Figure 3, given a sketch A of
size zw� × d (width w = zw�, depth d, z is an integer
representing the compression rate). Our grouping method
proceeds as follows: 1) We split A into z equal divisions.
The size of each division is w� × d. 2) We build a sketch
B of size w� × d. 3) Counters with the same index in its
division ({Ak

i [j]}k=1,...,Z) are in the same group, so we can
set Bi[j] = OP z

k=1{Ak
i [j]} (1 � i � d, 1 � j � z), where

OP is the merging operator (e.g., Max or Sum). To query
sketch B, we only need to change the hash function hi(.)%w
to hi(.)%w%w� , owing to the following lemma.

Lemma 2: Given an arbitrary integer i, two integers w and
w�, if w is divisible by w�, then (i%w) %w� = i%w� .

For example, (10%6)%3 = 10%3. This lemma will be
repeated leveraged in this paper.

Merging: we propose two merging methods. The first
method is to sum up the counters in each group, i.e., Bi[j] =∑z

k=1{Ak
i [j]}. We name this method Sum Compression

(SC). As mentioned in Section II, to adapt to available
bandwidth, one can build two CM sketches S1 and S2 with
memory size of M and M/2. A better solution is to compress
S1 to a half. Using SC, the compressed S1 has the same
accuracy as S2, while SC does not take advantage of the
information recorded by S1. The second method is Maximum
Compression (MC). Instead of “sum”, we can use “maxi-
mum”, i.e., Bi[j] = max{A1

i [j], A
2
i [j], . . . , A

z
i [j]}. Compared

with SC, the sum operation in MC uses more information in
S1, and thus has better accuracy.

About SC and MC, we have the following conclusions: 1)
We prove that after SC, the error bound of the compressed
CM sketch does not change, while after MC, the error bound
is tighter. 2) We prove that using MC, the compressed CM
sketch has over-estimation error but no under-estimation error.
3) Our Compression is fast, and our experimental results show
that the compressing speed is accelerated by 5 ∼ 8 times after
using SIMD (Single Instruction and Multiple Data). 4) There is
no need for decompression. 5) Compression does not require
any additional data structure. More analysis are provided in
Section IV.

Fig. 5. Maximum merging algorithm.

Fig. 6. Maximum Merging algorithm for sketches with different sizes.

2) Merging of Sketches: As shown in Figure 4, one can use
servers to save bandwidth. Each server receives many sketches
from measurement nodes, merges them, and then sends them
to the collector. For the sake of merging, we need to use the
same hash functions for all sketches. If they have common
flow IDs, we propose to use a naive method – Sum Merging.
Otherwise, we propose a novel method, namely Maximum
Merging.

Sum Merging: Given two CM sketches of the same size
d × w, the Sum merging algorithm just adds the two CM
sketches, by adding every two corresponding counters. This
algorithm is simple and fast, but not accurate.

Maximum Merging for same-size sketches: Our algorithm
is named Maximum Merging (MM). As shown in Figure 5,
given two sketches A and B of size w × d, we build a
new sketch C also of size w × d. We simply set Ci[j] =
max{Ai[j], Bi[j]} (1 � i � d, 1 � j � w). For example
in Figure 5, C1[2] = max{A1[2], B1[2]} = max{3, 4} = 4.
This merging method can be easily extended to multiple
sketches. Obviously, after MM merging, the sketch still has
no under-estimation error.

Maximum Merging for different-size sketches: In real
applications, one cannot be sure that two sketches have the
same size. When two sketches have different sizes, we pro-
pose an algorithm called least common multiple expansion
(LCME). Given a sketch A with size w1 × d and a sketch
B of size w2 × d. The LCME algorithm proceeds in the
following steps (see Figure 6). First, we find the least
common multiple of w1 and w2, suppose it is w3. Second,
we perform a copy operation. We copy A w3/w1 − 1 times
and connect all copies into one. We copy B w3/w2 − 1 times
and append these copies one by one. Then sketch A and B have
the same size of w3 ∗ d. The new hash function is hi(.)%w3.
Third, we merge A and B using the above mentioned CMA
algorithm.

Example of LCME: As shown in Figure 6, given a sketch
A with size 2 × 3 and a sketch B with size 2 × 2, as the
least common multiple of 3 and 2 is 6, we copy sketch
A and get a new sketch A� with size 2 × 3, and do the same
operations on B. Without loss of generality, we discuss A only.
For the counter A2[3] = 4, after expansion, it corresponds
to A�

2[3] = 4 and A�
2[6] = 4. The hash functions before and

after expansion are h(.)%3 and h(.)%6, respectively. Then we
perform our Maximum Merging algorithm. For example, after
merging, C2[6] = max{A�

2[6], B�
2[6]} = max{4, 18} = 18.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

C. Adaptivity to Packet Rate

In measurement nodes, there is often an input queue to
buffer incoming packets. The packet rate (i.e., the number of
incoming packets per second) is variable: in most cases, it is
low, but in the worst case, it is extremely high [35]–[37], [52].
When packet rate is high, the input queue will be filled quickly,
and it is difficult to record the information of all packets. To
handle this, a recent work, the SketchVisor [19], leverages
a dedicated component, namely fast path, to absorb excessive
traffic at high packet rate. However, it needs to travel the entire
data structure in the worst case, albeit with an amortized O(1)
update complexity. This incurs substantial memory accesses
and hinders performance. In contrast, our proposed method
always needs exactly one memory access.

We propose a new strategy to enhance the insertion speed
when needed. When the number of packets in the input queue
is larger than a predefined threshold, we let the incoming
packets only access the heavy part, so as to record the
information of elephant flows only and discard mouse flows.
The insertion process of the heavy part is almost unchanged
except in the following case: if a flow f in a bucket is replaced
by another flow f �, the flow size of f � is set to the flow size
of f . The reason why setting f � = f is that, we can guarantee
that the number of packets recorded in Elastic equals to the
real number of inserted packets. Specifically, when a flow f
is evicted from the heavy part, in the basic version of Elastic,
f is supported to be inserted in the light part. However, when
recording flows only in the heavy part, f will not be inserted in
the light part. Therefore, setting the frequency of new coming
flow to f keeps the number of packets recorded in Elastic
unchanged. Therefore, each insertion needs one probe of a
bucket in the heavy part. When packet rate goes down, we use
our previous algorithms.

D. Adaptivity to Flow Size Distribution

A key metric of the flow size distribution is the number of
elephant flows. As it can vary a lot, it is hard to determine the
size of the heavy part. To address this issue, we need to make
the heavy part adaptive to changes in the traffic distribution.
We propose a technique to dynamically double the heavy part.
It works as follows. Initially, we assign a small memory size to
the heavy part. As more and more elephant flows are inserted,
the heavy part will become full. We define a threshold T1.
If an incoming packet is mapped into a bucket in which all
flows are larger than T1, we regard the bucket is full. If the
number of full buckets exceeds a threshold T2, we regard the
heavy part is full. When the heavy part becomes full, we
propose the following copy operation: just copy the heavy
part and combine the heavy part with the copy into one. The
hash function is changed from h(.)%w to h(.)%(2w). Again,
this copy operation works thanks to Lemma 2. After the copy
operation, half of the flows in the buckets should be removed.
The remove operation can be performed incrementally. For
each insertion, we can check all flows in the mapped bucket,
and on average half of the flows are not mapped to that
bucket and can be removed. Even though some buckets may
end up not being cleaned, this does not negatively impact the
algorithm.

When using such a strategy to determine when to copy, there
could be the following cases. For example, when Γ elephant
flows, whose sizes are larger than T1, are mapped into different
buckets, we regard the Elastic sketch is almost full and expand

Fig. 7. Duplication of the heavy part of Elastic. The original number of
buckets in the heavy part is 4, and becomes 8 after duplication.

it, but the sketch has plenty of buckets indeed. However, such
a case rarely happens. For example, assuming the heavy part
has 1000 buckets and Γ = 600 of them has exactly one flow
over T1, the probability is: P =

∑600
i=1

1000−i+1
1000 ≈ 10−102.

Therefore, the effect of this case can be negligible. The reason
for using the size rather than the number of flows per bucket
to judge whether a bucket is full is that, in the beginning of
the insertion, many mouse flows will be inserted in the heavy
part. In this case, we should not execute the copy operation
but evict the mouse flows into the light part.

Example: As shown in Figure 7, we show how to insert the
incoming packet with flow f2 after duplication. We compute
h(f2)%8 and get the mapped bucket, in which flow f3

is. We compute h(f3)%8 = 6 and find that it should be
mapped to the bucket in the copy part. Therefore, we replace
f2 by f3.

Overhead: As the heavy part is often very small (e.g.,
150KB), the time overhead of copying an array of 150KB
is often small enough to be negligible.

IV. FORMAL ANALYSIS

A. Performance of Elastic Sketch

Now we derive the error bound of the basic version of
Elastic for the flow size estimation task. The adaptivity of
Elastic is not considered in this analysis.

Lemma 3: Suppose we use an Elastic sketch (Elastic) and
a Count-min sketch (CM) to record a stream at the same time,
and the CM sketch and the light part of Elastic have the same
width w (the number of counters in each array) and height d
(the number of arrays). At any time during recording, if we
insert all the flows and the corresponding sizes stored in the
heavy part of Elastic into its light part, the light part is exactly
the same as CM.

Proof: We give a brief explanation of this Lemma. At
any time, the heavy part in Elastic captures some flows in the
stream. If we insert the flows from the heavy part into the
light part, it is equivalent to reordering the flows in the stream
and then inserting them into a CM sketch. According to the
insertion of CM sketches, it is obvious that the order of items
does not affect the final state of the CM sketch. As a result,
Lemma 3 holds.

Based on Lemma 3, if we use an Elastic Sketch to record a
stream, the stream can be seen as two sub-streams recorded by
the two parts separately. We then have the following definition.

Definition 1: Let vector f = (f1, f2, . . . , fn) denote the size
vector for a stream, where fi denotes the size of the i-th flow.
Then fh and fl denote the size vector of sub-streams recorded
by the heavy part and the light part, respectively.

Now we give the error bound of the Elastic on flow size
estimation task.

Theorem 4: Given two parameters � and δ, let w = � e
ε �

(e is Euler number) and d = �ln 1
δ �. Let an Elastic sketch with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: ADAPTIVE MEASUREMENTS USING ONE ELASTIC SKETCH 7

height d and width w record the stream with f. The reported
flow size f̂i by the Elastic for flow i is bounded by

f̂i � fi + ��fl�
3

1 < fi + ��f�1 (4)

with probability at least 1 − δ.
Proof: According to the query procedure of the Elastic

sketch, the reported value f̂i can be expressed as f̂i � f̂ih+f̂il,
where f̂ih and f̂il denote the estimated value of the heavy
part and the light part, respectively. Notice that we use the
“�” operator instead of “=”, because if the flag in the heavy
part is not set, the light part will not be queried. According to
Definition 1, f̂ih and f̂il are the estimated values of fih and
fil, where fih and fil is the i-th value in fh and fl, respectively.
Since the heavy part counts each flow exactly, we have
f̂ih = fih. Since the light part of the Elastic sketch is a Count-
Min sketch for fl, according to [17], we have f̂il � ��fl�1 with
probability at least 1 − δ. Then, we have

f̂i � f̂ih + f̂il � fi + ��fl�1 (5)

with probability at least 1 − δ. Since fl represents the stream
stored in the light part, �fl�1 < �f�1. Therefore, Theorem 4
holds.

According to Theorem 4, the estimation error of Elastic
is bounded by �fl�1, instead of �f�1 in Count-Min. Notice
that �fl�1 represents the number of packets recored in the
light part, and �f�1 represents the total number of packets
in the stream. In practice, often, most packets of a stream
are recorded in the heavy part, and thus �fl�1 is usually
significantly smaller than �f�1. Thus Elastic has a much tighter
error bound than Count-Min when the parameters (d and w)
are the same. Although the Elastic sketch needs an additional
heavy part compared to CM, it has a smaller light part because
we do not need large counters to accommodate the largest
flow.

Another observation from Theorem 4 is that, the error
bound of Elastic sketch is determined by the light part, so its
adaptivity to flow size distribution does not affect this error
bound. In the next part, we will discuss how the adaptivity to
available bandwidth affects the error bound.

B. Performance of Compression

1) Error Bound of the Compressed CM Sketch Using Sum
Compression: Here we prove that the error bound does not
change after using the Sum Compression algorithm.

Theorem 5: Assume that a CM sketch with d arrays and zw
counters per array, and z is the SC compression rate of the
sketch. Given an arbitrary small positive number �, the error
of any flow after compression is bounded by

Pr{n̂j � nj + �N} �
(

1
�w

)d

(6)

Clearly that the error bound is identical to that of the CM
sketch not using the Sum Compression algorithm.

Proof: We first focus on one array of the CM sketch. Let
flow fj mapped to counter C1, and after compression, C1

is compressed into a new counter with other z − 1 counters
C2, C3 · · ·Cz . Let Xi be the number of packets that mapped
to counter Ci before compression (except for packets of flow
fj). Therefore, after compression, the value in the new counter

3‖x‖1 is the first moment of vector x, i.e., ‖x‖1 =
�

xi.

is X1 + X2 + · · ·+ Xz . Then the estimated flow size of flow
fj in this array is

n̂1
j = nj +

z∑
i=1

Xi (7)

According to the Markov inequality, given a positive number �,
we have

Pr{n̂1
j � nj + �N} = Pr{n̂1

j − nj � �N}

�
E(n̂1

j − nj)
�N

=
E(
∑z

i=1 Xi)
�N

=
∑z

i=1 E(Xi)
�N

=
z · N

zw

�N
=

1
�w

(8)

Because the estimated flow size of fj is the
minimum of the estimated flow size in each array,
i.e., n̂j = min{n̂1

j n̂2
j · · · n̂d

j}, we have

Pr{n̂j � nj + �N} = Pr{n̂1
j � nj + �N}d �

(
1
�w

)d

(9)

2) Error Bound of the Compressed CM Sketch Using Maxi-
mum Compression: Consider a Count-min sketch with d arrays
and w counters per array. According to the literature [17],
we can easily get the error bound of the CM sketch

Pr{n̂j � nj + �N} �
(

1
�w

)d

(10)

where � is a given positive number, nj is the real size of flow
fj and n̂j is the estimated size of fj .

Next, we consider the CM sketch using our compression
technique.

Theorem 6: Assume that a CM sketch with d arrays and
zw counters per array, and z is the compression rate of the
sketch. Given an arbitrary small positive number � and an
arbitrary flow fj , the error of the sketch after our compression
is bounded by
Pr{n̂j � nj + �N}

�
{

1 −
(

1 − 1
�zw

)[
1 − N

zw(nj + �N)

]z−1
}d

(11)

Proof: After compression, each counter in the new sketch
will be the maximum value of z counters in the original sketch.
Because each array is independent of each other, we first only
focus on the first array. For a certain flow fj , it is mapped
to one counter, and the counter is in the same compression
group with other z − 1 counters. For convenience, we use
V1, V2, · · · , Vz to denote the number of packets mapped to
the z counters, excluding packets from flow fj . Without loss
of generality, we assume that flow fj is mapped to the first
counter in the compression group [53], [54]. In this way,
the estimated size of fj in the first array (n̂1

j) is
n̂1

j = max(V1 + nj, V2, V3, · · · , Vz) (12)

And we have

Pr{n̂1
j � nj + �N}

= Pr{max(V1 + nj , V2, V3, · · · , Vz) � nj + �N}
= 1 − Pr{max(V1 + nj , V2, V3, · · · , Vz) < nj + �N}

= 1 − Pr{V1 + nj < nj + �N}
z∏

i=2

Pr{Vi < nj + �N}

(13)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

According to Markov inequality, it is easy to derive that

Pr{V1 + nj < nj + �N} = Pr{V1 < �N}
� 1 − E(V1)

�N
= 1 − 1

�zw
(14)

Note that E(V1) = N
zw . For i = 2, 3, · · · , z, we have

Pr{Vi < nj + �N} � 1 − E(Vi)
nj + �N

= 1 − N

zw(nj + �N)
(15)

Therefore, we have

Pr{n̂1
j � nj + �N}

= 1 − Pr{V1 + nj < nj + �N}
z∏

i=2

Pr{Vi < nj + �N}

� 1 −
(

1 − 1
�zw

) z∏
i=2

[
1 − N

zw(nj + �N)

]

= 1 −
(

1 − 1
�zw

)[
1 − N

zw(nj + �N)

]z−1

(16)

Now we focus on the error bound for d arrays. Note that
the estimated size of flow fj is minimum value of d mapped
counters, we have

n̂j = min(n̂1
j , n̂

2
j , · · · , n̂d

j) (17)

where n̂i
j denotes the estimated size of fj in the ith array.

Therefore, we have

Pr{n̂j � nj + �N}
= Pr{min(n̂1

j , n̂
2
j · · · n̂d

j) � nj + �N}

=
d∏

i=1

Pr{n̂i
j � nj + �N}

�
d∏

i=1

{
1 −

(
1 − 1

�zw

)[
1 − N

zw(nj + �N)

]x−1
}

=

{
1 −

(
1 − 1

�zw

)[
1 − N

zw(nj + �N)

]z−1
}d

(18)

3) Error Bound Comparison: In this part, We compare the
error bound of the CM sketch and the compressed CM sketch
by our maximum compression.

Theorem 7: Given a compressed CM sketch using our
maximum compression, assume it has the same d and w
with another standard CM sketch. The compressed CM
sketch has a smaller error bound than the standard CM
sketch.

Proof: For convenience, we use PCM to denote the error
bound of standard CM sketches, and use PMC to denote the
error bound of the compressed CM sketch using our maximum

compression algorithm. First, we have

PMC =

{
1 −

(
1 − 1

�zw

)[
1 − N

zw(nj + �N)

]z−1
}d

<

[
1 −

(
1 − 1

�zw

)(
1 − N

zw�N

)z−1
]d

=
[
1 −

(
1 − 1

�zw

)z]d

(19)

For convenience, we let x = 1
εw . Then we define a function

F (z) as

F (z) =
(
1 − x

z

)z

(20)

where z is a positive integer, and x is a number in [0, 1].
According to the inequality of arithmetic and geometric means,
we have

F (z) =
(
1 − x

z

)z

= 1 ·
(
1 − x

z

)z

�
[
1 + z(1 − x

z)
z + 1

]z+1

=
(

1 − x

z + 1

)z+1

= F (z + 1)

(21)

Therefore, F (z) is a monotonic increasing function, and we
have

PMC <

[
1 −

(
1 − 1

�zw

)z]d

= [1 − F (z)]d � [1 − F (1)]d

= PCM (22)

Therefore, the compressed sketch has a smaller error bound
than the standard CM sketch.

According to Theorem 7, we can conclude that if we build
a large sketch S1 for recording traffic and compress it to a
smaller sketch S2 for adaptive to the bandwidth, the error
bound of S2 will always no worse than if we use S2 to record
the traffic directly.

4) Error Bound of the Merged Sketch: Given z sketches
with different size d×wi(1 � d � z), consider merging them
into one sketch using our LCME merging algorithm. Then the
size of the merged sketch should be d×w, where w is the least
common multiple of w1, w2, . . . , wz . In this part, we give the
error bound of the merged sketch after using Sum Merging or
Maximum Merging.

Suppose the i-th sketch records Ni packets, and let
N =

∑z
i=1 Ni. Then we have the following results.

Theorem 8: Suppose the Sum Merging is used to get the
merged sketch. Given an arbitrary small positive number �,
the error of any flow after merging is bounded by

Pr{n̂j � nj + �N} �
(∑z

i=1
Ni

wi

�N

)d

(23)

Theorem 9: Suppose the Maximum Merging is used to get
the merged sketch. Without loss of generality, suppose the
queried flow fj is recorded by the first sketch. Given an
arbitrary small positive number � and the queried flow fj ,
the error of the sketch after merging is bounded by

Pr{n̂j � nj + �N}
�
{

1 −
(

1 − N1

�Nw1

)
Πz

i=2

[
1 − Ni

wi(nj + �N)

]}
(24)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: ADAPTIVE MEASUREMENTS USING ONE ELASTIC SKETCH 9

The proofs of Theorem 8 and 9 are similar to those of
Theorem 5 and 6, so we omit the detailed proofs here.

5) Proof of No Under-Estimation Error:
Theorem 10: After using the MC algorithm, the CM sketch

still has only over-estimation error but no under-estimation
error.

Proof: Without loss of generality, we only focus on one
array (denoted as A[]) in the CM sketch. For any flow fi and its
mapped counter in the array, the value in the counter A[g(fi)]
should be not smaller than ni, i.e., A[g(fi)%w] � ni. Let the
array after using compression algorithm be denoted as A�[].
After using compression algorithm with compression ratio z,
then flow fi is mapped to counter A�[g(fi)%(w/z)], and the
value in the counter is the maximum value of the original z
values. Therefore, we have

A[g(fi)%w] � A�[g(fi)%(w/z)] (25)

In this way, we have ni � A�[g(fi)%(w/z)]. Therefore, for
any flow, its estimated value in one array is not smaller than
its real flow size.

V. APPLICATIONS

Flow Size Estimation: Our Elastic can be directly used
to estimate flow size in packets. Our sketch has a unique
characteristic: for those flows that have a flag of false, our
estimation has no error. According to our experimental results,
we find that more than 56.6% flows in the heavy part have no
error when using 600KB memory for 2.5M packets.

Heavy Hitter Detection: For this task, we query the size
of each flow in the heavy part. If one’s size is larger than
the predefined threshold, then we report this flow as a heavy
hitter. We can achieve very high accuracy of detecting heavy
hitter, because we record flow IDs in the heavy part, only a
very small part of flows those are exchanged from the light
part could have error.

Heavy Change Detection: For two adjacent time windows,
we build two Elastic sketches, respectively. To find heavy
changes with threshold T , one common used method is to
check all flows in each time window with size no less than T .
Therefore, we only check flows in the heavy parts of the two
sketches. There are two types of flows that we check: 1) flows
stored in the heavy parts of both sketches; 2) flows stored in
the heavy part of one sketch, but not stored in the heavy part
of the other sketch. If the size difference of a flow in the two
windows is larger than T , we report it as a heavy change.

Cardinality Estimation: We first count the number of
distinct flows in the heavy part. Then we calculate the number
of distinct flows in the light part using the method of linear
counting [55]. The cardinality is the sum of the two numbers.

Estimation of Flow Size Distribution and Entropy: These
three tasks care about both the elephant flows and mouse flows.
For flows in the heavy part, we can get their information
directly. For flows in the light part, we can get the needed
information from the counter distribution. So at the end of
each time window, we collect the counter distribution array
(n0, n1, . . . , n255) of the light part, where ni is the number of
counters whose value is i. Then we send this array together
with the heavy part and the compressed light part to the
collector. We estimate the distribution of the light part using
the basic version of the MRAC algorithm [24] which is an
Expectation-Maximization (EM) algorithm. Given a counter,
there are several ways to forming this counter by flows.

For example, a counter with 3 can be formed by one flow
(of size 3) or two flows (of size 1 and 2). The key idea
of MRAC is that, given a distribution, the probability of
different ways to form a counter can be derived, and given
the probability, we can get an expectation of the distribution.
MRAC iterates this process until the convergence condition
is satisfied. Since MRAC needs to enumerate different ways
to make up a counter, its time complexity is related to the
maximum size of a counter. Since the maximum size of a
counter of the light part is small, it is fast to run MRAC in
our Elastic sketch.

After estimating the distribution of the light part, we sum
it with the distribution of the heavy part as the estimated the
distribution. Then we compute the entropy based on the flow
size distribution as −∑ (i ∗ ni

m log ni

m), where m is the sum
of ni, and ni is the number of flows with size of i.

VI. IMPLEMENTATIONS

In this section, we briefly describe the implementation
of hardware and software versions of the Elastic sketch on
P4, FPGA, GPU platforms, and CPU, multi-core CPU, OVS
platforms, respectively.

A. P4 Implementation

We have fully built a P4 prototype of the Elastic sketch
on top of a baseline switch.p4 [42] and compiled on a
programmable switch ASIC [56]. We add 500 lines of P4 code
that implements all the registers and meta-data needed for
managing the Elastic sketch in the data plane.

We implement both heavy part and light part of the hardware
version in registers instead of match-action tables because
those parts require updating the entries directly from the data
plane. We leverage the Stateful Algorithm and Logical Unit
(Stateful ALU) in each stage to lookup and update the entries
in register array. However, Stateful ALU has its resource
limitation: each Stateful ALU can only update a pair of up
to 32-bit registers while our hardware version of Elastic needs
to access four fields in a bucket for an insertion. To address this
issue, we tailor our Elastic sketch implementation for running
in P4 switch at line-rate but with a small accuracy drop.

The P4 version of the Elastic sketch: It is based on the
hardware version of the Elastic sketch, and we only show
the differences below. 1) We only store three fields in two
physical stages: voteall, and (key, vote+), where voteall refers
to the sum of positive votes and negative votes. 2) When
voteall

vote+ � λ�, we perform an eviction operation. 3) When
a flow (f, vote+) is evicted by another flow (f1, vote+

1),
we set the bucket to (f1, vote+ + vote+

1). We recommend
using 4 subtables in the P4 version. In this way, we only
need 4 × 2 = 8 stages for the heavy part, and 1 stage
for the light part, and thus in total 9 stages. Note, we are
not using additional stages for Elastic. Instead, incoming
packets go through the Elastic sketch and other data plane
forwarding tables in parallel in the multi-stage pipeline. Table I
shows the additional resources that the Elastic sketch needs
on top of the baseline switch.p4 mentioned before. We can
see that additional resource use is less than 6% across all
resources, except for SRAM and stateful ALUs. We need to
use SRAM to store the Elastic sketch and stateful ALUs to
perform transactional read-test-write operations on the Elastic
sketch. Note, adding additional logics into ASIC pipeline does

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

ADDITIONAL H/W RESOURCES USED BY ELASTIC SKETCH, NORMALIZED
BY THE USAGE OF THE BASELINE SWITCH.P4

not really affect the ASIC processing throughput as long as it
can fit into the ASIC resource constraint. As a result, we can
fit the Elastic sketch into switch ASIC for packet processing
at line-rate.

Note that in this version, we do not use flags, and during an
eviction, there will be errors because the size of the incoming
flow is set to the sum of the two flow sizes, so there is a
small accuracy drop compared with the software and hardware
versions. Larger value of λ� leads to fewer number of evictions,
and higher accuracy. According to our experimental results
on different datasets, we find the accuracy increases when
varying λ� from 4 to 32, but when varying λ� from 32 to 128,
the accuracy increases little. Therefore, we choose λ� = 32,
while ∗32 can be achieved by 	 5.

We have not implemented the aforementioned three adaptiv-
ities in the data plane for the following reasons. To be adaptive
to available bandwidth, it is hard to implement the compres-
sion step in the data plane. Besides, since sketches should be
read into the control plane before sending, the control plane
is a better place for the compression. To be adaptive to packet
rate, we don’t need to implement it, because the throughput
capacity of P4 switches is always constant, i.e., irrelevant to
the number of memory accesses for processing each packet.
To be adaptive to flow size distribution, it cannot be imple-
mented in the data plane because it needs to change the length
of register arrays, which is not supported by the current
P4 switches (Tofino), and is probably supported in the near
future.

B. FPGA Implementation

In the FPGA implementation, two operations affect the
clock frequency: “%” and “×”. To improve efficiency,
we make two minor modifications. First, we let the two hash
functions for the heavy and light part avoid “%” operations.
We set the size of the heavy part and the light part to be 212

and 219 respectively, and the total memory usage is 0.69MB.
In this way, the “%” can be replaced by “&”. For example,
100%16 = 100&15. Second, we find that accuracy and
speed barely change when λ varies from 4 ∼ 64. Therefore,
we choose 8 and the operation ∗8 is replaced by 	 3.

We implement the Elastic sketch on an FPGA platform.
We use the Stratix V family of Altera FPGA (model
5SEEBF45I2). The capacity of the on-chip RAMs (Block
RAM) of this FPGA is 54,067,200 bits. The resource usage
information is as follows: 1) We use 1,978,368 bits of Block
RAM, 4% of the total on-chip RAM. 2) We use 36/840 pins,
4% of the total 840 pins. 3) We use 2939 logics, less than
%1 of the 359,200 total available. After using the pipeline,
our implementation can process each packet in one clock
cycle. The clock frequency of our implemented FPGA is
162.6 MHz, which means that it can achieve a processing

speed of 162.6 Mpps. We also release the Verilog code of the
FPGA implementation [57].

C. GPU Implementation

We use the CUDA toolkit to write programs on GPU to
accelerate the insertion of the Elastic sketch. Two techniques,
batch processing and multi-streaming, are applied to achieve
the acceleration. GPU has a large number of threads that
can perform tasks concurrently. Therefore, instead of inserting
keys one by one, we first copy a batch of keys to be inserted
from the CPU to the GPU, and then utilize many threads to
insert those keys concurrently into the data structure stored on
GPU. This process is called batch processing. Furthermore,
although a batch of keys must be copied from the CPU to the
GPU before it can be inserted, it is possible that a previous
batch of keys is being inserted while a new batch of keys is
being copied. This technique is called multi-streaming. The
CUDA toolkit provides convenient functions to distinguish
different data streams.

Specifically, we let each thread process one packet. Lever-
aging the atomic add operation in CUDA, the insertion of
the light part can be implemented directly. Implementing
the insertion of the heavy part is more challenging, because
different threads more need modify the same bucket, and this
may incur some problems. For example, two threads may find
that the negative votes is enough and try to evict a flow at
the same time. The atomic operations supported by CUDA
cannot solve this problem directly, so we implement the lock
mechanism by leveraging atomicCAS and atomicExch.
We create an array of locks, and each lock is corresponding
to one bucket. When a thread try to insert a packet into a
bucket, it will try to acquire the lock of this bucket first. To
avoid starvation, we set the maximum number of attempts to
acquire the lock of a bucket, e.g.10. This means if a thread
have tried 10 times for inserting the packet into a bucket, it will
give up trying and insert this packet into the light part.

D. CPU Implementation Using SIMD

We use SIMD (Single Instruction Multiple Data)
instructions to accelerate the processing speed. With the
AVX2 instruction set, we can compare 8 32-bit integers
with another set of 8 32-bit integers in a single instruction.
We use this to accelerate the key comparisons. Also, we can
use SIMD instructions to find the minimum counter among
8 counters, as well as its corresponding index in a single
comparison instruction. To leverage the power of SIMD
instructions, we have to make both the keys and counters
stored sequentially in a bucket. If one bucket contains 8 cells,
we put the 8 keys together, and then store the 8 counters.
AVX2 instructions ask for the addresses of items to be
aligned on 32 bytes. In our algorithm, each bucket with
8 cells occupies exactly 64 bytes, so we align the bucket on
64 bytes. Since the cache line size is 64 bytes, this alignment
is also friendly for the cache, which means many insertions
only need to access one cache line.

For longer flow IDs (e.g., when the length of the 5-tuple is
13 bytes), it is hard to use SIMD instructions to match the key.
To address this, we calculate 32-bit fingerprints for long flow
IDs, use the fingerprints as keys, and allocate another memory
space to store the flow IDs. During the insertion, we can match
the fingerprint only to reduce memory accesses. This will incur
false positives because of the collisions. Since there are way

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: ADAPTIVE MEASUREMENTS USING ONE ELASTIC SKETCH 11

Fig. 8. Merging of small Elastic sketches on multi-core CPU.

fewer flows in a time interval than different items a 32-bit
fingerprint can represent, the collision rate is small, hence the
false positives can be ignored.

E. Multi-Core Implementation With Merging

Multi-core CPUs are popular nowadays, so we tailor the
elastic sketch implementation to multi-core. If we dispatch
packets to different cores, each core will record only a
subset of packets, and thus the overall performance will be
significantly improved. The problem is how to merge the
results recorded by different cores. Fortunately, for Elastic
sketches, we can leverage the compression techniques again.
For example, as shown in Figure 8, we use two threads. In each
thread, we deploy an Elastic with 3 buckets, and each of
which has 3 cells in the heavy part, and 4 counters in the
light part. To insert flow f4, we first use the value h(.)%2
to determine a thread, e.g., thread 1, to use. Then, in this
thread, we use the value h(.)%3 to determine a bucket in
the heavy part to insert. After merging of small Elastic on
multi-core, we concatenate all heavy parts into one bucket
array (the merged heavy part). Therefore, we can determine
the bucket in the merged heavy part by the value (h(.)%2)×3.
At the end of each time window, we combine all small elastic
sketches into one. The heavy parts are easy to combine: we
combine all the heavy parts one by one, and only need to
change the hash function. For example, in Figure 8, after
merging, the hash function becomes h(.)%2 × 3 + h(.)%3.
For all light parts, we merge them into one using the merging
algorithms, by choosing the maximum of the corresponding
counters. As shown in Figure 8, the first counters of the two
light parts are 10 and 1, and the first counter after merging is
max{10, 1} = 10.

F. OVS Implementation

We implement a prototype software switch. Software
switches have been important building blocks of virtualization
software in modern public and private clouds. Our implemen-
tation is based on Open vSwitch (OVS) [58], one of the most
widely deployed software switches. Particularly, we target
the DPDK version of OVS. The DPDK version realizes its
data plane entirely in user space. The user-space data plane
directly accesses NIC buffers, hence it completely eliminates
the overhead due to memory copies and context switching
between kernel and user space.

Integrating sketches into OVS will introduce extra overhead
for packet processing, because each packet should be inserted
to the sketch. To reduce this overhead, we run the Elastic
instance as an individual process, and let it communicate with
OVS via a shared-memory based ring buffer. The data plane of
OVS is responsible to intercept packets, parse their headers,
and write headers into the ring buffer. The Elastic process
works as a consumer which reads the ring buffer continuously.
Since OVS with DPDK supports multi-thread processing to

TABLE II

CAIDA TRACES USED IN THE EVALUATION

improve the throughput, we can create multiple ring buffers,
and let the Elastic process read these ring buffers by round-
robin.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

Traces: We use four one-hour public traffic traces collected
in Equinix-Chicago monitor from CAIDA [59]. The details
of these traces are shown in Table II. We divide each trace
into different time intervals (1s, 5s, 10s, 30s, and 60s). For
example, each one-hour trace contains 720 5s-long sub-traces,
and we plot 10th and 90th percentile error bars across these
720 sub-traces. We use the CAIDA4 trace with a monitoring
time interval of 5s as default trace, which contains 1.1M to
2.8M packets with 60K to 110K flows (SrcIP). Due to space
limitations, we only show the results with the source IP as the
flow ID; the results are qualitatively similar for other flow IDs
(e.g., destination IP, 5-tuple).

Evaluation metrics:
• ARE (Average Relative Error): 1

n

∑n
i=1

|fi−�fi|
fi

, where n

is the number of flows, and fi and f̂i are the actual and
estimated flow sizes respectively.

• F1 score: 2×PR×RR
PR+RR , where PR (Precision Rate) refers to

the ratio of true instances reported and RR (Recall Rate)
refers to the ratio of reported true instances.

• WMRE (Weighted Mean Relative Error) [19], [24]:�z
i=1 |ni−�ni|�z
i=1(

ni+�ni
2)

, where z is the maximum flow size, and ni

and n̂i are the true and estimated numbers of flows of size
i respectively.

• RE (Relative Error): |True−Estimated|
True , where True and

Estimate are the true and estimated values, respectively.
• Throughput: million packets per second (Mpps).

Setup: When comparing with other algorithms, we use the
software version of Elastic. Specifically, we store 7 flows and
a vote− for each bucket in the heavy part, and use one hash
function and 8-bit counters in the light part. For each algorithm
in each task, the default memory size is 600KB. The heavy
part does not dynamically resize except for the experiments
of adaptivity to traffic distribution (Section VII-C). Detailed
configurations for each task are as follows:
• Flow size estimation: We compare four approaches:

CM [17],4 CU [20], Count [21], and Elastic. For CM, CU,
and Count, we use 3 hash functions as recommended in [62].

• Heavy hitter detection: We compare six approaches: Space-
Saving (SS) [22], Count/CM sketch [17], [21] with a min-
heap (CountHeap/CMHeap), UnivMon [3], HashPipe [23]
and Elastic. For CountHeap/CMHeap, we use 3 hash func-
tions and set the heap capacity to 4096. For UninMon,
we use 14 levels and each level records 1000 heavy hitters.
We set the HH threshold to 0.02% of the number of packets
in one measurement epoch.

4A CM sketch can be seen as a variant of Bloom filters [44], [60], [61]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. Accuracy comparison for five tasks. The heavy part in Elastic is 150KB.

• Heavy change detection: We compare Reversible
sketch [63], FlowRadar [26], UnivMon, and Elastic.
For Reversible, we use 4 hash functions as recommended
in [63]. For FlowRadar, we use 3 hash functions in both
the Bloom filter [64] and the IBLT part [65]; we allocate
1/10 of the memory for the Bloom filter and the rest for
IBLT. UnivMon uses the same setting as before. We set the
HC threshold as 0.05% of total changes over two adjacent
measurement epochs.

• Flow size distribution: We compare MRAC [24] and Elastic.
• Entropy estimation: We compare UnivMon, Sieving [66],

and Elastic. UnivMon uses the same setting as before.
We use 8 sampling groups in Sieving.

• Cardinality estimation: We compare UnivMon, linear count-
ing (LC) [55], and Elastic. UnivMon uses the same setting
as before.

B. Accuracy

Figure 9(a)-(e) and 10(a)-(b) provide a comparison of the
accuracy of different algorithms for six tasks. Note that
Elastic only uses one data structure with memory of 600KB
to handle all six tasks.

Flow size estimation (Figure 9(a)): We find that Elas-
tic offers a better accuracy vs. memory usage trade-off than
CM, CU, and Count sketch. When using 600KB of memory,
the ARE of Elastic is about 3.8, 2.5, and 7.5 times lower than
the one of CM, CU, and Count. We also run the maximum
compression algorithm (§III-B.1) on a CM sketch with initial
16MB memory, and measure its ARE when its memory
after compression (i.e., bandwidth) reaches 0.2, 0.4, . . . , 1 MB,
respectively. We find that our compression algorithm signifi-
cantly improves the accuracy of CM sketch. The compressed
CM sketch has better accuracy than a standard CM sketch with
the same initial size.

We use an example to illustrate the improvement on the
accuracy. Assuming we have two CM sketches, C0 of size
w and C1 of size 2w. After recording the same traffic into
C0 and C1, we use MC to compress C1 into the compressed
CM sketch C2 of size w. According to the mechanism of
MC, every counter in C2 is smaller than the corresponding
counter in C0, i.e., for any i ∈ [1, w], C2[i] � C0[i]. Further,
it is easy to prove that the compressed CM sketch has only
overestimate error but no underestimate error. Therefore, C2

is more accurate than C0.
Heavy hitter detection (Figure 10(a)-(b)): We find that

Elastic is much more accurate than the other five algorithms
for most memory sizes. Even with less than 200KB of mem-
ory, Elastic is able to achieve 100% precision and recall with
only 0.002 ARE, an ARE much lower than the other five
algorithms.

Fig. 10. Accuracy comparison for heavy hitter detection. The heavy part in
Elastic is 150KB.

Heavy change detection (Figure 9(b)): We find that
Elastic always achieves above 99.5% F1 score while the
best F1 score from the other algorithms is 97%. When
using more than 200KB of memory, the precision and recall
rates of Elastic both reach 100%. When using little memory,
FlowRadar can only partially decode the recorded flow IDs
and frequencies, causing a low F1 score.

Flow size distribution (Figure 9(c)): We find that Elas-
tic always achieves better accuracy than the state-of-the-
art algorithm (MRAC). When using 600KB of memory,
the WMRE of Elastic is about 3.4 times lower than the one of
MRAC. The reason is that the accuracy of MRAC increases as
the number of counters increases. Since we use small (8-bit)
counters in the light part of Elastic, compared with the large
counter (32-bit) in MRAC, given the same amount of memory,
our light part can have 3X more counters than MRAC. In our
experiments, we allocate 150KB memory for the heavy part
and 450KB memory for the light part, so Elastic has twice
more counters than MRAC. As a result, Elastic achieves higher
accuracy than MRAC.

Entropy estimation (Figure 9(d)): We find that Elas-
tic offers a better estimation than the other two algorithms
for most memory sizes. When using a memory larger than or
equal to 400KB, Elastic achieves higher accuracy than both
state-of-the-art algorithms.

Cardinality estimation (Figure 9(e)): We find that Elas-
tic achieves comparable accuracy with the state-of-the-art
algorithm (LC).

C. Elasticity

Adaptivity to Bandwidth: We first evaluate the accuracy
of different compression and merging algorithms. From
Figure 11(a)-(b), we find that the maximum algorithms always
achieve better accuracy than the sum algorithms for both
aggregation and merging. Specifically, maximum compression
is between 1.24 and 2.38 times more accurate than sum
compression, while maximum merging is between 1.26 and
1.33 times more accurate than sum merging.

Next, we constrain our NIC bandwidth to 0.5Gbps, and
use this 0.5G NIC to evaluate the impact of available

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: ADAPTIVE MEASUREMENTS USING ONE ELASTIC SKETCH 13

Fig. 11. Accuracy comparison of different compression and merging
algorithms for CM sketch in flow size estimation.

Fig. 12. ARE and transmission delay comparisons for different sketch sizes
in flow size estimation. We use TCP to transmit data. Transmitted data refers
to the data that needs to be transmitted after compression (original memory
is 16MB with 500KB heavy part).

Fig. 13. Loss rate and accuracy comparisons for heavy hitter detection under
different packet rates. “Elastic (quick)” means Elastic without light part. Due
to the constraint of our NIC speed (i.e., 40Gbps), we simulate the packet
arriving process purely in memory and use ring buffer with multiple threads
to do the measurement. The average number of heavy hitters in each traces
is about 397. For more details, please refer to § VI.

bandwidth. Figure 12(a)-(b) show the results, where low
available bandwidth means that we transmit sketch data on this
0.5G NIC with a consistently 0.5Gbps interfered traffic on it,
and high available bandwidth means that we transmit sketch
data without any interference of other traffic. We observe
that transmitting data under low available bandwidth has a
much longer latency than under high available bandwidth,
and the transmission latency increases almost linearly as the
transmitted data increases. Our Elastic provides a good trade-
off between the accuracy and transmission delay: under low
available bandwidth, we can send high-compression sketch
data with decent accuracy to avoid long transmission delay.

Adaptivity to Packet Rate: From Figure 13(a)-(b), we find
that Elastic can sustain around 50Mpps packet rate without
packet loss and with perfect accuracy, while Elastic without
light part can even sustain around 70Mpps packet rate. For the
other tested algorithms, only Space-Saving (SS) and HashPipe
could achieve zero packet loss and perfect accuracy, but in that
case, they can only sustain 10Mpps packet rate.

Adaptivity to Traffic Distribution We change the traffic
distribution by changing the percentage of true heavy hitters.
Specifically, we change the skewness of zipf distribution [67]
and get multiple traces with different percentages of true
heavy hitters. From Figure 14(a)-(b), we find that the copy

Fig. 14. Benefits of copy operation (§ III-D) for heavy hitter detection and
flow size distribution under different traffic distributions.

Fig. 15. The effect of different λ and heavy part size on flow size estimation.

Fig. 16. Processing speed comparison for six tasks on CPU platform.

operation (§ III-D) successfully avoids the accuracy degrading
when traffic distribution changes.

Effect of λ and Heavy Part Size We vary the parameter λ
and test the ARE of flow size estimation. From Figure 15(a),
we find that when λ increases, the ARE of the whole flows
increases and the ARE of elephant flows decreases, which is
because of that larger λ makes more middle-sized flows kept
in the heavy part. However, the changes of these two AREs
are small. As the ARE of elephant flows changes a little when
varing λ, we set λ = 8 in our experiments for small ARE of
mouse flows.

We fix the total memory to 600KB and vary the heavy
part size from 60KB to 300KB. From Figure 15(b), we find
that it reaches the lowest ARE when the heavy part size is
150KB. Therefore, we use 150KB as the heavy part size in
our experiments.

D. Processing Speed

1) CPU Platform (single Core): We conduct this
experiment on a server with two CPUs (Intel Xeon
E5-2620V3@2.4GHZ) and 378GB DRAM. From Figure 16,
we find that Elastic achieves much higher throughput than
all other algorithms. Only three conventional algorithms (i.e.,
MRAC, Sieving, LC) can reach a throughput of 30Mpps,
while Elastic can reach more than 80Mpps. In particular,
Elastic is 44.9 and 6.2 times faster than UnivMon and
FlowRadar, respectively.

2) OVS Integration: We integrate our Elastic into OVS
2.5.1 with DPDK 2.2. We conduct this experiment on two
servers, one for sending packets and one for OVS. Each server
is equipped with two CPUs (Intel Xeon E5-2620@2.0GHz),
64 GB DRAM, and one Mellanox ConnectX-3 40 Gbit/s NIC.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 17. Processing speed evaluation for Elastic in OVS.

Fig. 18. Processing speed comparison for Elastic on different platforms. For
the implementation of CPU with 16 cores, the master core sends flow IDs
to 16 slave cores in a polling manner. We equally (for both heavy and light
parts) divide the 600KB of memory to the 16 slave cores. We deploy the
Elastic sketch in P4 switch running at line-rate of 6.5 Tbps, which translates
into 9672Mpps when each packet has the minimum size of 64 bytes.

The two servers are connected directly through the NICs.
From Figure 17, we find that in OVS, the throughput of
Elastic gradually increases as the number of threads increases,
while the overhead of using Elastic gradually decreases. When
using a single thread, Elastic degrades the throughput of OVS
by 26.8%; when using 4 threads, by 4.0% only; when using
8 threads, Elastic does not influence the throughput.

3) Other Platforms: From Figure 18, we find that Elas-
tic achieves the highest processing speed on the P4 switch
and the second highest speed on the GPU. Elastic achieves a
comparable processing speed on the CPU with 16 cores and
the FPGA. The processing speed of Elastic on CPU (16 cores),
GPU (1M batch), FPGA, and P4 switch is 1.9, 5.9, 1.9, 115.9
times higher than on the CPU (single core).

VIII. CONCLUSION

Fast and accurate network measurements are important and
challenging in today’s networks. So far, no work had focused
on the issue of enabling measurements that are adaptive to
changing traffic conditions. We propose the Elastic sketch,
which is adaptive in terms of the three traffic characteristics.
The two key techniques in our sketch are (1) Ostracism to
separate elephant flows from mouse flows and (2) sketch
compression to improve scalability. Our sketch is generic
to measurement tasks and works across different platforms.
To demonstrate this, we implement our sketch on six plat-
forms: P4, FPGA, GPU, CPU, multi-core CPU, and OVS,
to process six typical measurement tasks. Experimental results
show that Elastic works well when the traffic characteristics
vary, and outperforms the state-of-the-art in terms of both
speed and accuracy for each of the six typical tasks. The
source code from all platforms is available at Github [57].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful suggestions.

REFERENCES

[1] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 561–575.

[2] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in Proc. 28th Int. Conf. Very Large Data Bases, Aug. 2002,
pp. 346–357.

[3] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 101–114.

[4] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” Jul. 2017,
arXiv:1707.06778. [Online]. Available: https://arxiv.org/abs/1707.06778

[5] E. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in Proc. 3rd ACM
SIGCOMM Conf. Internet Meas., Oct. 2003, pp. 234–247.

[6] X. Li et al., “Detection and identification of network anomalies using
sketch subspaces,” in Proc. 6th ACM SIGCOMM Conf. Internet Meas.,
Oct. 2006, pp. 147–152.

[7] G. Cormode, “Sketch techniques for approximate query processing,” in
Foundations and Trends in Databases. Boston, MA, USA: Now, 2011.

[8] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in Proc.
9th ACM SIGCOMM Conf. Internet Meas., Nov. 2009, pp. 202–208.

[9] H. Xu, Z. Yu, C. Qian, X.-Y. Li, and L. Huang, “Minimizing flow statis-
tics collection cost using wildcard-based requests in SDNs,” IEEE/ACM
Trans. Netw., vol. 25, no. 6, pp. 3587–3601, Dec. 2017.

[10] W. Cui and C. Qian, “DiFS: Distributed flow scheduling for adaptive
routing in hierarchical data center networks,” in Proc. ACM/IEEE Symp.
Archit. Netw. Commun. Syst. (ANCS), Oct. 2014, pp. 53–64.

[11] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proc. Internet Meas. Conf.,
Nov. 2017, pp. 78–85.

[12] Y. Yu and C. Qian, “Space shuffle: A scalable, flexible, and high-
performance data center network,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 11, pp. 3351–3365, Nov. 2016.

[13] N. K. Sharma et al., “Evaluating the power of flexible packet processing
for network resource allocation,” in Proc. NSDI, Mar. 2017, pp. 67–82.

[14] C. Hu et al., “ANLS: Adaptive non-linear sampling method for accu-
rate flow size measurement,” IEEE Trans. Commun., vol. 60, no. 3,
pp. 789–798, Mar. 2012.

[15] K. Li and G. Li, “Approximate query processing: What is new and where
to go?” Data Sci. Eng., vol. 3, no. 4, pp. 379–397, 2018.

[16] N. B. Seghouani, F. Bugiotti, M. Hewasinghage, S. Isaj, and
G. Quercini, “A frequent named entities-based approach for interpreting
reputation in Twitter,” Data Sci. Eng., vol. 3, no. 2, pp. 86–100, 2018.

[17] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[18] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. NSDI, vol. 13, Apr. 2013, pp. 29–42.

[19] Q. Huang et al., “SketchVisor: Robust network measurement for soft-
ware packet processing,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 113–126.

[20] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, Aug. 2003.

[21] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proc. 29th Int. Colloq. Automata, Lang. Program.,
Jul. 2002, pp. 693–703.

[22] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proc. ICDT. Berlin,
Germany: Springer, 2005.

[23] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
Symp. SDN Res., Apr. 2017, pp. 164–176.

[24] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data streaming algorithms
for efficient and accurate estimation of flow size distribution,” in Proc.
ACM SIGMETRICS, Jun. 2004, pp. 177–188.

[25] C. Hu et al., “DISCO: Memory efficient and accurate flow statistics for
network measurement,” in Proc. IEEE 30th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2010, pp. 665–674.

[26] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better netflow for
data centers,” in Proc. NSDI, Mar. 2016, pp. 311–324.

[27] D. Zhuo et al., “Understanding and mitigating packet corruption in
data center networks,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 362–375.

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM SIGCOMM Conf.
Special Interest Group Data Commun., Aug. 2015, pp. 123–137.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: ADAPTIVE MEASUREMENTS USING ONE ELASTIC SKETCH 15

[29] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 32, no. 4, pp. 133–145, 2002.

[30] Z. Zhang et al., “Optimizing cost and performance in online service
provider networks,” in Proc. NSDI, Apr. 2010, p. 3.

[31] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal com-
pressive sensing and Internet traffic matrices,” in Proc. ACM SIGCOMM
Conf. Data Commun., vol. 39, no. 4, pp. 267–278, Oct. 2009.

[32] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from Googles network
infrastructure,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 58–72.

[33] V. T. Lam, M. Mitzenmacher, and G. Varghese, “Carousel: Scalable
logging for intrusion prevention systems,” in Proc. NSDI, Apr. 2010,
p. 24.

[34] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-
similar nature of Ethernet traffic,” ACM SIGCOMM Comput. Commun.
Rev., vol. 23, no. 4, pp. 183–193, Oct. 1993.

[35] E. Rozner, J. Seshadri, Y. Mehta, and L. Qiu, “SOAR: Simple oppor-
tunistic adaptive routing protocol for wireless mesh networks,” IEEE
Trans. Mobile Comput., vol. 8, no. 12, pp. 1622–1635, Dec. 2009.

[36] Y. O. Soon, E.-K. Lee, and M. Gerla, “Adaptive forwarding rate control
for network coding in tactical manets,” in Proc. Mil. Commun. Conf.,
Oct./Nov. 2010, pp. 1381–1386.

[37] B. Yu, C.-Z. Xu, and M. Guo, “Adaptive forwarding delay control for
VANET data aggregation,” IEEE Trans. Parallel Distrib. Syst., vol. 23,
no. 1, pp. 11–18, Jan. 2012.

[38] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., Nov. 2010, pp. 267–280.

[39] G. Cormode, B. Krishnamurthy, and W. Willinger, “A manifesto for
modeling and measurement in social media,” First Monday, vol. 15,
no. 9, pp. 1–18, 2010.

[40] T. Benson, A. Akella, and D. A. Maltz, “Unraveling the complexity of
network management,” in Proc. NSDI, Apr. 2009, pp. 335–348.

[41] I. N. Bozkurt, Y. Zhou, and T. Benson, “Dynamic prioritization of traffic
in home networks,” in Proc. CoNEXT Student Workshop, Dec. 2015,
pp. 1–3.

[42] Open-Source P4 Implementation of Features Typical of an
Advanced l2/l3 Switch. Accessed: Sep. 2018. [Online]. Available:
https://github.com/p4lang/switch

[43] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced
data–recommendations for the use of performance metrics,” in Proc.
Proc. Humaine Assoc. Conf. Affect. Comput. Intell. Interact., Sep. 2013,
pp. 245–251.

[44] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
Bloom filter: Challenges, solutions, and comparisons,” IEEE Commun.
Surveys Tuts., vol. 21, no. 2, pp. 1912–1949, 2nd Quart., 2018.

[45] H. Dai, L. Meng, and A. Liu, “Finding persistent items in distributed
datasets,” in Proc. IEEE INFOCOM, Apr. 2018, pp. 1403–1411.

[46] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proc. VLDB Endowment, vol. 10, no. 4, pp. 289–300,
2016.

[47] H. Dai et al., “Identifying and estimating persistent items in data
streams,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2429–2442,
Dec. 2018.

[48] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and
A. Kabbani, “Counter braids: A novel counter architecture for per-flow
measurement,” ACM SIGMETRICS Perform. Eval. Rev., vol. 36, no. 1,
pp. 121–132, 2008.

[49] V. Braverman and R. Ostrovsky, “Generalizing the layering method of
indyk and woodruff: Recursive sketches for frequency-based vectors on
streams,” in Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques. Berlin, Germany: Springer, 2013.

[50] T. Bu, J. Cao, A. Chen, and P. P. C. Lee, “Sequential hashing: A flexible
approach for unveiling significant patterns in high speed networks,”
Comput. Netw., vol. 54, no. 18, pp. 3309–3326, 2010.

[51] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 604–612, Oct. 2002.

[52] B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive packet sampling
for accurate and scalable flow measurement,” in Proc. IEEE Global
Telecommun. Conf., vol. 3, Nov./Dec. 2004, pp. 1448–1452.

[53] S. Balaji et al., “Erasure coding for distributed storage: An overview,”
Sci. China Inf. Sci., vol. 61, no. 10, 2018, Art. no. 100301.

[54] X. Tang, S.-T. Xia, C. Tian, Q. Huang, and X.-G. Xia, “Special focus on
distributed storage coding,” Sci. China Inf. Sci., vol. 61, no. 10, 2018,
Art. no. 100300.

[55] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.

[56] Barefoot Tofino: World’s Fastest P4-Programmable Ethernet
Switch ASICs. Accessed: Sep. 2018. [Online]. Available: https://
barefootnetworks.com/products/brief-tofino/

[57] The Source Codes of Our and Other Related Algorithms.
Accessed: Sep. 2018. [Online]. Available: https://github.com/
BlockLiu/ElasticSketchCode

[58] The Open Virtual Switch Website. Accessed: Sep. 2018. [Online].
Available: http://openvswitch.org

[59] The CAIDA Anonymized Internet Traces. Accessed: Sep. 2018. [Online].
Available: http://www.caida.org/data/overview/

[60] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting Bloom filter,” IEEE/ACM Trans. Netw., vol. 22, no. 4,
pp. 1092–1105, Aug. 2014.

[61] S. Z. Kiss, É. Hosszu, J. Tapolcai, L. Rónyai, and O. Rottenstreich,
“Bloom filter with a false positive free zone,” in Proc. IEEE INFOCOM,
Apr. 2018, pp. 1412–1420.

[62] A. Goyal, H. Daumé, III, and G. Cormode, “Sketch algorithms for
estimating point queries in NLP,” in Proc. Joint Conf. Empirical Methods
Natural Lang. Process. Comput. Natural Lang. Learn., Jul. 2012,
pp. 1093–1103.

[63] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches
for efficient and accurate change detection over network data streams,”
in Proc. 4th ACM SIGCOMM Conf. Internet Meas., Oct. 2004,
pp. 207–212.

[64] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[65] M. T. Goodrich and M. Mitzenmacher, “Invertible Bloom lookup
tables,” in Proc. 49th Annu. Allerton Conf. Commun., Control, Com-
put. (Allerton), Sep. 2011, pp. 792–799.

[66] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data streaming
algorithms for estimating entropy of network traffic,” in Proc. ACM
SIGMETRICS Joint Int. Conf. Meas. Modeling Comput. Syst., Jun. 2006,
pp. 145–156.

[67] D. M. W. Powers, “Applications and explanations of Zipf’s law,” in
Proc. Joint Conf. New Methods Lang. Process. Comput. Natural Lang.
Learn., Jan. 1998, pp. 151–160.

Tong Yang received the Ph.D. degree in computer
science from Tsinghua University in 2013. He vis-
ited the Institute of Computing Technology, Chinese
Academy of Sciences (CAS). He is currently a
Research Assistant Professor with the Computer
Science Department, Peking University. He pub-
lished articles in SIGCOMM, SIGKDD, SIGMOD,
SIGCOMM CCR, VLDB, ATC, ToN, ICDE, and
INFOCOM. His research interests include network
measurements, sketches, IP lookups, Bloom filters,
sketches, and KV stores.

Jie Jiang is currently pursuing the master’s degree
with Peking University, advised by Tong Yang. His
research interests include indexing, data sketches,
and data stream processing systems.

Peng Liu is currently pursuing the master’s degree
with Peking University, advised by Tong Yang.
He has participated several articles in network
area. He is interested in network and data stream
processing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

Qun Huang received the bachelor’s degree in com-
puter science from Peking University in 2011, and
the Ph.D. degree from Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, in 2015. Before joining ICT, he was a
Researcher at Huawei Future Network Theory Lab
in Hong Kong from 2015 to 2017. He is currently an
Associate Professor with the Institute of Computing
Technology, Chinese Academy of Sciences (ICT-
CAS). He is supported by CAS Pioneer Hundred
Talents Program.

Junzhi Gong graduated from Peking University,
advised by Tong Yang. He is currently pursuing
the Ph.D degree with Harvard University. He has
some publications in the area of networking and data
streaming processing. His research interests include
network measurement and data stream processing
systems.

Yang Zhou graduated (summa cum laude) from
Peking University, advised by Tong Yang. He is
currently pursuing the Ph.D. degree with Harvard
University, advised by Minlan Yu. He is broadly
interested in streaming algorithms, networked sys-
tems, and data-intensive systems.

Rui Miao received the B.S. degree from the Univer-
sity of Electronic Science and Technology of China
in 2005, the M.S. degree from Tsinghua University
in 2009, and the Ph.D. degree from the University
of Southern California in 2018. He was a Visiting
Scholar with Yale University in 2017. He is currently
a Researcher with the Alibaba Group. He has around
ten publications and two U.S. patents. His research
has focused on monitoring and managing data cen-
ter networks by leveraging emerging techniques,
including software-defined networking and network

virtualization. He is also interested in designing and building distributed
systems with high scalability and reliability.

Xiaoming Li is currently a Professor in computer
science and technology and the Director of Insti-
tute of Network Computing and Information Sys-
tems (NCIS) with Peking University, China. His
current research interest is in search engine and web
mining. He led the effort of developing a Chinese
search engine (Tianwang) since 1999, and is the
Founder of the Chinese web archive (Web InfoMall).

Steve Uhlig received the Ph.D. degree in applied
sciences from the University of Louvain, Belgium,
in 2004. From 2004 to 2006, he was a Post-Doctoral
Fellow of the Belgian National Fund for Scientific
Research (F.N.R.S.). From 2004 to 2006, he was
a Visiting Scientist with the Intel Research Cam-
bridge, U.K., and with the Applied Mathematics
Department, University of Adelaide, Australia. From
2006 to 2008, he was with the Delft University
of Technology, The Netherlands. Prior to joining
Queen Mary, he was a Senior Research Scientist

with Technische Universität Berlin/Deutsche Telekom Laboratories, Berlin,
Germany. Since January 2012, he has been the Professor of Networks and
Head of the Networks Research Group, Queen Mary University of London.
From 2012 to 2016, he was a Guest Professor with the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, China. His thesis received
the annual IBM Belgium/F.N.R.S. Computer Science Prize 2005.

