
Toward Interference-Aware Scheduling for Serverless
Functions via eBPF and Meta-Learning

Yifan Zhang
University of Connecticut

Storrs, CT, USA

Jianchang Su
University of Connecticut

Storrs, CT, USA

Zixu Shen
University of Connecticut

Storrs, CT, USA

Yang Zhou
UC Davis

Davis, CA, USA

Wei Zhang∗
University of Connecticut

Storrs, CT, USA

Abstract
Serverless computing, or Function-as-a-Service (FaaS), of-
fers resource efficiency and flexible pay-as-you-go pricing,
making it attractive for diverse workloads. However, perfor-
mance interference—especially in CPU scheduling—remains
a key challenge due to shared resource contention, latency
variability, and skewed function popularity. Existing sched-
ulers often rely on proxy metrics like CPU utilization, which
misalign with user-centric goals such as low latency and
strict Service Level Objectives (SLOs).

We propose eMFS, a performance- and interference-aware
scheduler that reduces SLO violations in serverless platforms.
It combines an eBPF-based latency monitor, a meta-learning
model for CPU prediction, and an SLO-guided Multi-Level
Feedback Queue (MLFQ) scheduler for priority-based exe-
cution. Together, these components enable dynamic, SLO-
aware scheduling tailored to serverless workloads.

CCS Concepts: • Computer systems organization →
Cloud computing; • Software and its engineering →
Scheduling.

Keywords: CPU Scheduling, Serverless Computing, eBPF,
Meta Learning

ACM Reference Format:
Yifan Zhang, Jianchang Su, Zixu Shen, Yang Zhou, and Wei Zhang.
2025. Toward Interference-Aware Scheduling for Serverless Func-
tions via eBPF and Meta-Learning. In Practical Adoption Challenges
of ML for Systems (PACMI ’25), October 13–16, 2025, Seoul, Republic

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PACMI ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-2205-9/25/10
https://doi.org/10.1145/3766882.3767181

of Korea. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3766882.3767181

1 Introduction
Serverless computing decouples application logic from in-
frastructure management, enabling simplified deployment
and fine-grained resource control. Its adoption is rapidly
growing, with over 50% of enterprises projected to adopt
it by 2025 [4]. Serverless platforms offer cost efficiency, au-
tomatic scaling, and pay-as-you-go billing [8, 28], making
them ideal for workloads such as media processing [22], data
analytics [18], and machine learning [20].

In this model, developers write stateless functions in high-
level languages like Go, Java, or Python [6], while the plat-
form handles deployment and scaling [23, 27]. Users are
billed only for the resources consumed, making it efficient
— especially for short-lived executions [3]. Ideally, function
execution time should closely match turnaround time. How-
ever, due to abstraction and resource sharing, serverless plat-
forms often suffer from high latency variability and skewed
function popularity [12, 24], causing noticeable delays in
latency-sensitive tasks [5].
While contention across resources affects performance,

studies show that host-level CPU scheduling is a key con-
tributing factor [7]. Given the bursty and short-lived nature
of serverless workloads, traditional schedulers often fail to
ensure fairness or responsiveness. Despite this, most plat-
forms still rely on Linux’s Completely Fair Scheduler (CFS),
which lacks awareness of function heterogeneity or latency
sensitivity. As a result, short functions can experience dis-
proportionately long queuing delays [1, 9, 17, 25].

Recent solutions like Kostis [13], Hermod [14], and SFS [7]
attempt to prioritize short tasks but still rely on CFS for final
scheduling, which reintroduces interference. These limita-
tions underscore the need for an OS-level scheduler that is
aware of serverless workload characteristics and provides
performance isolation.
Furthermore, many systems use proxy metrics such as

CPU utilization for scheduling [21, 30], which poorly reflect
end-to-end latency or throughput. In contrast, scheduling

https://doi.org/10.1145/3766882.3767181
https://doi.org/10.1145/3766882.3767181
https://doi.org/10.1145/3766882.3767181


PACMI ’25, October 13–16, 2025, Seoul, Republic of Korea Yifan Zhang, Jianchang Su, Zixu Shen, Yang Zhou, and Wei Zhang

based on real performance metrics better aligns with user-
defined Service Level Objectives (SLOs) [2].
Designing such a scheduler involves several challenges:

(1) collecting accurate, low-overhead performance data at
scale; (2) making timely scheduling decisions that account
for latency goals and fairness; and (3) ensuring deployability
without kernel changes.

To address these, we propose eMFS, a performance- and
interference-aware scheduler for serverless platforms. It in-
corporates three key components:

• eBPF-based Performance Monitor: A lightweight
monitor that traces function-level latency using ex-
tended Berkeley Packet Filter (eBPF).

• Meta-Learning Resource Estimator: A model that
predicts per-function CPU needs using workload fea-
tures such as request rate and recent execution time.

• SLO-Instructed MLFQ Scheduler: A user-space
Multi-Level Feedback Queue (MLFQ) scheduler that
prioritizes functions based on predicted CPU demand
and SLO gaps.

2 Background
Serverless Computing: Serverless computing abstracts
away infrastructure management, enabling developers to
focus on stateless function logic [11]. Platforms automati-
cally manage provisioning, scaling, and fine-grained billing,
making them ideal for event-driven workloads. Large-scale
traces from Microsoft Azure [24] and Huawei Cloud [12] re-
veal three key characteristics: (1) execution times vary over
seven orders of magnitude, (2) function popularity is heavily
skewed, with a small fraction handling most requests, and (3)
invocation patterns are bursty yet exhibit stable aggregate
trends. These patterns pose significant challenges for fair
and responsive CPU scheduling.
eBPF Technology: Extended Berkeley Packet Filter (eBPF)
is a kernel-level framework that enables safe, low-overhead
execution of custom programs attached to kernel hooks. Un-
like traditional BPF, eBPF supports a richer instruction set,
more registers, and persistent in-kernel data structures called
maps [29]. eBPF allows developers to collect fine-grained
performance metrics—such as function-level latency—in real
time, without modifying the kernel or disrupting running
systems. This makes it a powerful foundation for monitoring
and policy enforcement in production environments.
Meta Learning:Meta-learning [10], or “learning to learn,”
enables models to rapidly adapt to new tasks using prior
experience. Unlike supervised or transfer learning, meta-
learning generalizes across tasks with minimal data and
computation [16]. This property is particularly suited to
serverless computing, where workloads vary widely in be-
havior, resource needs, and latency sensitivity. By training
across diverse tasks, meta-learned models can quickly infer
CPU requirements in dynamic, heterogeneous environments.

3 Motivation
We investigate how performance interference affects short
serverless functionswhen co-locatedwith long-running ones
on the same CPU core. Using several Linux kernel sched-
ulers—including default and latency-optimized policies—we
conduct controlled experiments under 80% and 100% CPU
utilization to capture both moderate and saturated scenarios.
Our results show that short functions experience notice-

able latency inflation even at 80% utilization, indicating that
contention arises before saturation. This suggests that CPU-
level scheduling—not hardware resource limits—is the pri-
mary source of degradation. Moreover, interference severity
varies significantly across schedulers, underscoring the im-
pact of scheduling policy. These findings reveal that tradi-
tional schedulers, not designed for bursty, latency-sensitive
workloads, often fail to provide fair or responsive scheduling
in mixed serverless environments.

3.1 Quantifying the Interference
We use FaaSBench [7], built on a parameterized Fibonacci
function, to evaluate how conventional schedulers affect
short serverless functions. The benchmark exposes two knobs:
an integer N for controlling CPU time and a boolean flag IO
to simulate I/O-bound behavior.
To isolate CPU scheduling effects, we disable all I/O by

turning off the IO flag. System load is controlled by adjusting
request intervals and arrival rates to target 80% and 100%
CPU utilization—without altering function logic. This setup
ensures that observed latency stems from scheduling behav-
ior. Workload patterns are derived from Azure traces [24],
maintaining relevance to production deployments.

Fib-0(N=26) Fib-1(N=27) Fib-2(N=28) Fib-3(N=29)
0

20

40

60

80

100

120

140

la
te
nc
y(
m
s) 286ms 411ms 487ms 894ms

IDEAL
FIFO(100%)
FIFO(80%)

RR(100%)
RR(80%)

CFS(100%)
CFS(80%)

Figure 1. Performance of workloads with different schedul-
ing policies and different loads

In each test, we co-locate a short and a long-running func-
tion on the same CPU core to emulate typical serverless
scenarios. We evaluate three Linux scheduling policies: the
real-time SCHED_FIFO and SCHED_RR, and the default
SCHED_NORMAL (CFS). An IDEAL baseline with infinite
CPU and no contention serves as the best-case reference.
Figure 1 shows the average latency of short functions

under 80% and 100% CPU utilization. None of the tested
Linux schedulers provides consistently low latency across
both conditions. FIFO performs the worst due to head-of-line
blocking, while CFS performs best overall but still causes



Toward Interference-Aware Scheduling for Serverless Functions via eBPF and Meta-Learning PACMI ’25, October 13–16, 2025, Seoul, Republic of Korea

up to 1.54× latency increase at 80% load and 1.82× at 100%,
relative to the IDEAL baseline.
Takeaway 1: Short and long functions co-located on the
same core experience interference even before full saturation.
Existing Linux schedulers fail to mitigate this, highlighting
the need for serverless-aware scheduling strategies.

3.2 Understanding the Interference
As noted in § 1, performance interference in serverless sys-
tems may stem from contention over shared resources such
as CPU, memory, cache, and network bandwidth. To identify
the primary cause of latency degradation, we profile run-
time metrics—memory usage, L3 cache activity, and network
throughput. This analysis helps isolate the dominant bot-
tleneck and confirm whether CPU contention is the main
source of interference.

5 10 15 20 25 30 35 40
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
em

or
y(
GB

)

IDEAL FIFO RR CFS

(a) 100% Load

5 10 15 20 25 30 35 40
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
em

or
y(
GB

)

IDEAL FIFO RR CFS

(b) 80% Load

Figure 2. Memory usage of workloads

5 10 15 20 25 30 35 40
Time(s)

0

2

4

6

8

10

L3
 M

iss
 R

at
e(

%
)

IDEAL FIFO RR CFS

(a) 100% Load

5 10 15 20 25 30 35 40
Time(s)

0

2

4

6

8

10

L3
 M

iss
 R

at
e(

%
)

IDEAL FIFO RR CFS

(b) 80% Load

Figure 3. L3 Cache Miss of workloads

Figure 2(a) and Figure 2(b) show memory usage during
co-execution at 100% and 80% CPU load. Across all Linux
schedulers, memory consumption remains minimal—never
exceeding 3 GB, far below the available 64 GB—indicating
that memory contention is negligible.
L3 cache behavior in Figure 3(a) and Figure 3(b) reveals

consistently low miss rates (<8%) under all schedulers. While
FIFO shows some fluctuation due to head-of-line blocking,
cache contention is insufficient to explain the observed la-
tency degradation.
Figure 4(a) and Figure 4(b) report network traffic during

the same tests. Even under FIFO, throughput remains be-
low 600 KB/s—negligible compared to the 25 Gbps NIC —
confirming network bandwidth is not a limiting factor.

Together, these results show that memory, cache, and net-
work are not under significant pressure. The persistent la-
tency interference must therefore stem from the CPU sched-
uler’s inability to handle the bursty, heterogeneous nature
of serverless workloads.

5 10 15 20 25 30 35 40
Time(s)

0

100

200

300

400

500

600

Ne
tw

or
k 

Tr
af

fic
(K

B/
s)

IDEAL FIFO RR CFS

(a) 100% Load

5 10 15 20 25 30 35 40
Time(s)

0

100

200

300

400

500

600

Ne
tw

or
k 

Tr
af

fic
(K

B/
s)

IDEAL FIFO RR CFS

(b) 80% Load

Figure 4. Network Traffic of workloads

3.3 Effect of the CPU contention
As shown in § 3.2, memory, cache, and network contention
do not explain the latency degradation observed in short-
term serverless functions. This points to CPU contention as
the dominant source of interference.
Figure 5(a) shows average queuing delay under different

Linux schedulers. Despite identical load, delays vary widely
across policies—indicating that the scheduler itself is respon-
sible. Existing schedulers (FIFO, RR, CFS) lack awareness of
function duration or latency sensitivity, leading to unfair
scheduling and increased delay for short functions.

5 10 15 20 25 30 35 40
Time(s)

0

10

20

30

40

50

60

Qu
eu

in
g 

de
la

y(
m

s)

IDEAL FIFO RR CFS

(a) Queuing Delay

5 10 15 20 25 30 35 40
Time(s)

0

20

40

60

80

100

CP
U 

Us
ag

e(
%

)

IDEAL FIFO RR CFS

(b) CPU Usage

Figure 5. Queuing Delay and CPU Usage
Takeaway 2: CPU contention is the root cause of interfer-
ence, stemming from schedulers that ignore the bursty and
latency-critical nature of serverless workloads.

To address this, we examine whether CPU usage can guide
better scheduling. Prior work often uses utilization as a proxy
for performance. However, as shown in Figure 5(b), short-
term functions receive similar CPU time under RR and CFS,
yet experience different queuing delays—revealing that CPU
usage alone is not a reliable metric.

Instead, we argue that real-world metrics such as end-to-
end latency or queuing delay better capture performance
impact and should guide scheduling decisions.
Takeaway 3: Performance-aware metrics provide a more
accurate basis for scheduling than raw CPU usage, and bet-
ter align with user-defined Service Level Objectives (SLOs).



PACMI ’25, October 13–16, 2025, Seoul, Republic of Korea Yifan Zhang, Jianchang Su, Zixu Shen, Yang Zhou, and Wei Zhang

This insight motivates our design of a scheduler that is both
latency-aware and interference-resilient.

4 System Design
Building on our earlier motivation, we propose eMFS, a
performance- and interference-aware CPU scheduler tai-
lored for serverless platforms. It leverages extended Berkeley
Packet Filter (eBPF) for lightweight performance monitoring
and meta-learning for adaptive CPU allocation. The core
idea is to dynamically adjust CPU time based on two signals:
predicted resource needs and the gap between observed per-
formance and target Service Level Objectives (SLOs). eMFS
is designed around three system goals:
G1 Lightweight and scalable performance monitoring suit-

able for high-throughput environments.
G2 Intelligent CPU allocation that reduces SLO violations

and minimizes resource waste.
G3 Easy integration with existing serverless platforms, with-

out kernel modifications.

Performance-Aware MLFQ

eBPF Performance monitor

Meta-learning Model

Kernel Scheduler Policy

CPU

User Kernel

Service 0

Service 1

Service m

Service 1Service 0

Service m+1Service m

request 0 request 1
TCP

Figure 6. Architecture of eMFS

4.1 eBPF Performance Monitor
The eBPF Performance Monitor forms the foundation of
eMFS ’s real-time feedback loop. It provides precise, low-
overhead latency data for each function, enabling timely
and informed scheduling decisions. To estimate execution la-
tency, the monitor captures two key timestamps per request:
the arrival time of the last inbound TCP message and the
departure time of the first outbound response. The latency
is calculated as the time difference between these events,
representing the function’s processing delay.

We implement the monitor using the BPF Compiler Collec-
tion (BCC), attaching eBPF programs to TCP-related kernel
functions such as tcp_set_state, tcp_send_msg, and tcp_recv_-
msg. These hooks enable accurate detection of connection
state changes and message boundaries. Each connection is
uniquely identified using a five-tuple (source and destination
IP and port, plus protocol). To manage memory overhead
when tracking many concurrent flows, we apply client-port
masking, which maintains connection-level granularity with
reduced resource usage.

To minimize runtime overhead, rawmetrics are first aggre-
gated and filtered in-kernel. Only relevant, latency-critical
data are periodically transferred to user space. There, percentile-
based latency summaries (e.g., p95, p99) are computed to

detect functions experiencing degradation or SLO violations.
These latency signals are then fed into the meta-learning
model to guide dynamic CPU reallocation and queue assign-
ment, ensuring responsiveness and efficiency at scale.

4.2 Meta-Learning Model
The Meta-Learning Model in eMFS enables adaptive sched-
uling by predicting how much CPU each function needs to
satisfy its SLO under dynamic workload conditions. It builds
upon real-time feedback from the eBPF monitor, using fea-
tures like request rate, recent execution latency, and resource
usage to infer performance bottlenecks.
Traditional models often underperform due to the high

degree of heterogeneity and constantly shifting workload
patterns [19]. Their reliance on static assumptions makes
them brittle in dynamic settings, and maintaining their accu-
racy typically requires frequent, costly retraining using large
volumes of labeled data [15]. This overhead is impractical for
real-time platforms that host thousands of ephemeral, short-
lived functions with limited observability. In contrast, our
meta-learning approach generalizes across a wide range of
function-environment pairs (𝐹𝑖 , 𝐸 𝑗 ) and supports few-shot
adaptation. This enables rapid deployment and robust pre-
diction, even for previously unseen workloads.

Themodel architecture comprises a supervised Base Learner
and a Meta Learner. The Base Learner maps workload fea-
tures to predicted function latency. Its training data—collected
by the eBPF monitor and stored in an in-memory Data Log-
ger—includes both feature vectors and ground-truth execu-
tion times. The Meta Learner learns to generate environ-
ment embeddings that capture behavioral patterns specific
to each (𝐹𝑖 , 𝐸 𝑗 ) pair, which are then incorporated into the
Base Learner’s input space.
Unlike traditional hyperparameter-based meta-learning,

our design uses embeddings as the primary adaptation mech-
anism. This allows the Base Learner to effectively trans-
fer knowledge across function types and environments by
placing similar execution contexts close together in embed-
ding space. As a result, the model can predict resource-to-
performance mappings accurately with limited new data,
even in highly dynamic settings.

4.3 SLO-instructed MLFQ Scheduler
To allocate CPU time fairly and responsively across heteroge-
neous serverless functions, eMFS adopts a Service Level Ob-
jective (SLO)-instructedMulti-Level Feedback Queue (MLFQ)
scheduler. Traditional MLFQ frameworks define multiple
queues with increasing time quanta and rely on runtime be-
havior to promote or demote tasks [26]. However, in server-
less settings, this approach is insufficient: short functions
may still queue behind long ones, and long-running func-
tions can be starved. eMFS enhances MLFQ with SLO-based
initialization and performance-driven adjustment.



Toward Interference-Aware Scheduling for Serverless Functions via eBPF and Meta-Learning PACMI ’25, October 13–16, 2025, Seoul, Republic of Korea

SLO-based Initialization. When a new function arrives,
instead of defaulting to the highest-priority queue, we deter-
mine its initial queue based on its declared SLO. Queues 𝑝1 to
𝑝6 have increasing time quanta (e.g., 20 ms to 500 ms). A func-
tion with a 24 ms SLO may begin in 𝑝2, while a function with
a 120 ms SLO would start in 𝑝4. This policy ensures that func-
tions receive time slices proportionate to their latency bud-
gets from the outset, avoiding premature demotions. Within
each queue, we adopt Round-Robin (RR) scheduling for fair-
ness. The entire MLFQ logic is implemented in user space
and uses Linux’s RR policy for actual CPU execution, main-
taining compatibility without kernel modification.
Performance-driven Adjustment. Function priorities are
adjusted dynamically based on feedback from the eBPF Per-
formance Monitor. If a function consistently violates its SLO,
it is promoted to a higher-priority queue; if it maintains la-
tency well below its SLO, it may be safely demoted to make
room for more critical tasks. The Meta-Learning Model helps
estimate howmuch additional CPU timewould helpmeet the
SLO, and this estimate guides the magnitude and direction
of the adjustment.

This feedback loop allows eMFS to react quickly to chang-
ing workloads, prioritize latency-critical functions, and avoid
starvation for throughput-oriented ones. By combining pre-
dictive estimationwith real-timemeasurement, the scheduler
achieves high responsiveness and fair CPU distribution in
dynamic environments.

5 Conclusion
We present eMFS, a user-space scheduler that is both per-
formance - and interference-aware for serverless computing.
It leverages eBPF for real-time, low-overhead monitoring
and employs a meta-learning model to predict function-
level CPU needs. These insights guide an enhanced SLO-
instructed MLFQ scheduler that dynamically adjusts CPU
allocation. eMFS is designed for easy integration, adapts
quickly to workload heterogeneity, and mitigates interfer-
ence in diverse serverless environments. By aligning sched-
uling decisions with real-time performance feedback and
SLO targets, eMFS offers a practical path toward responsive
and efficient function execution.

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications. In
17th USENIX symposium on networked systems design and implementa-
tion (NSDI 20). 419–434.

[2] Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo
Guo, Benjamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion
Stoica. 2023. Cilantro:{Performance-Aware} resource allocation for
general objectives via online feedback. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). 623–643.

[3] Robert Cordingly, Wen Shu, and Wes J Lloyd. 2020. Predicting per-
formance and cost of serverless computing functions with SAAF. In

2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud
and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE, 640–649.

[4] Katie Costello. [n. d.]. The CIO’s Guide to Serverless Comput-
ing. https://www.gartner.com/smarterwithgartner/the-cios-guide-
to-serverless-computing.

[5] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun.
ACM 56, 2 (2013), 74–80.

[6] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru
Iosup. 2021. The state of serverless applications: Collection, charac-
terization, and community consensus. IEEE Transactions on Software
Engineering 48, 10 (2021), 4152–4166.

[7] Yuqi Fu, Li Liu, Haoliang Wang, Yue Cheng, and Songqing Chen. 2022.
Sfs: Smart os scheduling for serverless functions. In SC22: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[8] Jake Grogan, Connor Mulready, James McDermott, Martynas Ur-
banavicius, Murat Yilmaz, Yalemisew M. Abgaz, Andrew Mccarren,
Silvana Togneri MacMahon, Vahid Garousi, Peter Elger, and Paul M.
Clarke. 2020. A multivocal literature review of function-as-a-service
(faas) infrastructures and implications for software developers. In
Systems, Software and Services Process Improvement: 27th European
Conference, EuroSPI 2020, Düsseldorf, Germany, September 9–11, 2020,
Proceedings 27. Springer, 58–75.

[9] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2016. Serverless computation with {OpenLambda}. In 8th
USENIX workshop on hot topics in cloud computing (HotCloud 16).

[10] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos
Storkey. 2021. Meta-learning in neural networks: A survey. IEEE
transactions on pattern analysis and machine intelligence 44, 9 (2021),
5149–5169.

[11] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming sim-
plified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

[12] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, JianfengWang, and Adam Barker. 2023. How does it function?
characterizing long-term trends in production serverless workloads. In
Proceedings of the 2023 ACM Symposium on Cloud Computing. 443–458.

[13] Kostis Kaffes, Neeraja J Yadwadkar, and Christos Kozyrakis. 2019.
Centralized core-granular scheduling for serverless functions. In Pro-
ceedings of the ACM symposium on cloud computing. 158–164.

[14] Kostis Kaffes, Neeraja J Yadwadkar, and Christos Kozyrakis. 2022.
Hermod: principled and practical scheduling for serverless functions.
In Proceedings of the 13th Symposium on Cloud Computing. 289–305.

[15] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong Zhou, Lifei Zhu,
Zhao Lucis Li, Zibo Wang, Qi Chen, Quanlu Zhang, Chuanjie Liu,
et al. 2020. {AutoSys}: The Design and Operation of {Learning-
Augmented} Systems. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). 323–336.

[16] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2017.
A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141
(2017).

[17] OpenFaaS. [n. d.]. https://www.openfaas.com/.
[18] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel

Madden. 2020. Starling: A scalable query engine on cloud functions.
In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 131–141.

https://www.gartner.com/smarterwithgartner/the-cios-guide-to-serverless-computing
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-serverless-computing
https://www.openfaas.com/


PACMI ’25, October 13–16, 2025, Seoul, Republic of Korea Yifan Zhang, Jianchang Su, Zixu Shen, Yang Zhou, and Wei Zhang

[19] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Chen Wang,
Hubertus Franke, Zbigniew T Kalbarczyk, Tamer Basar, and Ravis-
hankar K Iyer. 2024. FLASH: Fast model adaptation in ML-centric
cloud platforms. In Proceedings of the 7th Annual Conference on Ma-
chine Learning and Systems (MLSys 2024).

[20] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. {INFaaS}: Automated model-less inference serv-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
397–411.

[21] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych,
Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack,
Piotr Witusowski, Steven Hand, et al. 2020. Autopilot: workload au-
toscaling at google. In Proceedings of the Fifteenth European Conference
on Computer Systems. 1–16.

[22] Serverless Community Survey: huge growth in serverless usage.
[n. d.]. https://www.serverless.com/blog/2018-serverless-community-
survey-huge-growth-usage/.

[23] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.
Architectural implications of function-as-a-service computing. In Pro-
ceedings of the 52nd annual IEEE/ACM international symposium on
microarchitecture. 1063–1075.

[24] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:
Characterizing and optimizing the serverless workload at a large cloud

provider. In 2020 USENIX annual technical conference (USENIX ATC 20).
205–218.

[25] Amoghvarsha Suresh and Anshul Gandhi. 2019. Fnsched: An efficient
scheduler for serverless functions. In Proceedings of the 5th interna-
tional workshop on serverless computing. 19–24.

[26] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu,
and Xin Jin. 2023. Fast distributed inference serving for large language
models. arXiv preprint arXiv:2305.05920 (2023).

[27] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
serverless platforms with serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing. 30–44.

[28] Vladimir Yussupov, Jacopo Soldani, Uwe Breitenbücher, Antonio Brogi,
and Frank Leymann. 2021. Faasten your decisions: A classification
framework and technology review of function-as-a-service platforms.
Journal of Systems and Software 175 (2021), 110906.

[29] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu.
2023. Electrode: Accelerating Distributed Protocols with {eBPF}. In
20th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). 1391–1407.

[30] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis,
Ion Stoica, and Xin Jin. 2020. {RackSched}: A {Microsecond-Scale}
scheduler for {Rack-Scale} computers. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 1225–1240.

https://www.serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://www.serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Quantifying the Interference
	3.2 Understanding the Interference
	3.3 Effect of the CPU contention

	4 System Design
	4.1 eBPF Performance Monitor
	4.2 Meta-Learning Model
	4.3 SLO-instructed MLFQ Scheduler

	5 Conclusion
	References

