
eTran: Extensible Kernel Transport with eBPF

Zhongjie Chen† Qingkai Meng‡ ChonLam Lao¶ Yifan Liu†

Fengyuan Ren† Minlan Yu¶ Yang Zhou§

†Tsinghua University ‡Nanjing University ¶Harvard University §UC Berkeley & UC Davis

Abstract
Evolving datacenters with diverse application demands are
driving network transport designs. However, few have suc-
cessfully landed in the widely-used kernel networking stack
to benefit broader users, and they take multiple years. We
present eTran, a system that makes kernel transport exten-
sible to implement and customize diverse transport designs
agilely. To achieve this, eTran leverages and extends eBPF-
based techniques to customize the kernel to support complex
transport functionalities safely. Meanwhile, eTran carefully
absorbs user-space transport techniques for performance gain
without sacrificing robust protection. We implement TCP
(with DCTCP congestion control) and Homa under eTran, and
achieve up to 4.8×/1.8× higher throughput with 3.7×/7.5×
lower latency compared to existing kernel implementation.

1 Introduction
Datacenter applications are always evolving and becoming
increasingly diverse. For example, recent microservice appli-
cations heavily rely on Remote Procedure Calls (RPCs) to
communicate among loosely-connected components; storage
applications require bulk data transfer and replications for
fault tolerance; popular ML applications employ collective
communication primitives such as AllReduce to exchange
large volumes of model weights and gradients.

To better support these diverse applications, datacenter re-
searchers have proposed many network transport designs. For
example, the Homa transport [50, 55] with SRPT (Shortest
Remaining Processing Time) and receiver-driven designs tar-
get low-latency RPCs; The DCTCP congestion control (CC)
protocol [2] enhances the TCP transport for various datacenter
workloads, including bulk transfers; The MLT transport [74]
is designed specifically for distributed DNN training. There
are many more transport designs for emerging datacenter
workloads [14, 26, 30, 44, 45, 49, 51, 82].

However, very few transport designs have landed in the
widely-used Linux networking stack to benefit broader users.
For example, DCTCP took 4 years to land [18], while MPTCP
took nearly a decade [51]; Homa (2018) [50] has been an
author-maintained kernel module since 2021 but remains un-
merged in mainline. To the best of our knowledge, no trans-
port protocol has landed on the kernel since DCTCP. The key
reason for the above status quo is that kernel transports take
extremely heavy efforts to develop and maintain, and often
give unsatisfactory performance. As a result, it cannot keep up

with the fast evolvement and high performance requirements
of datacenter transports.

People nowadays mainly resort to kernel-bypass techniques
by implementing transport directly in the user space or in
hardware. However, this approach largely sacrifices kernel-
provided protection and manageability [4, 57, 61, 80, 81],
not friendly to public cloud users. For instance, integrating
transport within the application process [38, 78] risks ma-
licious manipulation or unintended interference with trans-
port events (e.g., acknowledgments, timeout). Alternatively,
running transport in a separate process [41, 47] or on hard-
ware [3,82] introduces new infrastructure and tools, incurring
high management burdens such as telemetry and debugging.

Instead, this paper takes the kernel approach and tries to
tackle the following challenging problem: how to make the
kernel transport extensible to enable agile customization,
while achieving kernel safety, strong protection, and high
performance? This is challenging because 1) customizability
might expose new attack surfaces in the kernel, creating safety
challenges; and 2) strong protection requires putting the en-
tire transport states inside the kernel (e.g., the kernel TCP
stack), which is usually contrary to high performance due to
high kernel overhead (e.g., user-kernel crossing), and makes
customization hard due to fixed kernel implementation.

Fortunately, we find that the growing trend of safe kernel ex-
tensions via the increasingly mature eBPF technique provides
promising opportunities. This technique allows applications
to inject statically-verified code into kernel eBPF hooks to
change how the kernel reacts to certain events, e.g., incoming
packets. Note that this is different from writing unsafe ker-
nel modules that might crash the whole kernel. A bunch of
recent eBPF verification work [8, 46, 69, 73, 76] has largely
strengthened the safety of eBPF programs running inside the
kernel. Recent advances in eBPF functionalities like XDP
programmable network data path [58], dynamic memory al-
location [20], exception handling [40], and exposing more
kernel functions [42] make eBPF more and more capable.

We introduce eTran (extensible kernel Transport), a sys-
tem for agilely customizing kernel transports. eTran achieves
agile customizability and kernel safety by 1) leveraging exist-
ing eBPF infrastructure such as built-in data structures (eBPF
maps), BPF timer, and XDP for fast packet IO, and 2) extend-
ing it with new eBPF hooks and maps to support complex
transport functionalities while conforming to the strict eBPF
verifier for safety. eTran allows safely offloading full trans-



port states and performance-critical operations into the kernel,
achieving strong protection. For example, it supports packet
acknowledging, flow pacing, fast retransmission, and more
in eBPF. In terms of performance, eTran shows similarities
with user-space transports for the following design choices:
direct packet delivery to user-space without kernel-to-user
copies; lightweight packet buffer management and syscall-
free IO batching; streamlined transport implementation but
preserving genericity. However, transport processing under
eTran remains in the kernel, fully isolated from applications.
Crucially, transport states are safeguarded by kernel eBPF,
preventing direct access from untrusted libraries.

Under eTran, we implemented two representative and vastly
different transports, the sender-driven TCP (with DCTCP
congestion control) and the receiver-driven Homa, and show
great performance gains. For TCP, eTran version achieves
2.4-4.8× higher throughput and 3.2-3.7× lower latency than
kernel-native TCP, while being only 1.6-1.8× slower than a
state-of-the-art microkernel-inspired kernel-bypass solution
with comparable latency. For Homa, eTran version outper-
forms the kernel module implementation by 1.7-1.8× higher
throughput and 3.9-7.5× lower latency for RPCs. We fur-
ther showcase that eTran supports multi-tenancy, coexisting
transport protocols and flexible traffic management.

2 Background and Motivation
2.1 Network Transports
Diverse transports for applications. Modern datacenters
have developed various transports to better meet their work-
loads with two main categories as follows:
• Sender-driven transports, such as DCTCP [2], Swift [44],

and more [1,45,49,72,75,82], heuristically control the send-
ing rate on the sender side. These protocols are generally
beneficial for elephant flows [32] or traffic patterns with
low entropy. They are commonly used in machine learning
training and storage applications [25, 48, 60].

• Receiver-driven transports, such as NDP [30], Homa [50,
55], and more [14, 26], assume last-hop congestion and
proactively control the sending rate by allocating credits
from receivers to senders [14, 26, 30, 50]. These protocols
prevent queuing and improve tail performance, especially
for small flows that dominate RPC applications [15, 50].
While datacenter transports differ in how to control the

sending rate (e.g., different congestion signals), their imple-
mentation share the following common components:
• Segmentation and reassembly involve chunking data into

packets for sending and reassembling them upon receiving.
• Congestion control explores the right sending rate to utilize

the available network bandwidth while avoiding congestion.
To adjust the rate, transports maintain various congestion
states, such as RTT. To enforce rate control, both sender-
driven and receiver-driven transports require pacing engines
based on target rate, credit availability, or window size.

• Loss recovery detects packet loss and triggers retransmis-
sion. Transports usually leverage multiple ACK responses
to infer packet loss and trigger fast retransmission. When
this mechanism is insufficient, timeout-based retransmis-
sion serves as the last line of defense for reliable transfer.

Protection for transports. Transport implementation re-
quires protection or isolation from the user-space applica-
tions, typically through kernel-based networking stacks. Here,
we assume the following threat model that is common in
public clouds: applications using transports might be mali-
cious; the eBPF programs written by applications might be
malicious but can be detected and prevented by the existing
kernel verifier, recent advanced runtime verifier [40], or oth-
ers (see §8); the kernel and eBPF subsystems are trusted,
e.g., through verification techniques like [69]. Without protec-
tion, application bugs, crashes, or malicious behaviors could
corrupt the transport states and impact other colocating appli-
cations [5]. Kernel-based protection has its additional benefit
where the networking stacks can firewall malicious appli-
cations, enforce access control, and implement various rate-
limiting policies [4, 57]. On the other hand, eBPF, as a kernel-
native mechanism, naturally provides kernel-based protection
against user-space applications, which motivates us to explore
the possibility of running transports inside eBPF.

2.2 eBPF Basics
eBPF (extended Berkeley Packet Filter) is a promising tech-
nique that allows users to run customized, verified programs
at specific kernel hooks. It uses eBPF maps and eBPF helper
functions to store and exchange various data types between
kernel and user space. Overall, eBPF enables safe and efficient
extensions of kernel capabilities without modifying kernel
code or loading unverified (thus unsafe) kernel modules.
Increasingly capable eBPF. The Linux kernel community is
advancing the eBPF subsystem to handle more complex logic.
For instance, kfunc complements eBPF helper functions by
exposing kernel functions and data structures with restrictions;
dynptr, added in v5.19, allows pointing to dynamically-sized
memory; a dynamic memory allocator was added in v6.1; and
advanced structures like rbtree (Red-Black Tree) were added
in v6.3. Although eBPF still has limitations (e.g., no floating-
point arithmetic to avoid non-determinism [53]), its growing
capabilities enable safe kernel transport customization.
Fast packet processing with eBPF. XDP (eXpress Data
Path) [58] is an eBPF hook in the Linux kernel for fast packet
processing; AF_XDP is a specialized socket family built on
XDP for fast packet processing in the user space. Packets
processed by XDP can be dropped, forwarded back, passed to
kernel networking stacks, or redirected to AF_XDP sockets
based on the return code specified by the eBPF program.

AF_XDP uses four rings for packet IO: TX/RX rings per
socket and Fill/Comp rings per NIC queue. The application
provides buffers via the Fill ring for the kernel to receive
packets, which are then placed in the RX ring by the kernel.



AF_XDP socket AF_XDP socket

Control plane

Transport states

XDP

eBPF maps

eBPF hooksXDP_GEN XDP_EGRESS

ACK, credit packets

Unix domain socket, LRPC over SHM

Ingress processing, LB

ApplicationApplication

AF_XDP socket

Data path Control path

Egress processing, pacing

Kernel

Figure 1: Overall architecture of eTran.

It submits buffers to the TX ring for transmission, and the
kernel returns transmitted buffers to the Comp ring for reuse.
All operations are asynchronous and optimized for syscall-
free. Kernel operations of AF_XDP run in the NAPI context,
which is Linux’s event-driven packet processing mechanism.
AF_XDP uses UMEM, a pre-allocated memory pool of fixed-
size chunks, as the packet buffer pool. Currently, an AF_XDP
socket can only bind to one NIC queue and UMEM while a
NIC queue or UMEM can bind to multiple AF_XDP sockets.

3 eTran Design
eTran has the following four design goals:
• Agile customizability: eTran should allow agilely cus-

tomizing diverse transports and their full functionalities.
• Kernel safety: eTran should prevent eBPF programs from

tampering with or even crashing the kernel.
• Strong protection: eTran aims to maintain all transport

states inside the kernel with corresponding state operations
in eBPF, protecting against untrusted applications.

• High performance: eTran aims to achieve much higher
performance than existing kernel transports and comparable
performance to kernel-bypass ones.
Figure 1 shows the high-level architecture of eTran, which

separates any transport into a control path and a data path. The
control path handles non-performance-critical eBPF programs
attaching/detaching, AF_XDP socket and UMEM creation/de-
stroying, connection setup/teardown, and complex tasks that
are unsuitable for eBPF (§3.1). It runs inside a root-privilege
daemon, and multiple control paths from different transports
can share the same daemon. Through this control path separa-
tion, eTran allows non-privilege applications to attach eBPF
programs to the kernel through the control path daemon.

The data path handles performance-critical transport opera-
tions (e.g., packet reassembly, ACK/credit response, flow pac-
ing) with streamlined implementation for high performance;
it maintains all transport states (with state operations) inside
the kernel for strong protection (§3.2). The data path runs
across the kernel and user space: the kernel part runs in eBPF
for kernel safety with direct access to transport states; the user-
space part runs through untrusted libraries that cannot directly
access transport states. Both parts can be agilely customized.

The data path and control path communicate through Unix

domain socket and efficient LRPC [6, 24, 54] over shared
memory. Additionally, eTran features flexible user-space IO
by layering atop of the AF_XDP sockets (§3.3), multi-tenancy
support, and flexible traffic management (§3.4).

3.1 eTran Control Path
Managing eBPF program. Applications submit transport-
specific eBPF programs to our control path daemon to attach
to the kernel, as such attaching requires root privilege. The
daemon will first do a series of checks to make sure these
programs submitted by different applications won’t conflict
with each other, e.g., overlapping ports or eBPF maps. Then,
it will try to attach the eBPF programs to the hooks and create
entries in BPF_TYPE_PROG_ARRAY for them, which will go
through the kernel verification for liveness and safety.
Managing AF_XDP socket and UMEM. The control path
daemon creates all AF_XDP sockets on behalf of applica-
tions and then transfers the file descriptors to applications
through the Unix domain socket. This allows applications to
use AF_XDP without privileges (e.g., sudo). Similarly, the
daemon is also responsible for creating an individual UMEM
for each application, mapping it into its address space. All
sockets for a single application share the same UMEM.
Managing transport connections. The control path dae-
mon handles connection management for connection-oriented
transports such as TCP. Applications post control operations
(i.e., open/connect/listen/accept/close) via LRPC
channels; then the daemon intercepts the connection-related
packets through its own AF_XDP socket and handles connec-
tion setup/teardown, then returns results to applications. eTran
decides to put connection management into the control path
due to the complexity of handshaking and timeouts, which
are challenging for eBPF while being non-critical to transport
performance. A similar design is adopted by TAS [41].
Managing CC and loss recovery. eTran decides to put few
challenging-to-offload functionalities to the control path, in-
cluding running advanced CC algorithms (e.g., involving
floating-point arithmetic that is prohibited in eBPF) and han-
dling severe loss recovery triggered by timeouts (not TCP fast
retransmission). We will elaborate on this in §4.

3.2 eTran Data Path: Kernel Offloading
Running transport protocols and maintaining transport states
inside the constrained eBPF environments requires enhancing
the existing eBPF subsystem. We use the following three ex-
ample issues to motivate the necessity of such enhancement:
1 Many transports update states when packets get sent out,

e.g., Homa decreasing the remaining bytes, but the XDP
hook only works on ingress packets.

2 Transports usually generate ACK and credit packets to
coordinate senders and receivers, but the XDP hook does
not support packet generation inside the kernel.

3 Almost all transports require a pacing mechanism to reg-
ulate when to send packets, but the XDP hook does not



support any buffering mechanism to defer packet sending.
The challenge is how to efficiently enhance the eBPF sub-

system while not incurring destructive chances to eBPF, e.g.,
keeping similar semantics on the introduced changes, and
reusing the existing kernel verifier and data structures. To
address this challenge, eTran provides two new eBPF hooks,
XDP_EGRESS and XDP_GEN (§3.2.1), and one new eBPF map,
BPF_MAP_TYPE_PKT_QUEUE (§3.2.2).

3.2.1 New eBPF Hooks for Egress and Pktgen
XDP_EGRESS is a new eBPF hook that eTran designs to
allow eBPF to efficiently customize egress packet processing,
addressing the issue 1 . eBPF programs attached to this hook
accept an egress packet context as the input parameter and
specify a return code to determine how this packet gets trans-
mitted. We make the hook transparent to the NIC driver layer
to avoid per-vendor code modifications. To achieve this, we
place the hook in the vendor-agnostic AF_XDP kernel code,
specifically, the xsk_tx_peek_desc function. This function
fetches packet descriptors from AF_XDP TX rings and deliv-
ers them to the NIC drivers, finishing packet transmissions.

We also aim to reuse as many existing eBPF infrastructure
as possible. First, XDP_EGRESS hook uses the same packet
context (i.e., struct xdp_md) as XDP, facilitating the use of
eBPF helpers designed for XDP. We add a new umem_id field
at the end of the struct to indicate the UMEM of each packet,
preventing unauthorized access to resources like connections
and ports. For XDP programs, this field is invalid and inac-
cessible (see §4.1 for more detail). Second, the XDP_EGRESS
hook shares the same return codes and actions as XDP:
• XDP_TX: Transmit the packet immediately.
• XDP_REDIRECT: Redirect the packet to a special map for

buffering or another AF_XDP socket.
• XDP_DROP: Drop the packet.
XDP_GEN is another new eBPF hook that eTran designs to
allow eBPF to efficiently generate packets. These packets can
be customized based on the transport, e.g., ACK and credit
packets, addressing the issue 2 . eBPF programs attached to
this hook also use the same packet context as XDP, and make
packet-generating decisions based on the states from eBPF
maps. Figure 2 shows how this hook works : first, the eBPF
program at the XDP hook pushes necessary metadata (e.g.,
seq and ack in TCP) into a per-CPU eBPF queue, if it needs
to generate an ACK packet; then the eBPF program at the
XDP_GEN hook will pop any such metadata from the queue,
fill it into a new packet frame, and send the packet out. eTran
places the XDP_GEN hook in the xdp_do_flush function that
is called at the end of a NAPI poll to generate packets.

A strawman approach dynamically allocates packet frames
on-demand but incurs high overhead due to complicated and
slow kernel memory management. Instead, we leverage batch-
ing to amortize the overhead: we pre-allocate enough frames
and call the XDP_GEN-attached eBPF program in a finite loop
whose budget is the same as NAPI; in each iteration, the eBPF

XDP

bpf_map_push_elem()

per-CPU queue

XDP_GEN

bpf_map_pop_elem()

per-CPU
xdp_frame pool

until XDP_ABORTED or 
budget exhaustion

dev_xdp_flush()

Figure 2: Coordination between XDP and XDP_GEN.

program may use a pre-allocated packet frame to generate a
packet. We further leverage the page_pool allocator, an effi-
cient memory allocator optimized for XDP, to do the frame
pre-allocations. Doing batched packet generations essentially
coalesces ACK or credit packets and sends them in batches
for high performance; a similar coalescing mechanism has
been leveraged in the transport implementations from Google
Falcon [28], TAS [41], Caladan [24], and eRPC [38].

Our XDP_GEN hook supports three actions:
• XDP_TX: Transmit the ACK/credit packet immediately.
• XDP_DROP: Drop the ACK/credit packet.
• XDP_ABORTED: No more ACK/credit packets are gener-

ated, and the finite loop will be terminated.

3.2.2 New eBPF Map for Pacing

To address the issue 3 , eTran designs a new eBPF map
PKT_QUEUE (i.e., BPF_MAP_TYPE_PKT_QUEUE), serving as
the backbone data structure for various pacing mechanisms.
A PKT_QUEUE contains multiple buckets, each with slots stor-
ing pointers to xdp_frames, which describe packet metadata
(e.g., packet address). We leverage the eBPF dynptr fea-
ture (§2.2) to allow eBPF programs to safely access these
xdp_frames by the pointers stored in PKT_QUEUE buck-
ets (i.e., by functions bpf_dynptr_from_xdp_frame and
bpf_dynptr_slice_rd/rdwr).

eTran’s PKT_QUEUE supports enqueueing and dequeueing
xdp_frame to/from a specified bucket. Depending on the
pacing mechanism, the bucket index is determined based on
the packet transmission timestamp (i.e., tx_timestamp) or
explicitly specified; we will cover more detail at the end of this
subsection. We further wrap a series of eBPF kfuncs (§2.2)
to help eBPF programs manipulate xdp_frame pointers. For
example, an existing kernel function dev_xdp_enqueue is
wrapped into a kfunc to transmit packets through NIC queues.

In a quick summary, our PKT_QUEUE allows safely tracking
packets deferred for transmission, and its associated kfuncs
allow transmitting packets from eBPF programs. Now, the
next question is: how to asynchronously execute an eBPF
program (that transmits packets)?
BPF timers as triggers. To answer this question, eTran’s
approach is leveraging the mature “callback” infrastructure
of BPF timers [67]. The original BPF timer works as follows:
eBPF programs call bpf_timer_init to register an eBPF
callback function, then use bpf_timer_start to start the
timer with input parameters of the desired timeout value and
some flags; when the timeout is reached, the eBPF callback



function will be executed asynchronously. Instead of using
the timeout functionality of BPF timers, eTran leverages their
callback registration and asynchronous execution abilities.
Concretely, we extend BPF timers with two new modes by
adding new flags to the bpf_timer_start function:
• In the first mode, this function will enqueue the callback

function registered with this timer into a per-CPU backlog
queue and schedule NETTX_SOFTIRQ. The softirq context
at the same CPU would dequeue and execute callback func-
tions based on the transport-specific pacing mechanism.

• In the second mode, the function enqueues the callback into
the backlog queue of a dedicated kthread created at kernel
boot, and wakes it up. The thread will dequeue and execute
callbacks based on the specific pacing mechanism.

The first mode triggers per-CPU callback executionn (com-
mon for most protocols), while the second mode suits trans-
port protocols that require global scheduling such as Homa.
Both modes can be used together if callbacks properly syn-
chronize shared states. In our implementation, TCP uses the
first mode, while Homa uses both modes.

The remaining question is: how to support various pacing
mechanisms used in different transports? We classify pacing
mechanisms into several categories and discuss individually.
Rate-based pacing. This is the most widely-used pacing mech-
anism as it effectively prevents bursts and reduces conges-
tion spikes [28, 44]. eTran leverages PKT_QUEUE to imple-
ment a scalable and CPU-efficient timing wheel, following
the state-of-the-art design Carousel [62]. Specifically, each
PKT_QUEUE bucket serves as a timing wheel slot, indicat-
ing when stored packets should be transmitted. For details
on eTran’s tx_timestamp mapping to buckets and timing
wheel operation, see the Carousel paper [62]. Note that eTran
also supports complementing rate-based pacing with window
boundaries. Our TCP implementation adopts this pacing.
Credit-based pacing. This is widely used in receiver-driven
transport protocols such as Homa. Take Homa as an example:
when an RPC cannot send packets because of insufficient cred-
its, Homa puts the RPC packets into a pacing engine and waits
for the credits to replenish. To support credit-based pacing,
eTran lets each PKT_QUEUE bucket store packets belonging to
a Homa RPC; when the credit of a RPC is replenished, eTran
will transmit packets in the corresponding bucket.
Out-of-order completion for AF_XDP. For the existing
AF_XDP, packets are always completed (i.e., transmitted) in
the order of being pushed into the TX ring, and its buffer recy-
cling mechanism only supports in-order completion. However,
with pacing introduced in XDP_EGRESS, the transmission of
some packets will be delayed, causing out-of-order comple-
tion. To address this, we enhance the AF_XDP packet buffer
management with minor code changes. See §5 for more detail.

3.3 eTran Data Path: User-Space IOs
eTran carefully made design choices inspired by user-space
transports for IOs, which are critical for performance gain over

Virtual AF_XDP socket
DRR

AF_XDP sockets

Fill/Comp Ring Fill/Comp Ring

Locked access

POSIX API 

Lockless

NIC Queue1 NIC Queue2

TX/RX Ring

Segmentation/Reassembly

RPC API 

Virtual AF_XDP socket
DRR

AF_XDP sockets

POSIX API 

Segmentation/Reassembly

RPC API 

Figure 3: User-space packet IOs in eTran.

kernel-native transports. It offloads core transport operations
to the kernel via eBPF and delivers data packets to the user
space via AF_XDP sockets. A thin and untrusted user-space
library reassembles raw data packets into transport-specific
abstractions such as TCP flows or Homa RPCs and versa visa.
However, we note that the untrusted library cannot directly
access any transport state in the kernel, as it is within the non-
privilege applications. Additionally, the library cannot access
another application’s UMEM (§3.1). This prevents untrusted
libraries from corrupting kernel states or disrupting other
applications, ensuring the transport stack remains protected.
Virtual AF_XDP socket. Figure 3 shows how our user-space
library transforms AF_XDP packets into application-facing
flows or RPCs. eTran utilizes multiple NIC queues, allowing
different application threads to do packet IOs independently
for high performance. Ideally, each application thread owns
an AF_XDP socket accessing multiple NIC queues for higher
parallelism and lower head-of-line blocking [13,37]; however,
AF_XDP has an inherent constraint that one AF_XDP socket
can only be bound to one NIC queue. To address this con-
straint, eTran proposes a virtual AF_XDP socket managing
multiple real sockets (each bound to a NIC queue) via epoll.

Atop the virtual AF_XDP socket, eTran provides two types
of APIs to fulfill the needs of different applications: 1) POSIX
APIs with standard socket operations like read and write,
and 2) event-driven RPC APIs with continuation callbacks
like eRPC [38]. Applications using standard socket APIs can
switch to eTran by LD_PRELOAD without any code change.

However, using virtual AF_XDP sockets also introduces
new challenges on scheduling and thread synchronization.
Scheduling challenge. Packet arrival at a virtual AF_XDP
socket indicates that packets have arrived at one or more real
AF_XDP sockets. eTran must take care of how to pull packets
from these real sockets in a load-balanced manner, especially
to avoid starvation. To this end, eTran employs Deficit Round
Robin (DRR) [66] scheduling to achieve efficient and fair
packet processing among multiple sockets. When sending
packets to real AF_XDP sockets, eTran operates similarly by
enhancing the kernel xsk_tx_peek_desc function.
Synchronization challenge. All AF_XDP rings (i.e., TX/RX
and Fill/Comp rings) are SPSC (single-producer, single-
consumer) lockless rings designed for high-performance, run-
to-completion packet processing. The TX/RX rings are per-



AF_XDP socket, therefore application and NAPI operations
on them are still lockless. The Fill/Comp rings, however, are
per-NIC queue. Multiple application threads can access them
concurrently. A user-space spinlock is used to protect each
Fill/Comp ring pair for correct concurrent access among ap-
plication threads. No locking is needed for NAPI operations,
as each NIC queue is handled by a single NAPI context.
Performance advantages of eTran. Compared to existing
kernel transports such as Linux TCP and Homa kernel module,
eTran has the following performance advantages: 1) efficient
buffer management and syscall-free IO batching, 2) stream-
lined implementation without complicated kernel socket and
(thus) file system, and 3) decoupled kernel transport process-
ing1, which reduces context switch [81] and improves instruc-
tion execution with better cache efficiency [41].

3.4 Multi-Tenancy and Traffic Management
eTran also offers software-based multi-tenancy and traffic
management as a complement to hardware mechanisms (e.g.,
SR-IOV [17]). For different applications using eTran, the
control path daemon isolates kernel resources (e.g., eBPF
maps) by using different namespaces and assigns different
NIC queues to different applications. This design prevents
malicious applications from accessing others’ IO buffers and
enables operators to schedule problematic NAPIs on other
CPUs to mitigate interruptions. Allocating at least one NIC
queue per application is feasible, as modern NICs support
hundreds to thousands of queues [68]. For applications not
using eTran, XDP/AF_XDP naturally co-exists with other
kernel built-in transports. We will demonstrate that eTran can
operate seamlessly with kernel built-in transports in §6.3.

eTran uniquely excels in flexible traffic management as
all packets traverse eBPF hooks. It natively supports traffic
management such as traffic monitoring, access control, and
rate limiting. eTran abstracts these tasks into modular eBPF
programs, linked via bpf_tail_call that allows chaining
multiple programs on a single hook. Operators can flexibly
manage eBPF programs through the control path daemon.

4 Case Studies
This section takes two representative transports as examples to
demonstrate how eTran enables implementing and customiz-
ing transport protocols in eBPF with high performance. The
first transport is the widely-used TCP with DCTCP conges-
tion control, which is a sender-driven and connection-orient
protocol (§4.1). The second transport is Homa, which is a
receiver-driven and connection-less protocol for datacenter
RPCs (§4.2). These two transports represent a wide range
of transport designs in literature [14, 26, 30, 44, 45, 49, 82].
We discuss more transport implementations in Appendix A.
While eTran currently targets datacenter protocols pursuing

1For Linux, the sender-side transport processing is coupled to the appli-
cation context in kernel space when calling write or send.

TCP AppControl path

AF_XDPAF_XDP

XDP_EGRESS XDP

(a2):XDP_REDIRECT
(b): 3 Dup-ACK

(a1): Upon timeout, 
send dummy packet

Retransmission 
metadata

Figure 4: TCP retransmission in eTran. (a) is the retransmission
triggered by the control path after a timeout, and (b) is the fast
retransmission triggered by three duplicated ACKs.

performance, we believe it can be extended to non-datacenter
scenarios such as wide-area networks. This would require
more designs to handle more complex packet reordering and
security mechanisms such as TLS [34] in eBPF.

4.1 TCP under eTran
TCP control path. As briefed in §3.1, the control path dae-
mon manages TCP connections, congestion control (CC), and
severe loss recovery when timeout happens. The daemon uses
its own AF_XDP sockets to communicate with remote peers
for the three-way handshake to establish TCP connections. It
then installs TCP connection states and CC states into eBPF
maps. Separating CC states into the control path is inspired
by the CCP architecture [52] with two motivations: 1) eBPF
does not have mature support for floating point computation
that commonly appears in TCP CC algorithms, and 2) CCP
has shown that separating CC from the datapath still gives
similar CC behaviors and accuracy as in datapath. We defer
the description of loss recovery to the end of this subsection,
as it interacts closely with the data path.

eTran maintains the connection states in an eBPF hashmap
while CC states are in an eBPF array. Storing CC states in an
array allows eTran to mmap it into the daemon’s address space
through the BPF_F_MMAPABLE feature; this avoids the syscall
overhead when the daemon updates CC states. To help eBPF
programs locate the CC state, each connection state contains
the index of the corresponding CC state in the array.
TCP data path. The eBPF program at the XDP hook re-
ceives both TCP control packets and data packets: it redirects
control packets such as SYN and SYN-ACK to the control path
AF_XDP; for data packets, it uses four-tuple as the key to
look up TCP connection state in the aforementioned eBPF
hashmap. The eBPF program then verifies the ack and seq
values of data packets and updates TCP windows if valid. For
common cases where seq is in order, packets are delivered
to the virtual AF_XDP sockets in the user-space transport
library (see §3.3). For out-of-order seq, eTran implements an
out-of-order receiving mechanism similar to TAS [41].

Figure 4 shows eTran’s workflow for loss recovery, includ-
ing fast retransmission and timeout-triggered retransmission.
To handle fast retransmission, once the eBPF program at
the XDP hook detects three duplicate ACKs, it will rollback
the transport state, piggyback the retransmission information
(i.e., the rollback pointer) in the ACK packet, and deliver
the ACK packet to user-space transport library. The library



will retransmit packets accordingly. The piggybacked retrans-
mission information is stored in the headroom of the packet
frame, enabling efficient coordination between the eBPF pro-
gram and the user-space transport library. To handle timeout-
triggered retransmission, once the control path daemon detects
such timeout, it will send a dummy packet going through the
XDP_EGRESS hook to trigger the fast retransmission logic of
the eBPF program and then get dropped. This avoids locking
operations between the data path and the control path.

The eBPF program at the XDP_EGRESS hook processes
every packet transmitted by the AF_XDP sockets. It fills
packets with the right TCP header and IP header based on
the connection state maintained in eBPF maps and the right
Ethernet header by looking up the kernel FIB table with
bpf_fib_lookup. To reduce the cost of looking up the FIB
table for every packet, eTran uses an eBPF array to cache
results. When the flow control window and the CC window
both permit, the XDP_EGRESS eBPF program will transmit
the packet directly with the action of XDP_TX; otherwise, it
will enqueue the packet into our PKT_QUEUE with the ac-
tion of XDP_REDIRECT. Later, when both windows permit,
the queued packets will be transmitted asynchronously (see
§3.2.2). As briefed in §3.2.1, this eBPF program also prevents
misbehaved applications from modifying connection states
that do not belong to them. For example, it will check if the
umem_id in the packet context matches the one maintained
in the connection state and drop the packets if not matched.

4.2 Homa under eTran
Homa control path. Similar to TCP, Homa under eTran lets
the control path daemon manage its socket creation, binding,
and closing. Different from TCP, Homa runs CC in the data
path via eBPF (rather than in the control path) with CC states
maintained in eBPF hashmaps. There are two reasons for
such a difference: 1) Homa CC or its receiver-driven credit
generation is in the critical path of data packet transmission
(in contract to TCP sender-driven CC that regulates rate), thus
having huge performance penalty if running on a separate
control path; and 2) Homa CC is relatively simple in terms
of compute operations (e.g., no floating points), friendly to
eBPF offloads. Since Homa is connection-less via short-lived
RPCs, eTran also maintains its RPC states in the data path for
efficient creation/destruction (with eBPF hashmaps).

The Homa control path detects RPC timeout and handles
it by sending RESEND packets for retransmission. The dae-
mon’s timer thread periodically wakes up and scans RPC
states in the kernel eBPF hashmap for detecting timeouts;
it uses bpf_map_lookup_batch to reduce syscall overhead.
Once the peer receives the RESEND in the XDP hook, XDP
will piggyback the lost range and RPC buffer address (main-
tained in the kernel RPC state) on the packet and redirect it to
the user-space library through AF_XDP for retransmission.

Other control-path events include maintaining infrequently
changing priority cutoff values [55], freeing states in remote

RPC servers when RPC clients do not explicitly confirm RPC
completions, and aborting RPCs caused by machine crushes
or long timeout by forcibly removing corresponding states.
Homa data path. Homa uses receiver-driven credit schedul-
ing to achieve SRPT (Shortest Remaining Processing Time);
eTran implements the credit scheduling at the XDP hook,
while also enforcing sender-side SRPT at the XDP_EGRESS
hook. When the XDP eBPF program receives the first un-
scheduled packet [50] of an RPC message, it creates a new
CC state object, including the RPC ID and remaining bytes
through bpf_obj_new, and enqueues it into a bpf_rbtree
map, i.e., credit list. For subsequent packet arrivals, the eBPF
program traverses the credit list, dequeues the correspond-
ing state object, updates the state object with new remaining
bytes, and re-enqueues it into the credit list.

The eBPF program at the XDP_GEN hook is responsible for
selecting RPCs and sending credit packets. Conceptually, it
has the following four steps: 1) selecting candidate RPCs from
the credit list; 2) looking up the RPC state hashmap to find cor-
responding RPC states, then allocating credits; 3) removing
finished RPCs from the credit list; 4) sending credits for the
selected RPCs. However, we face two challenges due to eBPF
constraints: lack of searching functionality in bpf_rbtree
to implement RPC selections; instruction limit posed by the
eBPF verifier disallows offloading complex logic.

eTran addresses these challenges by innovatively utilizing
existing eBPF features. For the first challenge, we wrap a
new eBPF kfunc called bpf_rbtree_lower_bound that re-
turns the first node whose value is not less than the provided
one; we then leverage this kfunc to select candidate RPCs
ranked by their priorities while guaranteeing not selecting
more than one RPC for each peer (required by Homa [55]). A
common way to implement such RPC selections is through
a 2-level rbtree as Homa does, but requires holding multiple
locks simultaneously, which eBPF prohibits. Instead, we use
bpf_rbtree_lower_bound to emulate such 2-level rbtree
with a single rbtree; see Appendix B for more detail. For the
second challenge, we use bpf_tail_call to break complex
eBPF logic into multiple programs that go through the verifier
separately. To pass states across different tail-called eBPF
programs, we exploit per-CPU variables in the bss section.

On the sender side, the XDP_EGRESS eBPF program queues
packets into the pacing engine (see §3.2.2) when no credit
is available for this RPC. Upon credit replenishment, the
callback enforces SRPT across RPCs using a bpf_rbtree of
queued RPCs, sorted by the remaining bytes to send.

Due to space limitation, we elaborate on how eTran enables
a flexible development model covering transport developers,
application developers, and more in Appendix C.

5 eTran Implementation
Our eTran prototype contains 24K lines of C/C++, spreading
across the Linux kernel, control path daemon, eBPF programs,
and user-space transport library, as shown in Table 1. The



Category Kernel
Control path

daemon
eBPF programs:

TCP/Homa
Transport libs:

TCP/Homa

LoC 2597 8224 2173/5349 3661/2024

Table 1: eTran codebase breakdown with 24028 LoC in total.

current prototype runs on Linux kernel v6.6.0 and targets
Mellanox mlx5 driver. Our Linux kernel change includes the
two new hooks, the new eBPF map with associated kfuncs (for
packet manipulation), bpf_rbtree’s new API as a kfunc, and
AF_XDP’s out-of-order completion with mlx5 driver support.
We only make ~20 LoC change for the mlx5 driver, so that
the driver can maintain the addresses of packet frames that
get queued in the pacing engine, and only place them in the
completion ring when they are eventually transmitted.
eBPF verifier. eTran does not change the verifier but just
registers new eBPF hooks and kfuncs with the verifier for
safety and security. In general, there are three types of checks
done by the eBPF verifier: (a) eBPF program behaviors (e.g.,
bounded loops, NULL pointers, deadlock, etc.), (b) how eBPF
programs access input contexts, and (c) how eBPF programs
use eBPF helpers and kfuncs. Naturally, the eBPF verifier
checks (a) for all eTran eBPF programs. It also checks (b) for
XDP_GEN and XDP_EGRESS similarly to the existing XDP.

For (c), the principle is that eBPF programs must call these
helpers and kfuncs safely and securely. For safety, we ensure
the used kfuncs (either wrapped from the existing kernel func-
tions or written by us) are non-preemptible and have finite
execution steps. For example, our XDP_EGRESS hook uses the
kfunc wrapped from the kernel dev_xdp_enqueue() func-
tion, which meets the safety requirement as it was designed to
run in the softirq context. Our added kfunc for bpf_rbtree
follows the implementation practice of existing eBPF helpers
with extensive testing; nevertheless, we plan to verify it for-
mally in the future. For security, we expose only necessary
eBPF helpers to our new hooks and carefully reason through
its security implications. The eBPF helpers exposed to the
new hooks are only a subset of the ones exposed to XDP by
kernel developers. For example, we exclude all socket-related
helpers (e.g., bpf_sk_lookup_tcp) as the new hooks don’t
access these sockets; we exclude bpf_redirect_map for
XDP_GEN to prevent redirecting packets arbitrarily.

6 Evaluation
This section aims to answer the following questions:

1. What are the latency and throughput of TCP and Homa
under eTran compared to existing kernel ones and kernel-
bypass ones (§6.1 and §6.2)?

2. How well does eTran support multi-tenancy and traffic man-
agement (through our new eBPF map) (§6.3)?

3. What is the performance of our new eBPF hooks (§6.4.1)
and retransmission design (§6.4.3)?

Experiment setup. We use 10 xl170 physical machines
from CloudLab [19], each equipped with two 10-core In-
tel E5-2640v4 CPUs (2.4GHz), 64GB memory, and a Mel-
lanox ConnectX–4 25 Gbps NIC. All machines are connected

via a Mellanox 2410 switch under the same rack. For eTran
(Homa/TCP) and Linux (Homa/TCP), all machines run Linux
kernel v6.6.0. For TAS, we are unable to run it on Linux ker-
nel v6.6.0 due to Mellanox driver issues, but we manage to
run it on Linux kernel v5.15.0. Since TAS is built atop DPDK,
we expect no performance differences between the two kernel
versions. We only enable TCP Segmentation Offload (TSO)
for Linux (Homa/TCP) as AF_XDP does not currently sup-
port it (see §7). There is no zero-copy optimization for eTran
for a fair comparison (i.e., keep API semantics the same).
Following prior work [80, 81], we disabled the NIC interrupt
coalescing feature. All experiments use the default maximum
packet size (MTU) of 1500 bytes. For DCTCP, we set the
ECN marking threshold to 70KB, as done in prior work [55].
Comparison baselines. We compare eTran (Homa) to Lin-
ux/Homa (commit 8321cde), a kernel module implementa-
tion of Homa that is highly optimized by the Homa authors.
We refer to it as Linux (Homa) throughout this paper. We com-
pare eTran (TCP) to TAS (commit d3926ba), a microkernel-
style user-space TCP stack built on DPDK, and Linux (TCP)
with DCTCP congestion control. By default, for eTran and
TAS, we separate CPU cores for applications and interrupt
processing/busy polling, and provision a dedicated core for
control path/slow path. Linux (Homa) and Linux (TCP) use
all provisioned cores to handle network load and applications.

6.1 Comparision with Linux (Homa)
Microbenchmarks. We first compare the basic latency and
throughput between eTran (Homa) and Linux (Homa). We use
a similar configuration described in the Homa paper [55]. The
median latency of short messages and the throughput of large
messages are measured by using a single client thread to send
back-to-back requests (32B/1MB) to a single-threaded server,
which responds with a 32-byte response. Next, we measure
the throughput of a multi-threaded server receiving concurrent
RPCs (500KB) from 7 clients, as well as the throughput of a
multi-threaded client sending concurrent RPCs to 7 servers.
Finally, we measure the RPC rate for small messages (32B),
maintaining the same client-to-server ratio.

Table 2 summarizes the result. eTran (Homa) achieves
lower median latency than Linux (Homa), i.e., 11.8µs vs.
15.6µs. eTran (Homa) outperforms Linux (Homa) in large
message throughput, even with Linux (Homa) using TSO
batching. In terms of RPC rate, eTran (Homa) achieves
approximately 1.7-1.8× the message throughput of Linux
(Homa). This gap is because eTran (Homa) uses AF_XDP
for efficient packet IO while Linux (Homa) has a larger code
path and uses costly structures like sk_buff.
Cluster benchmark. All the following experiments utilize the
same cluster benchmark application from Linux (Homa) [55],
conducted with 10 machines. In this experiment, each node
serves as both a multi-thread client and a multi-thread server
simultaneously. Clients randomly select servers to issue a
batch of RPCs. Given that the data of modern RPCs primarily



eTran (Homa) Linux (Homa)

32B median latency (µs) 11.8 15.6
1MB throughput (Gbps) 17.7 14.5
Server throughput (Gbps) 23.0 23.1
Client throughput (Gbps) 22.7 22.9
Client RPC rate (Mops) 2.9 1.7
Server RPC rate (Mops) 3.3 1.8

Table 2: Comparison of basic latency and throughput between eTran
(Homa) and Linux (Homa).

flows in one direction [64], we vary the request size up to
1MB while keeping the response size fixed as a small message.
We use workloads W2-W5 in Homa paper [55] where W2
and W3 are dominated by short messages and W4 and W5
are dominated by large messages. Slowdown is the client-
observed RTT divided by the ideal RTT for the same-length
RPCs using eTran (Homa). For fairness, eTran (Homa) is
configured with the same parameters as Linux (Homa).

Figure 5 shows the latency slowdown for workloads W2-
W5. eTran (Homa) outperforms Linux (Homa) across all
workloads. For the short message dominated workloads W2
and W3, eTran (Homa) achieves 3.9-7.5× lower P99 tail la-
tency and 1.4-3.6× lower P50 latency compared to Linux
(Homa). This is because: for W2 and W3 where the bottle-
neck is software overhead, eTran (Homa) leverages AF_XDP
to achieve more efficient packet processing. For W4 and W5,
which mainly consist of large messages, eTran (Homa) also
slightly outperforms Linux (Homa). eTran (Homa) occasion-
ally experiences higher tail latency than Linux (Homa) for
large messages. This is because less optimized thread schedul-
ing in eTran (Homa) causes interference between the pacing
thread and applications; Linux (Homa) also faced this issue
but mitigated it by carefully scheduling both threads to ensure
pacing neither falls behind nor dominates CPUs. We plan to
incorporate such transport-specific scheduling policies in the
future, possibly through eBPF as well [63].

Figure 6 shows the RTT distributions for the shortest mes-
sages (10%) in W4 and W5, where eTran (Homa) achieves
lower latencies across almost all percentiles. For example,
eTran (Homa) achieves 4.1× lower P50 latency than Linux
(Homa) in W4 and 3.9× lower in W5. The P99 latency is
reduced by 4.3× in W4 and 2.9× in W5.

6.2 Comparision with Linux (TCP) and TAS
We built two POSIX API-based applications: a simple echo
server and a key-value store derived from the TAS codebase
(modeled after Memcached). The server handles requests
using epoll(), and the client generates requests in a closed
loop. All systems use the same binary but link to different
POSIX implementations (e.g., Linux, TAS, and eTran).
Message throughput. Figure 7a shows the throughput of
transferring a single back-to-back large message. eTran (TCP)
performs comparably to Linux (TCP) but slightly lags behind
TAS; for messages under 64KB, eTran (TCP) surpasses Linux
(TCP). Figure 7b shows the throughput for small messages

12 12 34 58 171 269 320 366 427 512 1.0M
Message Length (bytes)

1

10

100

1000

Sl
ow

do
wn

Workload2 (3.2 Gbps) Linux (Homa) P99
Linux (Homa) P50
eTran (Homa) P99
eTran (Homa) P50

0% 20% 40% 60% 80% 100%
Cumulative % of Messages

12 36 77 110 158 268 313 402 573 1.8K 1.0M
Message Length (bytes)

1

10

100

1000

Sl
ow

do
wn

Workload3 (14 Gbps) Linux (Homa) P99
Linux (Homa) P50
eTran (Homa) P99
eTran (Homa) P50

0% 20% 40% 60% 80% 100%
Cumulative % of Messages

60 315 376 502 574 654 976 6.7K 49.4K 124K 1.0M
Message Length (bytes)

1

10

100

1000

Sl
ow

do
wn

Workload4 (20 Gbps) Linux (Homa) P99
Linux (Homa) P50
eTran (Homa) P99
eTran (Homa) P50

0% 20% 40% 60% 80% 100%
Cumulative % of Messages

1.4K 5.7K 19.1K 27.9K 48.5K 72.0K 193K 980K 1.0M 1.0M 1.0M
Message Length (bytes)

1

10

100

1000

Sl
ow

do
wn

Workload5 (20 Gbps) Linux (Homa) P99
Linux (Homa) P50
eTran (Homa) P99
eTran (Homa) P50

0% 20% 40% 60% 80% 100%
Cumulative % of Messages

Figure 5: Median and 99th-percentile latency slowdown vs. message
size for workloads W2–W5. The x-axis is scaled linearly to represent
the number of RPCs, reflecting each workload’s CDF of message
lengths. W2 and W3 are dominated by short messages, while W4
and W5 feature larger messages.



Unloaded eTran (Homa) eTran (Homa) Linux (Homa)

101 102 103 104

RTT (μs)
10−5

10−4

10−3

10−2

10−1

100

CC
DF

P50

P99

101 102 103 104

RTT (μs)
10−5

10−4

10−3

10−2

10−1

100

CC
DF

P50

P99

Figure 6: Complementary CDF of round-trip latency for the shortest
10% of RPCs in W4 (left) and W5 (right).

Linux (TCP) eTran (TCP) TAS

2 8 32 128 512
Message Size (KB)

0

10

20
25

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Vary large msg size.

32 128 512 2K
Message Size (Bytes)

0

10

20
25

Th
ro

ug
hp

ut
 (G

bp
s)

(b) Vary small msg size.

1k 16k 32k 48k 64k
# Connections

0
2
4
6
8

Th
ro

ug
hp

ut
 (M

op
s)

(c) Vary # persistent conns.

1 4 16 32 64 128256
# Messages per connection

0.01
0.1
0.2
0.4

0.8

Th
ro

ug
hp

ut
 (M

op
s)

(d) Vary # msgs per short conn.

Figure 7: Comparison of message throughput for the TCP echo.
Figure (a) has a single outstanding message, while Figure (b) has 64.
TAS fails to achieve stable throughput for Figure (d), thus omitted.

with 64 outstanding messages per connection. This is mea-
sured using a single-threaded server handling 100 connections,
partitioned across five clients each with five threads. For exam-
ple, with 1KB messages, eTran (TCP) and TAS achieve 4.8×
and 7.7× higher throughput than Linux (TCP), respectively.
The gap between eTran (TCP) and TAS stems from TAS’s use
of dedicated cores for DPDK-based busy polling, while eTran
(TCP) is interrupt-driven. Nevertheless, eTran (TCP) consis-
tently outperforms Linux (TCP) across all message sizes and
achieves 87% of TAS throughput for 2KB messages.
Connection scalability. We use as many clients as possible
to generate the load with persistent connections. Clients send
a single 64B request per connection and wait for a response in
a closed loop. Figure 7c shows the result. The throughput of
eTran (TCP) falls between Linux (TCP) and TAS: e.g., with
1K connections, eTran (TCP) achieves 2.26× the throughput
of Linux (TCP), while TAS achieves 4.1× the throughput of
Linux (TCP). Linux suffers high syscall overhead with lim-
ited TSO/GRO benefits with many connections. eTran (TCP)
batches processing but is still less efficient than TAS due to
the performance gap between AF_XDP and DPDK [39].
Short-lived connections. In this experiment, the client uses
four threads to establish a total of 1K short-lived concur-
rent flows with a single-threaded server. Upon receiving the

Linux (TCP) eTran (TCP) TAS

1 2 4 6 8 10
# Application Cores

0
1
2
3
4

Th
ro

ug
hp

ut
 (M

op
s)

(a) KV tpt vs. #app cores.

0 50 100 150
RTT (μs)

100

10−1

10−2

10−3

10−4

CC
DF

P50

P99

(b) CCDF of KV RTT.

Figure 8: Performance comparison of the TCP key-value store.

server’s response for each connection, the client immediately
closes the connection and establishes a new one. The result
for TAS is omitted as it fails to achieve stable throughput
due to its implementation bugs. As shown in Figure 7d, with
one message per connection, the throughput of eTran (TCP)
and Linux (TCP) is similar. With four or more messages
per connection, eTran (TCP) significantly outperforms Linux
(TCP). For example, eTran (TCP) achieves 42.7× and 5.4×
the throughput of Linux (TCP) with 16 and 256 messages
per connection, respectively. This is because the eTran (TCP)
control path uses AF_XDP to perform efficient packet IOs
for connection handshake and teardown, while the data path
utilizes efficient LRPC to communicate with the control path.
Key-Value Store. We use a workload that has 100K key-
value pairs (32B keys, 64B values) following a Zipf (s=0.9)
distribution, with a 9:1 GET to SET ratio. Each of the five
client machines establishes 6K persistent connections, leaving
32 outstanding requests per connection. Figure 8a shows
that eTran (TCP) achieves 2.4-4.8× the throughput of Linux
(TCP), with lower performance than TAS (which achieves
3.9-7.9× of Linux). Figure 8b provides more detailed insights
into the latency when the server is under-loaded: eTran (TCP)
has slightly higher latency than TAS but is significantly lower
than Linux (TCP). More specifically, eTran (TCP) achieves
3.7× (17.2 µs vs. 64.2 µs) lower P50 latency and 3.2× (27.5
µs vs. 89.3 µs) lower P99 latency compared to Linux (TCP).

6.3 More Features
6.3.1 Multi-Tenancy and Coexistence
eTran (TCP/Homa) supports multi-tenancy and can coexist
with Linux (TCP/Homa), thanks to XDP/AF_XDP not taking
over the entire NIC. Figure 9 shows the throughput time-
line when using different protocols. Launching our control
path slightly reduces Linux throughput due to the extra XDP
processing. This overhead can be removed by loading XDP
on isolated queues from Linux (TCP/Homa) [71] and using
hardware mechanisms (e.g., Flow Director [16]) for isolation.

6.3.2 Traffic Management
As an example, we show that eTran enforces accurate rate
limiting with low overhead using PKT_QUEUE and pacing en-
gine (§3.2.2). eTran tail-calls a simple eBPF program after
XDP_EGRESS to retrieve the target rate from a policy table and



0 5 10 15 20
Time (second)

0
5

10
15
20

Th
ro

ug
hp

ut
 (G

bp
s)

Linux (TCP)
eTran (Homa)

Linux (Homa)
eTran (TCP)

Figure 9: At 0 sec, APP1 starts TCP flows. At 3 sec, eTran launches
the control path and loads eBPF. At 5 sec, APP2 sends RPCs with
eTran (Homa). At 9 sec, both apps exit, and the control path switches
protocols. At 12 sec, APP3 runs eTran (TCP), and APP4 sends RPCs
with Linux (Homa). APP3 exits at 15 sec, and APP4 at 18 sec.

0 1000 2000 3000 4000 5000 6000 7000 8000
Target Rate (Mbps)

0
0.2
0.4
0.6
0.8

1

De
vi

at
io

n 
(%

)

(a) The deviation from the target rate of eTran for a single flow.

0 256 512 1K 2K 4K 8K
Number of Flows

7950

8000

8050

Ra
te

 (M
bp

s)

(b) The actual rate achieved by eTran with a target rate of 8Gbps.

Figure 10: Rate conformance of eTran.

calculate the timestamp; it then uses this timestamp in the
pacing engine to regulate the traffic rate. Figures 10a and 10b
show rate conformance for single and multiple flows, with
deviations under 0.4% as the rate and flow count increase.

6.4 Design Drill-Down
6.4.1 eBPF Hook Performance
We show that our new hooks offer powerful functionalities
with minimal overhead. We employ three benchmarks from
bpf-examples [9]: tx-only for small packet transmission,
l2fwd for layer 2 forwarding, and rx-drop for packet dis-
carding. 64B packets are used to stress test the performance.
XDP_EGRESS overhead. Table 3 shows that an empty hook
reduces throughput by 6.6%. Out-of-order completion further
lowers it to 86.1%. The primary overhead in XDP_EGRESS
comes from constructing new packet buffers, which is mit-
igated by pre-allocations (§3.2.1). The overhead of out-of-
order completion comes from higher cache miss rate incurred
by increased memory footprint. As a reference, the table also
notes the cost of map lookup operations in XDP_EGRESS.
XDP_GEN performance. We run rx-drop+XDP_GEN on
two cores: one core generates ACK/credit packets using
XDP_GEN, and another uses AF_XDP to drop received pack-
ets. We compare it to l2fwd on two cores: one core in the ker-
nel redirects packets to AF_XDP, and another uses AF_XDP
to forward packets back as ACK/credit packets. Table 4 shows
that our overall throughput is slightly lower than l2fwd but
with higher per-core throughput. This is because we avoid
cross-core communication for ACK/credit packet transmis-

Action Tpt (Mpps) Tpt loss (%)

AF_XDP tx-only 11.55 -
+ Empty XDP_EGRESS 10.79 6.6
+ OOO comp 9.95 13.9
+ ARRAY lookup 9.71 15.9
+ HASHMAP lookup 9.10 21.2

Table 3: Performance of XDP_EGRESS (single core).

Tpt (Mpps) # cores Per-core tpt (Mpps)

l2fwd 6.73 1.74 3.87
rx-drop + XDP_GEN 6.03 1.35 4.47

Table 4: l2fwd vs. rx-drop + XDP_GEN on receiving data packets
and responding with ACK/credit packets.

sion, as it is done inside the kernel. We conclude that XDP_GEN
is efficient enough in transmitting ACK/credit packets.

6.4.2 CPU Overhead Breakdown
Table 5 presents the CPU overhead across the networking
stack for a multi-threaded server. We stress-test transport pro-
cessing with a single NAPI, isolating it from applications
explicitly for all systems. We made great efforts to tune the
Linux stacks to be even better than the one reported in [55]
under the same hardware. Note that this configuration is
not general for all applications. Per-function cycles are ob-
tained using Perf [29] and categorized with tools extended
from [12]. Homa incurs higher overheads than TCP in both im-
plementations due to frequent allocation/destruction for small
RPCs. eTran significantly reduces primary overhead (Sock-
et/RPC, TCP/Homa+IP) through streamlined implementation,
with optimizations to Sk_buff, Memory Mgmt via lightweight
xdpbuff and pre-allocated UMEM. Scheduling is optimized
through batched IO and decoupled kernel transport process-
ing. For Linux, per-request context switching incurs higher
instruction counts, pipeline stalls, memory footprint, and poor
cache locality [41]. Other overheads (e.g., security checks,
kernel/user mode switching) are reduced due to file system
bypassing and AF_XDP’s syscall-free asynchronous IO.

6.4.3 Impact of Retransmission Design
We show that retransmission handling in the control path
matches Linux (Homa) and Linux (TCP) performance. By
launching 100 flows between two machines and measuring
throughput under varying loss rates, Figure 11 shows the
throughput penalty of different protocols. eTran (TCP) incurs
a larger throughput penalty than TCP due to limited out-of-
order optimization. Homa’s retransmission is simple as packet
loss is rare; both eTran (Homa) and Linux (Homa) show
similar throughput decline. Due to space constraints, we show
additional experiments on control path CPU usage, multi-
queue impact, and interrupt interference in Appendix D.

7 Discussion and Future Work
Emerging kernel techniques. Many emerging kernel tech-
niques inspire eTran design or might help improve eTran per-



Component eTran (T) Linux (T) eTran (H) Linux (H)
Application 0.48 0.53 0.95 1.04
Socket/RPC 0.63 3.5 0.98 3.38
Data copy 0.19 0.57 0.32 1.30
Sk_buff 0.15 0.47 0.08 0.39
TCP/Homa+IP 1.06) 2.12 1.47 3.36
Lock/Unlock 0.18 0.45 0.24 2.68
NIC Driver 1.17 1.54 0.83 1.81
Memory Mgmt 0.05 0.32 0.06 1.04
Scheduling 0.25 1.19 0.18 1.02
Other 0.21 1.82 0.38 1.41
Total (kcycles) 4.37 12.51 5.48 17.43

Table 5: Breakdown of CPU Cycles per Request. T: TCP; H: Homa.

formance. For example, the Linux kernel community made ef-
forts to introduce queueing for XDP when redirecting among
different network interfaces [33]; instead, our pacing engine
is to provide a general queueing mechanism for packet trans-
mission. We also note that the existing Linux qdisc (queueing
discipline) cannot sustain the high packet rate as our pacing
engine [62]. From Linux kernel v6.6, some NIC drivers sup-
port AF_XDP multi-buffer [22], enabling features like TSO
and scatter/gather. Unfortunately, the mlx5 driver we are using
does not support them yet; we expect it could help improve
eTran’s performance for large messages/long flows.
Improving eBPF programming. eTran suffers from limited
synchronization support in eBPF programming. For exam-
ple, eBPF prohibits holding two locks simultaneously, posing
significant challenges for implementing Homa’s credit list
(§4.2). Another example is that eBPF lacks blocking synchro-
nization primitives like Mutex, necessitating careful spinlock
use. We understand this limitation is rooted in the fact that the
eBPF execution is non-sleepable and non-preemptable to sim-
plify safety verification, but any relaxation of it would hugely
simplify eBPF programming for complex applications.
eTran limitations. eTran relies on the eBPF subsystem to
customize transports, suffering from similar limitations as
eBPF. For example, eBPF does not support floating point
arithmetic, motivating eTran to adopt the CCP architecture to
separate CC into the control path daemon for sender-driven
transports. Currently, eTran depends on the kernel for CPU
scheduling, which can lead to tail latency issues, as noted in
prior works [24, 54]. In addition, since AF_XDP bypasses
kernel layers, eTran lacks the integration of other kernel sub-
systems such as file system. We leave them for future work.

8 Related Work
High-performance network transports. There has been a
line of work on high-performance transports, e.g., mTCP [36],
IX [4], Arrakis [57], TAS [41], eRPC [38], Snap [47], Demik-
ernel [78] and Junction [23]. Most rely on kernel-bypass, busy
polling to achieve high performance and co-locate with appli-
cations in the same process context (library OS). In contrast,
eTran transports operate within the kernel interrupt-driven
NAPI context, with protection ensured by eBPF. This trades
performance for CPU efficiency and prevents applications

0 0.1 0.2 0.5 1 2 5
Loss Rate (%)

0
10
20
30
40

Tp
t p

en
al

ty
(%

) Linux (TCP)
eTran (TCP)

(a) Comparison of TCP.

0 0.1 0.2 0.5 1 2 5
Loss Rate (%)

0
20
40
60
80

100

Tp
t p

en
al

ty
(%

)

Linux (Homa)
eTran (Homa)

(b) Comparison of Homa.

Figure 11: Throughput penalty at varying packet loss rates.

from interfering with transport processing and states. Both IX
and Arrakis provide transport protection for library OS. How-
ever, IX repurposes virtualization hardware non-standardly,
while Arrakis relies on NIC virtualization, which is more lim-
ited and inflexible than software-based approaches. TAS and
Snap separate the kernel-bypass transport on isolated cores
from applications (Microkernel). Although retaining flexibil-
ity, it must reimplement many functionalities from scratch.
Conversely, eTran still uses some kernel networking infras-
tructures, and new transports can co-exist with existing kernel
ones. eTran also differs from kernel transports: eTran trans-
ports are split to the control path (user-space) and the data path
(kernel eBPF); the untrusted library uses AF_XDP socket for
efficient IO and metadata exchange (rather than relying on
syscalls), while being restricted from directly accessing ker-
nel transport states maintained in eBPF. This design enables
safely customizing high-performance kernel transports.
eBPF verification. eTran relies on verification techniques to
guarantee the safety of running application-supplied eBPF
programs inside the kernel. Therefore, a bunch of eBPF veri-
fication work in this space such as [8,40,46,69,73,76] would
benefit eTran and enhance our kernel safety and security.
Kernel offloads. Offloading application functions to the ker-
nel via eBPF has recently emerged to avoid kernel overheads
and improve performance [11,27,37,56,59,79–81]. Different
from offloading applications via eBPF, eTran targets making
kernel transport extensible by extending eBPF subsystems.
Extensible kernels. eTran adopts a similar approach that is
reminiscent of the extensible kernel research in the 1990s such
as SPIN [7], Exokernel [21], and VINO [65]. The key differ-
ence is that eTran relies on existing kernel eBPF subsystem
for safety and targets performance-hungry network transports
in modern datacenters. There is a line of recent work on mak-
ing kernel TCP more extensive via eBPF [10, 31, 35, 70, 77].
However, they only focus on the TCP transport and allow
customizing a small portion of TCP behaviors such as initial
congestion window, CC schemes, and path management.

9 Conclusion
eTran is an extensible kernel transport system, achieving agile
customization, kernel safety, strong protection, and high per-
formance simultaneously. It achieves these goals by extending
the kernel-safe eBPF, hiding transport states inside the kernel,
and absorbing techniques from user-space transports. eTran
code is available at https://github.com/eTran-NSDI25/eTran.

https://github.com/eTran-NSDI25/eTran


Acknowledgments
We thank our shepherd Boris Pismenny and the anonymous
reviewers for their helpful comments. We thank Cloudlab [19]
for the development and evaluation infrastructure. Zhongjie
Chen, Yifan Liu, and Fengyuan Ren are supported in part
by the National Key Research and Development Program of
China (No. 2022YFB2901404), and by the National Natu-
ral Science Foundation of China (NSFC) under Grant No.
62132007 and No. 62221003. ChonLam Lao, Minlan Yu, and
Yang Zhou are supported in part by ACE, one of the seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. Yang Zhou is also
supported by a Google PhD Fellowship and the UC Berkeley
Sky Computing Lab.

References

[1] Vamsi Addanki, Oliver Michel, and Stefan Schmid. Pow-
erTCP: Pushing the Performance Limits of Datacenter
Networks. In Proceedings of USENIX NSDI, pages
51–70, 2022.

[2] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). In Proceedings of ACM SIGCOMM,
page 63–74, 2010.

[3] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling Programmable Transport Protocols
in High-Speed NICs. In Proceedings of USENIX NSDI,
pages 93–109, 2020.

[4] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of
USENIX OSDI, pages 49–65, 2014.

[5] Steven M Bellovin. Security Problems in the TCP/IP
Protocol Suite. ACM SIGCOMM CCR, 19(2):32–48,
1989.

[6] Brian Bershad, Thomas Anderson, Edward Lazowska,
and Henry Levy. Lightweight Remote Procedure Call.
ACM SIGOPS Operating Systems Review, 23(5):102–
113, 1989.

[7] Brian N Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gün Sirer, Marc E Fiuczynski, David Becker,
Craig Chambers, and Susan Eggers. Extensibility Safety
and Performance in the SPIN Operating System. In Pro-
ceedings of ACM SOSP, pages 267–283, 1995.

[8] Sanjit Bhat and Hovav Shacham. Formal Verification of
the Linux Kernel eBPF Verifier Range Analysis, 2022.

[9] The bpf examples authors. bpf-examples. https:
//github.com/xdp-project/bpf-examples.

[10] Lawrence Brakmo. TCP-BPF: Programmatically Tun-
ing TCP Behavior through BPF. Proc. NetDev, 2:1–5,
2017.

[11] Matthew Butrovich, Karthik Ramanathan, John
Rollinson, Wan Shen Lim, William Zhang, Justine
Sherry, and Andrew Pavlo. Tigger: A Database Proxy
That Bounces with User-Bypass. Proceedings of the
VLDB Endowment, 16(11):3335–3348, 2023.

[12] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In Proceedings of ACM
SIGCOMM, pages 65–77, 2021.

[13] Qizhe Cai, Midhul Vuppalapati, Jaehyun Hwang, Chris-
tos Kozyrakis, and Rachit Agarwal. Towards µs Tail
Latency and Terabit Ethernet: Disaggregating the Host
Network Stack. In Proceedings of ACM SIGCOMM,
pages 767–779, 2022.

[14] Inho Cho, Keon Jang, and Dongsu Han. Credit-
Scheduled Delay-Bounded Congestion Control for Dat-
acenters. In Proceedings of ACM SIGCOMM, page
239–252, 2017.

[15] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park,
Mohammad Alizadeh, and Adam Belay. Overload con-
trol for µs-scale RPCs with breakwater. In Proceedings
of USENIX OSDI, pages 299–314, 2020.

[16] Intel Corporation. Introduction to Intel Ethernet Flow
Director and Memcached Performance. https://www.
intel.com/content/dam/www/public/us/en/d
ocuments/white-papers/intel-ethernet-flo
w-director.pdf.

[17] Intel Corporation. Single Root I/O Virtualization (SR-
IOV) for Intel NICs. https://www.intel.com/cont
ent/www/us/en/support/articles/000005722
/ethernet-products.html.

[18] Abhishek Dhamija, Balasubramanian Madhavan,
Hechao Li, Jie Meng, Shrikrishna Khare, Madhavi Rao,
Lawrence Brakmo, Neil Spring, Prashanth Kannan,
Srikanth Sundaresan, et al. A Large-Scale Deployment
of DCTCP. In Proceedings of USENIX NSDI, pages
239–252, 2024.

[19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
design and operation of cloudlab. In Proceedings of
USENIX ATC, pages 1–14, 2019.

https://github.com/xdp-project/bpf-examples
https://github.com/xdp-project/bpf-examples
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html


[20] Kumar Kartikeya Dwivedi. Allocated objects, BPF
linked lists. https://lwn.net/Articles/915404/.

[21] Dawson R Engler, M Frans Kaashoek, and James
O’Toole Jr. Exokernel: An Operating System Archi-
tecture for Application-Level Resource Management.
ACM SIGOPS Operating Systems Review, 29(5):251–
266, 1995.

[22] Maciej Fijalkowski. xsk: multi-buffer support. https:
//lwn.net/Articles/937525/.

[23] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez,
Esha Choukse, Íñigo Goiri, Sameh Elnikety, Rodrigo
Fonseca, and Adam Belay. Making Kernel Bypass Prac-
tical for the Cloud with Junction. In Proceedings of
USENIX NSDI, pages 55–73, 2024.

[24] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In Proceedings of USENIX OSDI,
pages 281–297, 2020.

[25] Adithya Gangidi, Rui Miao, Shengbao Zheng,
Sai Jayesh Bondu, Guilherme Goes, Hany Morsy,
Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj
Shetty, Jingyi Yang, Shuqiang Zhang, Mikel Jimenez
Fernandez, Shashidhar Gandham, and Hongyi Zeng.
RDMA over Ethernet for Distributed Training at Meta
Scale. In Proceedings of ACM SIGCOMM 2024
Conference, page 57–70, 2024.

[26] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. pHost:
Distributed Near-Optimal Datacenter Transport over
Commodity Network Fabric. In Proceedings of the
ACM CoNEXT, 2015.

[27] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating Mem-
cached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In Proceedings of USENIX NSDI, pages 487–
501, 2021.

[28] Google. Falcon transport protocol. https://github
.com/opencomputeproject/OCP-NET-Falcon.

[29] Brendan Gregg. Perf Examples. https://www.bren
dangregg.com/perf.html.

[30] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting Datacenter Networks
and Stacks for Low Latency and High Performance. In
Proceedings of ACM SIGCOMM, page 29–42, 2017.

[31] Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi,
Theo Jepsen, and Stefan Schmid. TCP’s Third Eye:
Leveraging eBPF for Telemetry-Powered Congestion

Control. In Proceedings of the 1st Workshop on eBPF
and Kernel Extensions, pages 1–7, 2023.

[32] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Ae-
olus: A Building Block for Proactive Transport in Dat-
acenters. In Proceedings of ACM SIGCOMM, page
422–434, 2020.

[33] Toke Høiland-Jørgensen. Adding packet queueing to
XDP. https://lpc.events/event/16/contribu
tions/1351/attachments/1049/2037/xdp-que
ueing.pdf.

[34] IETF TLS Working Group. Transport layer security. ht
tps://datatracker.ietf.org/wg/tls/about/.

[35] Mathieu Jadin, Quentin De Coninck, Louis Navarre,
Michael Schapira, and Olivier Bonaventure. Leveraging
eBPF to Make TCP Path-Aware. IEEE Transactions on
Network and Service Management, 19(3):2827–2838,
2022.

[36] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
USENIX NSDI, pages 489–502, 2014.

[37] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-Defined Schedul-
ing Across the Stack. In Proceedings of ACM SOSP,
pages 605–620, 2021.

[38] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of USENIX NSDI, pages 1–16, 2019.

[39] Magnus Karlsson and Björn Töpel. The path to dpdk
speeds for af xdp. In Linux Plumbers Conference, vol-
ume 37, page 38, 2018.

[40] Kumar Kartikeya Dwivedi, Rishabh Iyer, and Sanidhya
Kashyap. Fast, Flexible, and Practical Kernel Extensions.
In Proceedings of ACM SOSP, 2024.

[41] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of EuroSys, pages 1–16, 2019.

[42] The Linux kernel development community. BPF Kernel
Functions (kfuncs). https://docs.kernel.org/bp
f/kfuncs.html.

[43] The Linux kernel development community. XDP RX
Metadata. https://docs.kernel.org/networki
ng/xdp-rx-metadata.html.

https://lwn.net/Articles/915404/
https://lwn.net/Articles/937525/
https://lwn.net/Articles/937525/
https://github.com/opencomputeproject/OCP-NET-Falcon
https://github.com/opencomputeproject/OCP-NET-Falcon
https://www.brendangregg.com/perf.html
https://www.brendangregg.com/perf.html
https://lpc.events/event/16/contributions/1351/attachments/1049/2037/xdp-queueing.pdf
https://lpc.events/event/16/contributions/1351/attachments/1049/2037/xdp-queueing.pdf
https://lpc.events/event/16/contributions/1351/attachments/1049/2037/xdp-queueing.pdf
https://datatracker.ietf.org/wg/tls/about/
https://datatracker.ietf.org/wg/tls/about/
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/networking/xdp-rx-metadata.html
https://docs.kernel.org/networking/xdp-rx-metadata.html


[44] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is Simple and Effective for
Congestion Control in the Datacenter. In Proceedings
of ACM SIGCOMM, pages 514–528, 2020.

[45] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. HPCC:
High Precision Congestion Control. In Proceedings of
ACM SIGCOMM, pages 44–58. 2019.

[46] Dana Lu, Boxuan Tang, Michael Paper, and Marios Ko-
gias. Towards Functional Verification of eBPF Programs.
In Proceedings of ACM SIGCOMM 2024 Workshop on
eBPF and Kernel Extensions, pages 37–43, 2024.

[47] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: A Microkernel Approach to Host Network-
ing. In Proceedings of ACM SOSP, pages 399–413,
2019.

[48] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao, Yan
Zhuang, Pengcheng Zhang, et al. From Luna to Solar:
the Evolutions of the Compute-to-Storage Networks in
Alibaba Cloud. In Proceedings of ACM SIGCOMM
2022 Conference, pages 753–766, 2022.

[49] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. TIMELY: RTT-based Congestion Control for the
Datacenter. ACM SIGCOMM Computer Communica-
tion Review, 45(4):537–550, 2015.

[50] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A Receiver-Driven Low-
Latency Transport Protocol Using Network Priorities. In
Proceedings of ACM SIGCOMM, pages 221–235, 2018.

[51] Multipath TCP community. Multipath TCP. https:
//www.multipath-tcp.org/.

[52] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal, Mo-
hammad Alizadeh, and Hari Balakrishnan. Restructur-
ing Endpoint Congestion Control. In Proceedings of
ACM SIGCOMM, pages 30–43, 2018.

[53] Atsuya Osaki, Manuel Poisson, Seiki Makino, Ryu-
sei Shiiba, Kensuke Fukuda, Tadashi Okoshi, and Jin
Nakazawa. Dynamic Fixed-point Values in eBPF: a

Case for Fully In-kernel Anomaly Detection. In Pro-
ceedings of the Asian Internet Engineering Conference
2024, pages 46–54, 2024.

[54] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of USENIX NSDI, pages
361–378, 2019.

[55] John Ousterhout. A Linux Kernel Implementation of the
Homa Transport Protocol. In Proceedings of USENIX
ATC, pages 99–115, 2021.

[56] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Tae-
soo Kim, and Sanidhya Kashyap. Application-Informed
Kernel Synchronization Primitives. In Proceedings of
USENIX OSDI, pages 667–682, 2022.

[57] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The Operating System is the
Control Plane. ACM Transactions on Computer Systems
(TOCS), 33(4):1–30, 2015.

[58] The IO Visor Project. eXpress Data Path (XDP). https:
//www.iovisor.org/technology/xdp.

[59] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang,
and KK Ramakrishnan. SPRIGHT: Extracting the
Server From Serverless Computing! High-Performance
eBPF-Based Event-Driven, Shared-Memory Processing.
In Proceedings of ACM SIGCOMM, pages 780–794,
2022.

[60] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi
Xu, Yu Guan, Binzhang Fu, Xuemei Shi, Fangbo Zhu,
Rui Miao, Chao Wang, Peng Wang, Pengcheng Zhang,
Xianlong Zeng, Eddie Ruan, Zhiping Yao, Ennan Zhai,
and Dennis Cai. Alibaba HPN: A Data Center Network
for Large Language Model Training. In Proceedings of
ACM SIGCOMM, page 691–706, 2024.

[61] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre,
Daniel S Berger, James C Hoe, Aurojit Panda, and Jus-
tine Sherry. We Need Kernel Interposition over the
Network Dataplane. In Proceedings of ACM HotOS,
pages 152–158, 2021.

[62] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Vinh The Lam, Carlo Contavalli, and Amin Vahdat.
Carousel: Scalable Traffic Shaping at End Hosts. In
Proceedings of ACM SIGCOMM, pages 404–417, 2017.

[63] The sched_ext authors. Sched_ext Schedulers and Tools.
https://github.com/sched-ext/scx.

https://www.multipath-tcp.org/
https://www.multipath-tcp.org/
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://github.com/sched-ext/scx


[64] Korakit Seemakhupt, Brent E Stephens, Samira Khan,
Sihang Liu, Hassan Wassel, Soheil Hassas Yeganeh,
Alex C Snoeren, Arvind Krishnamurthy, David E Culler,
and Henry M Levy. A Cloud-Scale Characterization of
Remote Procedure Calls. In Proceedings of ACM SOSP,
pages 498–514, 2023.

[65] Margo I Seltzer, Yasuhiro Endo, Christopher Small, and
Keith A Smith. Dealing with Disaster: Surviving Mis-
behaved Kernel Extensions. ACM SIGOPS Operating
Systems Review, 30(213-228):10–1145, 1996.

[66] Madhavapeddi Shreedhar and George Varghese. Ef-
ficient Fair Queueing using Deficit Round Robin. In
Proceedings of the conference on Applications, technolo-
gies, architectures, and protocols for computer commu-
nication, pages 231–242, 1995.

[67] Alexei Starovoitov. bpf: Introduce BPF timers. https:
//lwn.net/Articles/862136/.

[68] Brent Stephens, Arjun Singhvi, Aditya Akella, and
Michael Swift. Titan: Fair Packet Scheduling for Com-
modity Multiqueue NICs. In Proceedings of USENIX
ATC, pages 431–444, 2017.

[69] Hao Sun and Zhendong Su. Validating the eBPF Verifier
via State Embedding. In Proceedings of USENIX OSDI,
pages 615–628, 2024.

[70] Viet-Hoang Tran and Olivier Bonaventure. Making
the Linux TCP Stack more Extensible with eBPF. In
Proc. of the Netdev 0x13, Technical Conference on Linux
Networking, 2019.

[71] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben
Pfaff. Revisiting the Open vSwitch Dataplane Ten Years
Later. In Proceedings of ACM SIGCOMM, pages 245–
257, 2021.

[72] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar.
Deadline-Aware Datacenter TCP (D2TCP). ACM SIG-
COMM CCR, 42(4):115–126, 2012.

[73] Harishankar Vishwanathan, Matan Shachnai, Srinivas
Narayana, and Santosh Nagarakatte. Verifying the Veri-
fier: eBPF Range Analysis Verification. In International
Conference on Computer Aided Verification, pages 226–
251. Springer, 2023.

[74] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan,
Jiacheng Xia, Gaoxiong Zeng, Wei Bai, Junchen Jiang,

Yong Wang, and Kai Chen. Towards Domain-Specific
Network Transport for Distributed DNN Training. In
Proceedings of USENIX NSDI, pages 1421–1443, 2024.

[75] Christo Wilson, Hitesh Ballani, Thomas Karagiannis,
and Ant Rowtron. Better Never than Late: Meeting
Deadlines in Datacenter Networks. ACM SIGCOMM
CCR, 41(4):50–61, 2011.

[76] Qiongwen Xu, Michael D Wong, Tanvi Wagle, Srinivas
Narayana, and Anirudh Sivaraman. Synthesizing Safe
and Efficient Kernel Extensions for Packet Processing.
In Proceedings of ACM SIGCOMM, pages 50–64, 2021.

[77] Sepehr Abbasi Zadeh, Ali Munir, Mahmoud Mohamed
Bahnasy, Shiva Ketabi, and Yashar Ganjali. On Aug-
menting TCP/IP Stack via eBPF. In Proceedings of the
1st Workshop on eBPF and Kernel Extensions, pages
15–20, 2023.

[78] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The Demikernel Datapath OS Archi-
tecture for Microsecond-Scale Datacenter Systems. In
Proceedings of ACM SOSP, pages 195–211, 2021.

[79] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Jun-
feng Yang, Amy Tai, Ryan Stutsman, et al. XRP: In-
Kernel Storage Functions with eBPF. In Proceedings of
USENIX OSDI, pages 375–393, 2022.

[80] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada,
and Minlan Yu. Electrode: Accelerating Distributed
Protocols with eBPF. In Proceedings of USENIX NSDI,
pages 1391–1407, 2023.

[81] Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya
Dharanipragada, and Minlan Yu. DINT: Fast In-Kernel
Distributed Transactions with eBPF. In Proceedings of
USENIX NSDI, 2024.

[82] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA De-
ployments. In Proceedings of ACM SIGCOMM, page
523–536, 2015.

https://lwn.net/Articles/862136/
https://lwn.net/Articles/862136/


APPENDIX

A Implementing More Transports

In this section, we extend our case studies beyond Homa and
TCP, exploring the implementation of other transport proto-
cols (specifically, their host logic) under eTran. We focus on
congestion control (CC) while loss recovery and segmenta-
tion/reassembly are omitted as they are less important.

Swift [44] is a representative RTT-based transport pro-
tocol. It adjusts the congestion window using RTT mea-
surements and distinguishes fabric congestion from host
congestion. Swift’s CC algorithm can be implemented en-
tirely in XDP. Swift typically uses window control and
switches to rate-based pacing when the congestion window
falls below 1. This can be implemented with two maps of
BPF_MAP_TYPE_PKT_QUEUE. Swift requires NIC hardware
timestamp, which can be provided via XDP RX metadata [43].

HPCC [45] is a transport protocol that utilizes in-network
telemetry (INT) to gather precise load information for CC.
The CC algorithm on the sender side of HPCC can be imple-
mented using XDP. Additionally, HPCC employs rate-based
pacing with window boundaries, which can be implemented
similarly. Specifically, HPCC incorporates a flow scheduler
that scans all flows to assign credits. Only flows that have ac-
cumulated sufficient credits and are within the window limit
can be transmitted. This flow scheduler can be implemented
using the dedicated kthread of the BPF timer.

DCQCN [82] is another ECN-based transport protocol that
integrates with QCN. On the sender side, DCQCN controls
the sending rate using a per-flow timer and a byte counter. The
byte counter is updated in XDP, while the per-flow timer can
be implemented using an array of BPF timers. Each connec-
tion tracks the index of its corresponding BPF timer, similar
to how the CC state index is managed in DCTCP. DCQCN
enforces rate control entirely based on the rate, which can be
implemented similarly to DCTCP.

NDP [30] is a receiver-driven transport protocol that in-
corporates packet trimming. The receiver-driven logic and
credit-based pacing can be implemented similarly to Homa.
The main difference is that NDP does not prioritize short
messages like Homa. Instead, it lets all flows share bandwidth
fairly by default.

B RBtree Operations

The fundamental approach involves utilizing a single red-
black tree to manage two distinct trees. We assume each
machine is assigned a unique peerid, and each RPC is identi-
fied by a unique rpcid, which consists of a five-tuple. The first
tree, termed the RPC Tree, maintains the states of all RPCs.

The second tree, referred to as the Peer Tree, tracks the highest
priority RPC from each peer. In the RPC Tree, the key for
lookups is defined as (treeid = 0, peerid, bytes_remaining,
rpcid). In the Peer Tree, the key for lookups is defined
as (treeid = 1, bytes_remaining, peerid). Keys are com-
pared from left to right. All operations are performed using
three APIs: bpf_rbtree_add(), bpf_rbtree_remove(),
and bpf_rbtree_lower_bound(), which have the time
complexity of O(logN).
Operations in XDP. When XDP receives a new RPC that
needs to be scheduled, it creates an object and inserts it
into the RPC Tree and takes a snapshot of the value of
bytes_remaining in the RPC state for future search. Sub-
sequently, XDP tries to adjust the Peer Tree. It starts by
searching the RPC Tree using the key (treeid = 0, peerid
= our_peerid, bytes_remaining = 0, rpcid = 0).
1. If the search results in (treeid ̸= 0 or peerid ̸= our_peer or

rpcid ̸= our_rpcid), it indicates that we are not the highest
priority RPC for this peer, and no further action is taken.

2. If the search results in (treeid = 0 and peerid = our_peer
and rpcid = our_rpcid), it indicates that we are the highest
priority RPC for this peer. In this case, we search the
RPC Tree with the key (treeid = 0, peerid = our_peer,
bytes_remaining = our_remaining, rpcid = our_rpcid +
1) to determine if a previous highest priority RPC exists.
If such an RPC is found, it is removed from the Peer Tree.
The new RPC is then inserted into the Peer Tree, and its
status is marked as present in the RPC Tree.

When a new batch of packets arrives for this RPC, a search
is performed in the RPC Tree using the key (treeid = 0, peerid
= our_peer, bytes_remaining = snapshot_bytes_remaining,
rpcid = our_rpcid). If no matching object is found, it indi-
cates that the RPC has fully used granted, and no action
is needed. Otherwise, it is removed from the RPC Tree, its
bytes_remaining value is updated, and it is reinserted into the
RPC Tree. Then, we adjust the Peer Tree:
1. If the RPC is already present in the Peer Tree, indicating

it is still the highest priority RPC from this peer, the key
(treeid = 1, peerid = our_peer, bytes_remaining = snap-
shot_bytes_remaining, rpcid = our_rpcid) is used to search
for it in the Peer Tree. Then, the object in the Peer Tree is
removed and reinserted.

2. If the RPC is not present in the Peer Tree, the case is treated
as a new RPC state.

Operations in XDP_GEN. In XDP_GEN, the key (treeid = 1,
bytes_remaining = last_min, peerid = last_peerid + 1) is used
to search the Peer Tree, where last_min and last_peerid rep-
resent the last minimum bytes_remaining and the last peerid
used, respectively. They both start from zero. If the RPC has
completed its grant, it is removed from the Peer Tree, and the
resulting information is then used to search and remove the
RPC from the RPC Tree.



/* Congestion Control */
/* Called at XDP_GEN */
void *bpf_dequeue_ack(struct bpf_map *map);
struct bpf_rb_node *bpf_dequeue_candidate(struct bpf_rb_root *root, bool (less)(struct

bpf_rb_node *a, const struct bpf_rb_node *b));
/* Called at XDP */
int bpf_update_wnd(struct bpf_map *map, void *key, void *value);
int bpf_update_rate(struct bpf_map *map, void *key, void *value);
int bpf_enqueue_ack(struct bpf_map *map, void *ack_info);
int bpf_enqueue_candidate(struct bpf_rb_root *root, struct bpf_rb_node *n, bool

(less)(struct bpf_rb_node *a, const struct bpf_rb_node *b);
/* Called at control path */
int cp_read_cc(int map_fd, void *key, void *value);
int cp_update_cc(int map_fd, void *key, void *value);

/* Pacing */
/* Called at XDP_EGRESS */
int bpf_tx_pacing_wnd(struct bpf_map *map, void *key);
int bpf_tx_pacing_rate(struct bpf_map *map, void *key);
struct xdp_frame *bpf_fetch_pkt(struct bpf_map *map, void *key);
int bpf_send_pkt(struct bpf_map *map, int ifindex, __u64 flags);
int bpf_flush_pkt(void);

/* Reliability */
/* Called at XDP */
int bpf_detect_loss(int (cb)(struct xdp_md *ctx, void *value));
/* Called at control path */
int cp_detect_loss(int (cb)(void *cc_ebpf, void *cc_cp);

Listing 1: Transport component hooks and corresponding APIs.

C Development Model

eTran envisions a flexible development model targeting dif-
ferent levels of developers. For transport developers familiar
with eBPF programming and transport implementation such
as timers and loss recovery, eTran provides a set of low-level
APIs for them, as shown in Listing 1. The transport develop-
ers can quickly prototype customized transports by directly
leveraging these APIs or based on our implementation of
Homa and TCP (§4) and then safely deploy them in the Linux
kernel. For application developers who focus on user-space
application development, they can specify which transport
(among eTran-supported ones) to use for their applications.
For site reliability engineers and networking administrators,
eTran further enables them to conveniently fine-tune the pa-
rameters or implementation (thus the performance) of these
transports.

We note that our development model is conditioned on the
new eBPF hooks and maps in eTran being upstreamed into
the Linux kernel. Although this is partially out of the scope
of our eTran research, we have tried to minimize changes to
the existing kernel eBPF subsystems, thus being friendly to
existing eBPF applications as far as we know. Another impor-

tant factor that determines whether eTran can be upstreamed
into the kernel is security, which we elaborate on in §5.

D Additional Design Drill-Down

D.1 CPU utilization of Control Path
We now examine the control path CPU utilization for Homa
and TCP. In eTran (Homa), the control path uses a timer thread
to check RPC states from the kernel. In eTran (TCP), it runs
the CC algorithm and timeout detection. In this experiment,
eTran (Homa) performs lookups with a batch size of 16, and
eTran (TCP) employs a CC interval of 200µs. We vary the
number of RPCs/flows and measure the CPU usage of the
control path, the result is shown in Figure 12a and Figure 12b.
Both eTran (Homa) and eTran (TCP) exhibit increased CPU
usage as the number of RPCs/flows grows. Compared with
Linux (Homa), eTran (Homa) incurs higher CPU overhead
because it relies on system calls to look up transport states. For
eTran (TCP), 8K connections can saturate one CPU core. The
control path of eTran (TCP) can be scaled out by partitioning
connections across multiple threads.



1 16 64 256 512 1K 2K 4K 8K
# Active RPCs

0
25
50
75

100
CP

U 
Us

ag
e 

(%
)

eTran (Homa)
Linux (Homa)

(a) eTran (Homa) vs. Linux (Homa)

1 16 64 256 512 1K 2K 4K 8K
# Flows

0
25
50
75

100

CP
U 

Us
ag

e 
(%

)

(b) eTran (TCP)

Figure 12: CPU usage of eTran (Homa), Linux (Homa), and eTran
(TCP), under different numbers of RPCs/flows.

1 2 3 4 5 6 7
# NIC Queues

0

1

2

3

Th
ro

ug
hp

ut
 (M

op
s)

(a) Impact of multi-queues.

Isolation HT Intf Full Intf
Configurations

0

1

2

3

Th
ro

ug
hp

ut
 (M

op
s)

(b) Interrupt interference.

Figure 13: Throughput comparison under different configurations.

D.2 Impact of Multiple Queues and Interrupt
Interference

We now examine whether eTran can scale with the NIC
queues. We take TCP as an example, as Homa doesn’t work
well with RSS. We replicate the connection scalability ex-
periment described in §6.2, fixing the number of CPU cores
for the application while varying the number of NIC queues.
32K connections are separated across five clients. Figure 13a
shows that eTran scales with NIC queues from 1 to 5, but
beyond that, throughput slightly declines. This is due to mul-
tiple application threads requiring locked access to the Fill
ring and Comp ring.

We are also interested in the performance of eTran when
the application cores are collocated with the NAPI cores. We
conduct the same experiment above with three configurations:
1) separate to different physical CPU cores, 2) separate to
different logical CPU cores, and 3) combine on same logical
CPU cores. Figure 13b shows the result. The performance of
the second configuration is lower than the first mode due to
Hyper-Threading (HT) interference. The third configuration
exhibits poor performance due to the serve interference be-
tween application threads and NAPI [81]. Considering eTran
offloads all transport states in eBPF, how to utilize eBPF for
CPU scheduling [63] to optimize eTran is an interesting di-
rection. We leave it as future work.


	Introduction
	Background and Motivation
	Network Transports
	eBPF Basics

	eTran Design
	eTran Control Path
	eTran Data Path: Kernel Offloading
	New eBPF Hooks for Egress and Pktgen
	New eBPF Map for Pacing

	eTran Data Path: User-Space IOs
	Multi-Tenancy and Traffic Management

	Case Studies
	TCP under eTran
	Homa under eTran

	eTran Implementation
	Evaluation
	Comparision with Linux (Homa)
	Comparision with Linux (TCP) and TAS
	More Features
	Multi-Tenancy and Coexistence
	Traffic Management

	Design Drill-Down
	eBPF Hook Performance
	CPU Overhead Breakdown
	Impact of Retransmission Design


	Discussion and Future Work
	Related Work
	Conclusion
	Implementing More Transports
	RBtree Operations
	Development Model
	Additional Design Drill-Down
	CPU utilization of Control Path
	Impact of Multiple Queues and Interrupt Interference


