
1

Pyramid Family: Generic Frameworks for
Accurate and Fast Flow Size Measurement

Yuanpeng Li∗†, Xiang Yu∗, Yilong Yang‡, Yang Zhou§, Tong Yang∗†, Zhuo Ma‡, Shigang Chen¶

Abstract—Sketches, as a kind of probabilistic data structures, have been considered as the most promising solution for network
measurement in recent years. Most sketches do not work well for skewed network traffic. To address this problem, we propose a family
of sketch frameworks, namely the Pyramid family. The first member of our Pyramid family is the S-Pyramid framework, which includes
two techniques: counter-pair sharing for high accuracy, and word acceleration for fast speed. The second member of our Pyramid
family is the Mini-Pyramid framework, which projects the S-Pyramid framework into one counter, bringing more flexibility in application
while keeping the accuracy. To demonstrate the generality of our Pyramid family, we apply both frameworks to sketches of CM, CU,
Count, and Augmented. To demonstrate the flexibility of the Mini-Pyramid framework, we further apply Mini-Pyramid to SBF and the
On-Off sketch. The experimental results show that, the S-Pyramid framework can reduce the ARE by up to 7.12 times compared with
the original sketches, while improving the throughput by up to 2.37 times; the Mini-Pyramid framework can reduce the ARE by up to
29.2 times, at the cost of 21.3% lower throughput on average.

Index Terms—Network Measurement, Flow Size Measurement, Sketches, Pyramid Family, Mini-Pyramid Framework

F

1 INTRODUCTION

1.1 Background and Motivation

With the rapid development of the Internet and emergence
of new networking paradigms such as SDN (Software-
Defined Networking) and TSN (Time-Sensitive Network-
ing), traffic measurement becomes increasingly important
to support novel network functions and detect anomalies.
One of the most fundamental measurements is flow size
measurement. Flow size measurement is the base of many
network applications, including alleviation of network con-
gestion [2], [3], SYN flooding attack detection [4], [5], heavy
hitter identification [6], [7], heavy change detection [8], [9],
packet loss detection [10], [11], traffic burst detection [12],
[13], network accounting [14], [15], and more [16], [17], [18].

There are two challenges in network measurement. The
first challenge is the limited processing time and memory
space. As for high-speed network traffic, any practical solu-
tion to per-flow measurement should process each incoming
packet at line rate, while ensuring high measurement accu-
racy. This is challenging to achieve in modern high-speed
networks where packet forwarding is performed mostly in
hardware platform, requiring to minimize per-packet over-
head. To prevent measurement from becoming a bottleneck,

∗Department of Computer Science and Technology, and National Engineer-
ing Laboratory for Big Data Analysis Technology and Application, Peking
University, Beijing, China.
†Peng Cheng Laboratory, Shenzhen, China.
‡School of Cyber Engineering, Xidian University, Xi’an, China.
§Department of Computer Science, Harvard University, Brighton, MA, USA.
¶Department of Computer and Information of Science and Engineering,
University of Florida, Gainesville, FL, USA.
Tong Yang (yangtongemail@gmail.com) and Zhuo Ma (mazhuo@mail.xidian.
edu.cn) are the corresponding authors.
The preliminary version of this paper titled “Pyramid Sketch: a Sketch
Framework for Frequency Estimation of Data Streams” was published in
the proceedings of the 43nd International Conference on Very Large Data
Bases(VLDB) [1], Munich, Germany. August, 2017.

it is highly desirable to implement such functions in on-
chip memory [19], [20], [21], [22] such as L2/L3 caches on
network processors or Block RAM in FPGA. However, on-
chip memory has a limited size, imposing a great challenge
for the design of extremely compact data structures that can
accurately record information for all flows.

The second challenge is the skewed network traffic. It is
well known that the flow size distribution tends to be highly
skewed [14], [15], [23], [24], [25], [26], i.e., most flows are small
and a few flows are extremely large. They are called mice
flows and elephant flows, respectively. For example, in a half-
hour CAIDA traffic trace [27], 45% of all flows have fewer
than 22 packets, 94% of all flows have fewer than 24 packets,
while the size 1 of the largest flow is close to 220. The skewed
traffic poses a challenge for the measurement. Suppose we
use counters to record flow size information. On the one
hand, if we use 2-bit counters, we can only estimate flow
size up to 22−1. On the other hand, if we use 32-bit counters,
the number of counters will be reduced by 93% (with the
same total memory), leading to poor accuracy. Therefore, it’s
quite challenging to assign suitable counter size and make
better use of the memory.

1.2 Prior Art and Limitations
Sketches, as a kind of probabilistic data structure, have
been considered as the most promising solution for network
measurement in recent years, because they greatly optimize
the speed and memory usage at the cost of small error. In
other words, most sketches address the challenge of limited
processing time and memory space. We divide the sketches
into two categories. The first category does not address the
latter challenge. They adopt unified big counters, ignoring
the skewness of the flow size distribution, and exchanging

1. In this paper, flow size is defined as the number of packets in the
flow.

yangtongemail@gmail.com
mazhuo@mail.xidian.edu.cn
mazhuo@mail.xidian.edu.cn

2

the simplicity with a considerable amount of space waste.
Typical sketches include sketches of Count-Min (CM) [28],
Conservative Update (CU) [14], and Count (C) [29].

The second category aims to address the latter challenge.
Their data structures are separated into two parts, which
record elephant flows and mice flows, respectively. The first
part is a key-value (KV) table used to precisely record the
ID and size of elephant flows. In addition, it uses auxiliary
information (e.g., old count [23], negative votes [15]) to
determine whether a flow is an elephant flow or a mice
flow. The second part is commonly a small CM sketch used
to record the size of mice flows. However, these sketches
require to adjust many parameters, such as the memory
usage of the two parts, different counter sizes in the two
parts, thresholds for replacement strategy, the number of
hash functions in the second part. The optimal parame-
ters are sensitive to flow size distribution, memory size,
computation resources, network bandwidth, etc. Therefore,
in industrial deployment, engineers are required to have a
deep understanding of the sketches, which hinders the de-
ployment process of sketches to the industrial field. Typical
sketches include sketches of Augmented (A) [23] and Elastic
[15].

1.3 The Proposed Solution
This paper proposes a family of sketch frameworks, namely
the Pyramid family. The key idea is to provide a hierarchical
structure for sketches. The first member of our Pyramid fam-
ily is the standard Pyramid (S-Pyramid) framework. This
framework has two key techniques: counter-pair sharing
for high accuracy, and word acceleration for high speed.
1) Counter-pair sharing: Through this technique, we can
use fine-grained counters (e.g., 4-bit counters) to record both
small flows and very large flows. More counters will be used
if some counters are overflowed. Specifically, counters can
expand into the higher layers of the hierarchy as needed.
Thus, any sketch applying the S-Pyramid framework can
make better use of memory, which can significantly improve
the accuracy. 2) Word acceleration: This technique consists
of three parts: word constraint, word sharing, and one
hashing. Through this technique, we can just use one hash
computation per operation and one memory access per layer
for each operation, while keeping high accuracy. Moreover,
the processing overhead for most packets is one memory
access and one hash computation, which can significantly
improve the processing speed.

The advantage of the S-Pyramid framework is that it
can significantly improve both accuracy and speed. The
disadvantage of the S-Pyramid framework is that it needs
to change the structure of the original sketch, limiting its
application range. For sketches using counter arrays (e.g.,
CM [28], CU [14], Count [29], and ASketch [23]), it is easy
to apply the S-Pyramid framework (see Section 6.1-6.4).
However, for sophisticated sketches with dedicated struc-
ture (e.g., Spectral Bloom filter (SBF) [30], On-Off sketches
[17]), it is inconvenient to apply the S-Pyramid framework.

In order to address the above limitation, we propose
the second member of our Pyramid family, namely the
Mini-Pyramid framework. In this framework, we project
the S-Pyramid framework into one counter, namely the
M-Pyramid counter. When applying this framework, we

simply replace each counter in the original sketches with
an M-Pyramid counter. Compared with the S-Pyramid
framework, 1) the major advantage of the Mini-Pyramid
framework is the flexibility, i.e., it can be applied to any
sketches using counters; 2) the major disadvantage of the
Mini-Pyramid framework is the lower speed (about 20%
lower). In all, there are two members in our Pyramid fam-
ily: the standard Pyramid (S-Pyramid) framework and the
Mini-Pyramid framework. The S-Pyramid framework using
counter-pair sharing and word acceleration techniques can
achieve high accuracy and high throughput, while the Mini-
Pyramid framework sacrifices speed to gain more flexibility.

To demonstrate the generality of our Pyramid family,
we implement both frameworks on sketches of CM [28],
CU [14], Count [29], and Augmented [23]. To demonstrate
the flexibility of the Mini-Pyramid framework, we further
implement Mini-Pyramid on SBF [30] and the On-Off sketch
[17]. We compare the accuracy and throughput of sketches
before and after applying our frameworks on 3 real traces
and a series of synthetic traces. The experimental results
show that, 1) the S-Pyramid framework can reduce error
by up to 7.12 times compared with the original sketches,
while improving throughput by up to 2.37 times; 2) the
Mini-Pyramid framework can reduce error by up to 29.2
times, at the cost of 21.3% lower throughput on average. All
related source codes are released at Github [31].

1.4 Key Contributions
• We propose the S-Pyramid framework, a sketch frame-

work for simultaneously improving the accuracy and
throughput through counter-pair sharing and word
acceleration technique. We apply the S-Pyramid frame-
work to sketches of CM [28], CU [14], Count [29], and
Augmented [23]. The experimental results show that
the S-Pyramid framework improves accuracy by up to
7.12 times compared with the original sketches, while
improving throughput by up to 2.37 times.

• We propose the Mini-Pyramid framework, a mini ver-
sion of the S-Pyramid framework that can be more flex-
ibly applied. We apply the Mini-Pyramid framework to
sketches of CM [28], CU [14], Count [29], Augmented
[23], SBF [30], and On-Off [17]. The experimental results
show that the Mini-Pyramid framework can improve
accuracy by up to 29.2 times compared to the original
sketches, at the cost of 21.3% lower throughput on
average.

2 RELATED WORK

It is a fundamental problem in the field of network mea-
surement to estimate flow sizes in real network. The most
promising solution to flow size measurement is sketches.
Typical sketches include sketches of CM [28], CU [14], Count
[29], Augmented [23], Elastic [15], Nitro [32], and more [11],
[17], [18], [33], [34], [35], [36], [37], [38], [39]. These sketches
can be divided into two categories based on whether the
skewed flow size distribution is considered or not.

The first category is sketches not considering the prob-
lem brought by skewed flow size distribution, including
sketches of CM [28], CU [14], Count [29]. They are simple
but with low accuracy. The CM sketch [28] is the most

3

… …

… …

...

Hybrid Counter
Pure Counter

𝐿𝐿1

𝐿𝐿2

𝐿𝐿3

...

𝐿𝐿𝑖𝑖

𝐿𝐿𝜆𝜆

parent counter

left child counter right child counter

left flag right flag
counting part

e

𝐿𝐿𝜆𝜆−1

… …

Figure 1. Counter-pair sharing technique.

commonly used sketch in network measurement. It can
guarantee no under-estimated error, i.e., the reported value
is always no less than the actual size of the queried flow.
The CU sketch [14] uses the strategy of conservative update,
optimizing the CM sketch for higher accuracy at the cost
of not supporting deletion. It still guarantees no under-
estimated error. The Count sketch [29] is updated with an
equal probability of +1/-1. It achieves unbiased estimation
of flow sizes, and is often used in finding top-k frequent
flows.

The second category is sketches specially designed for
skewed flow size distribution, including sketches of Aug-
mented [23], Elastic [15], and more [36], [37], [38]. They
are relatively complex but perform better. The Augmented
sketch [23] adds an additional filter to the sketch, aiming to
record the elephant flows separately. The Elastic sketch [15]
uses Ostracism technique to separate elephant flows from
mice flows, and propose a technique to compress sketches.

There are also solutions to flow size measurement using
Bloom filter variants. Bloom filters [40] is used to record
whether a flow occurs. Its variants expand the bits to
counters to support flow size query. Typical Bloom filter
variants include Counting Bloom filters (CBF) [41], Spectral
Bloom Filters (SBF) [30], and more [42], [43]. Other relevant
works include Counter Braids [44], Random Counters [45],
and more [46], [47], [48].

3 THE S-PYRAMID FRAMEWORK

In this section, we present the first member of our pyramid
family, the standard Pyramid framework, S-Pyramid for
short. The S-Pyramid framework has two key techniques:
counter-pair sharing and word acceleration. Counter-pair
sharing is used to dynamically assign an appropriate number of
bits for different flows with different flow sizes. Word accelera-
tion can achieve one memory access and one hash computation
for most operations, significantly accelerating the speed of the
sketches. We also present one further optimization method:
Ostrich policy. Note that we introduce the techniques not in
isolation, but one at a time on top of all previous techniques.

3.1 Counter-Pair Sharing
Data Structure: As shown in Figure 1, the S-Pyramid frame-
work consists of λ layers. Let Li denote the ith layer. Li
consists of wi counters, where wi+1 = wi/2 (1 6 i 6 λ− 1).
Each counter contains δ bits. Let Li[j] denote the jth counter
of Li. The first layer L1 is associated with d pairwise inde-
pendent hash functions hi(.) (1 6 i 6 d). Li is associated
with Li+1 in the following way: two adjacent counters at Li

3 11

0 00

(a)

𝐿𝐿3[𝑗𝑗′′]

𝐿𝐿2[𝑗𝑗′]

𝐿𝐿1[𝑗𝑗] 15

0 11

1 10

e

(b)

0

+ e - e

3 11

0 00

(c)

15

0 00 0 00 0 00𝐿𝐿4[𝑗𝑗′′′]

e e

Figure 2. Examples of counter-pair sharing technique.

are associated with one counter at Li+1, i.e., Li[2j − 1] and
Li[2j] are associated with Li+1[j]. We define Li+1[j] as the
parent counter of Li[2j − 1] and Li[2j], Li[2j − 1] as the
left child counter of Li+1[j], and Li[2j] as the right child
counter of Li+1[j]. Li[2j − 1] and Li[2j] are defined as the
sibling counters.

There are two types of counters: pure counters and
hybrid counters. The first layer L1 consists of pure counters,
while the other layers consist of hybrid counters. The pure
counter consists of only a counting part, ranging [0, 2δ). The
δ-bit hybrid counter is split into three parts: a 1-bit left
flag, a (δ − 2)-bit counting part, and a 1-bit right flag. Let
Li[j].lf lag, Li[j].count, and Li[j].rflag denote the three
parts of counter Li[j], respectively. The left flag indicates
whether its left child counter is overflowed, while the right
flag indicates whether its right child counter is overflowed.
The counting part ranging [0, 2δ−2) is used for counting the
number of overflows.
Initialization: Initially, all counters at all layers are set to 0,
i.e., all counting parts are set to 0 and all flags are set to false.
Insertion: When inserting a packet of flow e, we first com-
pute the d hash functions h1(e), h2(e), ..., hd(e) (1 6 hi(.) 6
w1) to locate the d mapped counters L1[h1(e)], L1[h2(e)], ...,
L1[hd(e)] at layer L1. Different sketches perform different
incrementing operations on these d counters. If one of the
d mapped counter Li[j] overflows, we perform the fol-
lowing carry-in operation: we set the overflowed counter
to 0, and then increment its parent counter. Let Li+1[j′]
denote the parent counter. Note that all parent counters are
hybrid counters. When incrementing Li+1[j′], we first set
its corresponding flag Li+1[j′].lf lag/rflag to true, and then
increment the counting part Li+1[j′].count. If Li+1[j′].count
does not overflow, the insertion ends; otherwise, we repeat
the carry-in operation on Li+1[j′].

Example I: As shown in Figure 2(a)-(b), each pure counter
and hybrid counter contain 4 bits. The counting part in each
hybrid counter contains 2 bits. The value of L1[j], the three
parts of L2[j′], L3[j′′], and L4[j′′′] are 15, 〈1, 3, 1〉, 〈0, 0, 0〉,
and 〈0, 0, 0〉, respectively. Suppose L1[j] is incremented by
1 and overflows, the carry-in operations are performed as
follows:

1) L1[j] is set to 0;
2) L2[j′].lf lag keeps true;
3) L2[j′].count is set to 0;
4) L3[j′′].rflag is set to true;
5) L3[j′′].count is incremented to 1.

Deletion: Deletion is the reverse operation of insertion, i.e.,
decrement the flow size by 1. The S-Pyramid framework

4

Algorithm 1: ReportVal(i, ji).

1 if i==1 then
2 return L1[j1] +ReportV al(i+ 1, ji+1)

3 if Li−1[ji−1] is Li[ji]’s left child counter and
Li[ji].lf lag = False then

4 return 0

5 if Li−1[ji−1] is Li[ji]’s right child counter and
Li[ji].rflag = False then

6 return 0

7 if Li[ji].lf lag = True and Li[ji].rflag = True then
8 return (Li[ji].count− 1)× 2δ+(i−2)×(δ−2)

+ReportV al(i+ 1, ji+1)
9 else

10 return Li[ji].count× 2δ+(i−2)×(δ−2)

+ReportV al(i+ 1, ji+1)

supports deletion only if the original sketch supports dele-
tion (e.g., CM [28], Count [29]). When deleting a packet of
flow e, we first compute the d hash functions to locate the
d mapped counters, and then perform the decrementing
operation. The decrementing operation is exactly the reverse
process of incrementing. Specifically, to decrement a pure
counter L1[j], if it is non-zero, we just decrement it by 1.
Otherwise, we perform the carry-down operation: set L1[j]
to its maximum value (2δ−1), and then decrement its parent
counter recursively. There are three cases when decrement a
hybrid counter Li[j′]:

1) If Li[j′].count is larger than 1, we simply decrement it
by 1.

2) If Li[j′].count is 1, we first decrement it to 0, and then
set Li[j′].lf lag/rflag to false if the corresponding flag of its
parent counter is false.

3) If Li[j′].count is 0, we set it to its maximum value
(2δ−2−1), and then decrement its parent counter recursively.

Example II: As shown in Figure 2(b)-(c), the value of
L1[j], the three parts of L2[j′], L3[j′′], and L4[j′′′] are 0,
〈1, 0, 1〉, 〈0, 1, 1〉, and 〈0, 0, 0〉, respectively. Suppose L1[j]
is decremented by 1 to 0, the carry-down operations are
performed as follows:

1) L1[j] is set to 15;
2) L2[j′].lf lag keeps true;
3) L2[j′].count is set to 3;
4) L3[j′′].rflag is set to false;
5) L3[j′′].count is decremented to 0.

Query: When querying a flow e, we compute the d hash
functions to locate the d mapped counters, and then query
the mapped counters respectively. Below we describe how
to query a single mapped counter L1[j1]. Let L2[j2], L3[j3],
..., Lλ[jλ] denote the parent counter and the ancestor coun-
ters of L1[j1]. As shown in Algorithm 1, we recursively
assemble the counter value top-down, layer by layer, until
the corresponding flag is false. Note that if both left and
right flags of Li[ji] are true (line 5-8), both its left and
right child counters must have overflowed at least once.
Therefore, we subtract Li[ji].count by 1, thus reduce the
over-estimation error incurred by the collision in counter-
pair sharing. Let R(L1[j1]) denote the final reported value
ReportV al(1, j1) for convenience. After obtaining the d re-

ported value, R(L1[h1(e)]), R(L1[h2(e)]), ..., R(L1[hd(e)]),
we report the query result based on the specific sketch under
use. For example, for CM and CU, we simply report the
minimum value among the d reported values.

Example III: As shown in Figure 2(b), the value of L1[j],
the three parts of L2[j′], L3[j′′], and L4[j′′′] are 0, 〈1, 0, 1〉,
〈0, 1, 1〉, and 〈0, 0, 0〉. The report value operation is per-
formed as follows:

1) L1[j] is 0;
2) Both L2[j′].lf lag and L2[j′].rflag are true, and

L2[j′].count is 0;
3) L3[j′′].rflag is true and L3[j′′].count is 1;
4) L4[j′′′].lf lag is false and the recursive operation ends;
5) The reported value is 0 + (0− 1)× 24 + 1× 26 = 48.

Summary and Analysis: Our counter-pair sharing tech-
nique is based on the following insight: the practical data-
sets are skewed, and the number of elephant flows is much
less than mice flow. Therefore, only a small number of
counters are overflowed, and in most cases at most one of
the sibling counters is overflowed. That means the sharing
of the parent counter is almost conflict-free. Therefore, with
counter-pair sharing technique, most of the flows can be
recorded with the appropriate counter(s) size.

3.2 Word Acceleration
In sketch algorithm, memory access and hash computation
are two major bottlenecks in speed [32]. Based on the struc-
ture of the S-Pyramid framework, we propose three accel-
eration methods to improve the throughput while ensuring
the accuracy.
Word Constraint Technique: In the word constraint tech-
nique, we make two minor modifications: 1) we set the
counter size δ to 4 bits; 2) as shown in Figure 3(a)-(b), we
constrain the d mapped counters at layer L1 to a single
machine word. In this way, the average number of memory
accesses per operation is significantly reduced and the speed
is significantly improved. Let the size of a machine word
be W bits. Each machine word contains W/δ counters.
Therefore, layer L1 contains δw1/W machine words. In
addition, L1 is associated with d + 1 hash functions hi(.)
(1 6 i 6 d + 1). The first hash function is used to map
each flow to a specific word Ω, and the remaining d hash
functions are used to locate the d mapped counters in word
Ω. The operations of insertion, deletion and query remain
the same under the word constraint technique.

Our word constraint technique is based on the following
facts: 1) In the S-Pyramid framework, each counter is small
(e.g., 4 bits), while a machine word is usually 64 bits wide
on modern CPUs. 2) The size of a machine word can be
much larger on other platforms (e.g., 1024 bits on GPU
[49]). Therefore, one machine word can typically contain
a reasonably large number of small counters used in the
S-Pyramid framework. Obviously, after using the word con-
straint technique, the average number of memory accesses
per operation is reduced to around 1/d, as all the d mapped
counters can be read/written within one memory access. We
derive the upper-bound on the average number of memory
accesses for each insertion as follows.

When inserting a packet, suppose Pr(L1 overflows) < ρ
and Pr(Li+1 overflows|Li overflows) < σ (1 6 i < λ). The

5

e
𝐿𝐿1

𝐿𝐿2

𝐿𝐿3

e
𝐿𝐿1

𝐿𝐿2

𝐿𝐿3
Word sharing

A machine word

𝐿𝐿2

𝐿𝐿3

… …

… …

… …

𝐿𝐿1

Word constraint

(a) (b) (c)

e

Figure 3. Word constraint and word sharing technique.

3 01

0 00

(a)

𝐿𝐿3[0. . 3]

𝐿𝐿2[0. . 3]

𝐿𝐿1[0. . 3] 15

e

0 15 0

3 01 0 00 0 00

0 00 0 00 0 00
+ e

0 01

2 11

(b)

0

e

0 0 0

0 01 0 00 0 00

0 00 0 00 0 00

Figure 4. Example of word constraint technique.

average number of memory accesses t is determined by the
following formula:

t < 1 +
∞∑
k=0

ρσk = 1 +
ρ

1− σ (1)

In our experiments on CAIDA trace (see § 7.1), ρ ≈ 0.05,
σ ≈ 0.25. Therefore, the average number of memory ac-
cesses for each insertion t 6 1 + 0.05/(1 − 0.25) ≈ 1.07,
which is consistent with our experimental results shown in
Figure 18(b).

Example IV: As shown in Figure 4, each word contains
4 counters, and the d mapped counters are constrained to
one machine word. Suppose a flow is hashed to L1[0] and
L1[2], and the counters are incremented by 1 and overflow,
the carry-in operations are performed as follows:

1) L1[0] and L1[2] are set to 0;
2) L2[0].lf lag and L2[1].lf lag keep true, L2[0].count and

L2[1].count are set to 0;
3) L3[0].lf lag and L3[1].rflag are set to true, L3[0].count

is incremented to 2.
As shown above, applying word constraint technique to

the S-Pyramid framework helps reducing memory accesses.
However, it also incurs severe accuracy loss. The main
reason is that, after implementing the carry-in operation, the
probability of collision among counters in the same machine
word increases sharply at high layers (see Figure 3(b)). More
specifically, given a flow e, its dmapped counters at layer L1

shares one machine word, while their parent counters shares
only half of a word at layer L2. Their ancestor counters are
constrained to smaller and smaller ranges at higher layers,
resulting in more and more collisions.
Word Sharing Technique: To address the above issue, we
propose a new technique, namely the word sharing tech-
nique. The methodology of this technique is making the
parent and ancestor counters of the d mapped counters
always fall in a constant range, i.e., a machine word, instead
of a smaller and smaller range, thus reduce collisions. As
shown in Figure 3(b)-(c), our word sharing technique works
as follows:

3 01

0 00

(a)

15

e

0 15 0

0 00 3 01 0 00

0 00 0 00 0 00

0 01

1 01

(b)

0

e

0 0 0

0 00 0 01 0 00

0 00 1 01 0 00
+ e

𝐿𝐿3[0. . 3]

𝐿𝐿2[0. . 3]

𝐿𝐿1[0. . 3]

Figure 5. Example of word sharing technique.

1) Similar to the definition of parent counter, left child
counter, and right child counter, we have parent word, left
child word, and right child word. The left child word and
the right child word are adjacent at layer Li, sharing the
same parent word at the next layer Li+1.

2) The ith counter in the left child word and the ith

counter in the right child word share the ith counter in the
parent word.

In this way, collisions in counter-pair sharing are allevi-
ated, and the accuracy is significantly improved. As shown
in Figure 3(c), with the word sharing technique, the parent
and ancestor counters of the d mapped counters always fall
in one machine word at each layer. Therefore, no additional
collisions occur. Note that word sharing technique keeps
the number of counters, and therefore does not result in
additional memory waste.

Example V: As shown in Figure 5, suppose a flow is
hashed to L1[0] and L1[2], and the counters are incremented
by 1 and overflow, the carry-in operations are performed as
follows:

1) L1[0] and L1[2] are set to 0;
2) L2[0].lf lag and L2[2].lf lag keep true, L2[0].count and

L2[2].count are set to 0;
3) L3[0].lf lag and L3[2].lf lag are set to true, L3[0].count

and L3[2].count are incremented to 1.
One Hashing Technique: As mentioned above, hash com-
putation is another speed bottleneck of sketch algorithm.
Ideally, only one hash computation is performed for each
operation. Towards this goal, we present the one hashing
technique. The idea is to split the value one hash function
produces into several segments, and each segment is used to locate
a word or a counter, so as to reduce the hash computation.
A hash function usually produces a value of 32 or 64 bits.
However, the number of the counters is hardly able to
reach the maximum value. Many bits are unused, resulting
in computational waste. Given a hash function with 32-bit
output, we may use the first 16 bits to locate a word in the
S-Pyramid sketch. 2 Suppose a word contains 64 bits and 16

2. We call the sketches applying our frameworks the S-Pyramid
sketches and the Mini-Pyramid sketches, respectively.

6

counters. Locating one of the counters requires 4 hash bits.
In total, we need 16 hash bits to locate all 4 counters in the
word. In this way, we can use only one hash computation to
locate all d mapped counters in an S-Pyramid sketch (d = 4)
with at most 216 words at the layer L1. Similarly, we can
use a hash function with a 64-bit output to support an S-
Pyramid sketch (d = 4) with at most 248 words, i.e., 2048 TB
memory at layer L1, which should be large enough for all
practical cases.
Summary: With our word acceleration technique, the S-
Pyramid framework only needs one memory access and
one hash computation for most operations. Although for
some flows, multiple layers need to be read/written, which
resulting in multiple memory accesses. Fortunately, most
flows are mice flows and only access the first layer. Our
experimental results on CAIDA show that the average
number of memory accesses per insertion can be reduced
to 1.07, which is close to one memory access per operation
(see Figure 18(b)).

3.3 Further Optimization Method
Ostrich Policy: For sketches that need to get the reported
value of the d mapped counters during each insertion
(e.g., CU [14]), multiple layers may need to be accessed.
To reduce memory accesses, we propose a novel strategy,
namely Ostrich policy. The key idea of Ostrich policy is
ignoring the higher layers when getting the reported values of
the d mapped counters. Take the CU sketch as an example.
When inserting a packet of flow e, suppose the counter(s)
3 with the smallest value among the d mapped counters is
L1[j], we just increment the counter L1[j] by 1. Note that the
reported value of L1[j] is not always the smallest among the
d mapped counters. If there are multiple smallest counters,
we increment all of them. With Ostrich policy, the insertion
speed is significantly improved.

Our experimental results show that Ostrich policy has
no negative effect on accuracy (see Section 7.2.1). That may
be counter-intuitive. Let’s take the CU sketch as an exam-
ple to illustrate this phenomenon. The CU sketch always
increments the smallest counter(s) by 1 in each insertion.
However, in some cases, the smallest counter(s) is already
over-estimated, i.e., larger than the real value. In such cases,
incrementing the smallest counter(s) is not the best strategy,
while a new strategy of incrementing the smallest counter(s)
with high probability often lead to a better accuracy. Ostrich
policy is one efficient implementation of this new strategy.

It is worth noticing that although Ostrich policy has little
effect on accuracy, it sacrifices the property of no under-
estimated error of the CU sketch. That’s because ostrich
policy ignore the higher layers and may result in misjudging
the minimum counter. Therefore, Ostrich policy can only be
used if under-estimated error is acceptable.

4 THE MINI-PYRAMID FRAMEWORK

In this section, we present the second member of our
Pyramid family, the mini version of the S-Pyramid frame-
work, Mini-Pyramid for short. The Mini-Pyramid frame-
work projects the structure of the S-Pyramid framework into

3. We use counter(s) because there may be multiple minimum coun-
ters.

fs f1 f2 f3 low-part1: 4bit

low-part2: 4bit low-part3: 4bit

high-part: 16bit

simplified
flag: 1 bit

overflowed
flags: 1bit×3

. . .

. . .

Figure 6. The data structure of the Mini-Pyramid framework.

0 0 0 1 3

15 1

2

0 0 1 1 3

0 1

3

0 0 1 1 3

15 1

2

(a) (b) (c)

+ e - e

Figure 7. Examples on the operations of the Mini-Pyramid framework.

a 32-bit counter, namely the M-Pyramid counter. We focus
on 32-bit counters, mainly because they are sufficient to
record all flow sizes, and most sketches use 32-bit counters
in deployment. From this insight, the 32-bits Mini-Pyramid
is more flexible in deployment. For parameter settings,
please refer to Section 7.2.2.

4.1 Data Structure and Operation
Data Structure: As shown in Figure 6, for the limited
memory, our Mini-Pyramid framework consists of only two
layers. The first layer consists of three 4-bit counters, we
name it the low-part; The second layer consists of one 16-
bit counter, we name it the high-part. Let L[i] denote the
ith counter at low-part, and H denote the counter at high-
part. We also build three flag bits to indicate whether the
corresponding counter is overflowed. Let flagi denote the
ith flag bit.
Insertion: When inserting a packet of flow e, we first
compute a hash function h(e)(1 6 h(.) 6 3) to locate the
counter L[h(e)] at low-part. Different sketches perform dif-
ferent incrementing operations on the counter. If the counter
overflows, we perform the carry-in operation: we set L[h(e)]
to 0, set the corresponding overflowed flag flagh(e) to true,
and increment the counter at high-part H by 1.

Example IV: As shown in Figure 7(a)-(b), L[2], H , and
flag2 are 15, 2, and 0, respectively. Suppose L[2] is in-
cremented by 1 and overflows, the carry-in operation is
performed as follows:

1) L[2] is set to 0;
2) flag2 is set to true;
3) H is incremented to 3.

Deletion: Like the S-Pyramid framework, the Mini-Pyramid
framework supports deletion only if the original sketch
supports deletion. When deleting a packet of flow e, we
first compute h(e) to locate L[h(e)], and then perform
the decrementing operation. If the counter is non-zero, we
simply decrement it by 1. Otherwise, we perform the carry-
down operation: we set L[h(e)] to its maximum value (15),
and decrement H by 1. If H is decremented to 0, we then
set the overflowed flag flagh(e) to false.

7

Example V: As shown in Figure 7(b)-(c), L[2], H , and
flag2 are 0, 3, and 1, respectively. Suppose L[2] is decre-
mented by 1 to 0, the carry-down operation is performed as
follows:

1) L[2] is set to 15;
2) flag2 keeps true;
3) H is decremented to 2.

Query: When querying a flow e, we first compute h(e)
to locate L[h(e)]. If the overflowed flag flagh(e) is false,
we simply report L[h(e)]. Otherwise, we assemble H and
L[h(e)] and report the value (H × 24 + L[h(e)]).

Example VI: As shown in Figure 7(c), L[2], H , and flag2

are 15, 2, and 1, respectively. The query operation on L[2] is
performed as follows:

1) L[2] is 15;
2) flag2 is true and H is 2;
3) The reported value is 15 + 2× 24 = 47.

Optimization: Like the S-Pyramid framework, the Mini-
Pyramid framework can also adapt the one hashing tech-
nique. When calculating a hash function, we may separate
the hash value into two parts, one for locating the M-
Pyramid counter, and the other for locating the counter at
low-part.

4.2 Simplification
The M-Pyramid counter can record flows of size up to
220 − 1. However, in some cases (e.g., data center network,
see Section 7.1), the maximum flow size exceeds this thresh-
old. To address this issue, we propose the simplification
operation. As shown in Figure 6, the M-Pyramid counter
remains 1 bit for the simplified flag. Let flags denote the
flag. When flags is true, the counter is simplified to a 31-
bit general counter. When perform an operation, we first
check flags. If flags is false, we treat the counter as an M-
Pyramid counter. Otherwise, we treat it as a general counter.
Note that if H overflows when incrementing, we have to set
flags to true, and set the general counter to the maximum
value of the M-Pyramid counter plus 1 (220).

5 MATHEMATICAL ANALYSES

In this section, we first derive the correct rate and error
bound of SPCM

4. We then prove that the error of MPCM
is always lower than CM.

5.1 Analyses on the SPCM Sketch
In this subsection, we only give the theorems and the proof
of error bound. For further mathematical analyses on the
S-Pyramid framework, please refer to the original paper [1].

Theorem 1 (No Under-estimation Error). The SPCM sketch
has no under-estimation error, where under-estimation error
means that the reported value is smaller than the real value.

Theorem 2 (Correct Rate). Given a trace with N distinct flows,
let Ni (1 6 i 6 λ) denote the number of distinct flows that the
carry-in operations of d mapped counters end exactly at layer
Li. Without loss of generality, we assume that all d carry-in
operations end at the same layer.

4. We call the CM sketch applying the S-Pyramid and Mini-Pyramid
framework the SPCM and MPCM sketches, respectively for short. Simi-
larly, we have SPCU, MPCU, etc.

Let P acci denote the probability that one arbitrary counter
corresponding with one arbitrary flow records the accurate value
at layer Li.

P acci =

(
1− 2i−1

w1

)(Φi×N−1)×d

×
(

1− δ

W

)d−1

(1 6 i 6 λ)

(2)
where

Φi =


∑λ
k=iNk
N

(1 6 i 6 λ)

0 (i = λ+ 1)

(3)

Let P denote the expectation of the probability that one
arbitrary counter at layer L1 reports the accurate result.

P =
λ∑
k=1

[
(Φk − Φk+1)×

k∏
l=1

P accl

]
(4)

Let Cr denote the correct rate of the estimation for one
arbitrary flow.

Cr = 1− (1− P)
d (5)

Theorem 3 (Error Bound). For an arbitrary flow ei, let fi
and f̂i denote its actual and estimated flow size. Let N denote
the number of distinct flows and V denote the sum of the real
flow sizes of all flows, i.e., V =

∑N
k=1 fi. The Φi is defined

in Formula 3. Given a small variable ε, we have the following
guarantee with probability at least 1 −

(
∆
ε

)d
: (∆ is a constant

relying on N,Φi, w1, d,W and δ):

f̂i 6 fi + ε× V (6)

Proof. Each layer Li (2 6 i 6 λ) in the SPCM sketch can be
considered to correspond with d virtual hash functions hi1(.),
hi2(.), . . . , hid(.) (1 6 h(.) 6 wi), which are determined by
the initial d hash functions at the first layer L1 and the carry-
in operation. Note that in this section, we denote the initial
d hash functions by h1

1(.), h1
2(.), . . . , h1

d(.) (1 6 h(.) 6 w1).
We define an indicator variable Ii,j,k,l, which is 1 if

hlj(ei) = hlj(ek), and 0 otherwise. Due to the pairwise
independent hash functions, the expectation of Ii,j,k,l can
be derived as follows:

E (Ii,j,k,l) =
1

wl
× Φl ×N × d− d

Φl ×N × d− 1

+
1

W/δ
× d− 1

Φl ×N × d− 1
(1 6 l 6 λ)

(7)

For convenience, let El denote E (Ii,j,k,l). We define the
variable Xi,j as follows:

Xi,j =
λ∑
l=1

[
(Φl − Φl+1)×

N∑
k=1

(fk × Ii,j,k,l)
]

(8)

Xi,j is non-negative. It reflects the expectation of the
error caused by the collisions happening at all the layers
when querying one arbitrary counter at layer L1. In other
words, we have:

R(L1[h1
j (ei)]) = fi +Xi,j (9)

8

The expectation of Xi,j is calculated as follows:

E (Xi,j) = E

{
λ∑
l=1

[
(Φl − Φl+1)×

N∑
k=1

(fk × Ii,j,k,l)
]}

=
λ∑
l=1

[
(Φl − Φl+1)×

N∑
k=1

(fk × E(Ii,j,k,l))

]

=
λ∑
l=1

[
(Φl − Φl+1)×

N∑
k=1

(fk × El)
]

=
λ∑
l=1

[
(Φl − Φl+1)× El ×

N∑
k=1

fk

]

=
λ∑
l=1

[(Φl − Φl+1)× El × V]

= V ×
λ∑
l=1

[(Φl − Φl+1)× El]

= V ×∆
(10)

Where ∆ denotes
∑λ
l=1 [(Φl − Φl+1)× El]). Thus,

V =
E(Xi,j)

∆
(11)

Then, by the Markov inequality, we get:

Pr
[
f̂i > fi + ε× V

]
= Pr

[
∀j , R(L1[h1

j (ei)]) > fi + ε× V
]

= Pr [∀j , fi +Xi,j > fi + ε× V]

= Pr [∀j , Xi,j > ε× V]

= Pr

[
∀j , Xi,j > ε× E(Xi,j)

∆

]
= Pr

[
∀j ,

Xi,j

E(Xi,j)
>

ε

∆

]
6

{
E

[
Xi,j

E(Xi,j)

]
/
ε

∆

}d
=

(
∆

ε

)d

(12)

5.2 Analysis on the MPCM Sketch
Theorem 4. For an arbitrary flow ei with real flow size fi, let C
be one of the d mapped counters in the CM sketch. Let f̂i

MP
and

f̂i
CM

denote the reported value of C with and without applying
the Mini-Pyramid framework, respectively. We have

fi 6 f̂i
MP

6 f̂i
CM

(13)

Proof. The structure of Mini-Pyramid is the same as a 2-layer
S-Pyramid, thus fi 6 f̂i

MP
, according to Theorem 1.

Without loss of generality, suppose the located low-
part in C is L[1]. Regardless of ei is overflowed or not,
f̂i
MP

6 H × 24 + L[1], while f̂i
CM

is equal to the sizes of
all flows mapped to C. Note that H in Mini-Pyramid counts
all overflows in L[1], L[2], and L[3], so if we have the flow
trace, we can divide H into 3 parts: H[1], H[2], and H[3]

(H = H[1]+H[2]+H[3]), where H[i] is the number of over-
flows in L[i] (1 6 i 6 3). Obviously, the sizes of the flows
mapped to sub-counter L[i] are equal to H[i] × 24 + L[i].
Therefore, the sizes of all flows mapped to C (f̂i

CM
) are

equal to
∑3
i=1H[i] × 24 + L[i] = H × 24 +

∑3
i=1 L[i] >

H × 24 + L[1] > f̂i
MP

.

As shown in Figure 11(a), the MPCM sketch always
achieves more accuracy than the CM sketch, even if the flow
size distribution is not skewed.

6 CASE STUDIES

In this section, we introduce 6 typical sketches, and show
how our frameworks apply to them. For the former 4
sketches, we apply both S-Pyramid and Mini-Pyramid
frameworks. The Mini-Pyramid framework is more flexible,
and we further apply it to the latter 2 sketches.

6.1 CM sketches
A CM sketch [28] consists of d arrays, A1, ..., Ad. Each array
contains w counters and is associated with a hash function
hi(.) (1 6 i 6 d, 1 6 hi(.) 6 w). When inserting a packet
of flow e, the CM sketch increments all d mapped counters
A1[h1(e)], ..., Ad[hd(e)] by 1. When querying a flow e, the
CM sketch reports the minimum value among the dmapped
counters.

Applying S-Pyramid: For CM, we apply both counter-pair
sharing and word acceleration techniques.

Applying Mini-Pyramid: Given a CM sketch, we simply
replace each counter in the counter arrays of the CM sketch
by an M-Pyramid counter.

6.2 CU sketches
The CU sketch [14] only modifies the insertion process of
the CM sketch. The data structure and the query process of
the CU sketch are exactly the same as that of the CM sketch.
When inserting a packet, the CU sketch only increments the
minimum counter(s) among the d mapped counters.

Applying S-Pyramid: For CU, we apply counter-pair shar-
ing, word acceleration techniques, and Ostrich policy.

Applying Mini-Pyramid: Given a CU sketch, we replace
each counter in the counter arrays of the CU sketch by an
M-Pyramid counter.

6.3 Count Sketches
Similar to the CM sketch, the Count (C) sketch [29] consists
of d arrays, A1, ..., Ad. Each array contains w counters but
is associated with two hash functions hi(.) and gi(.). hi(.) is
uniformly mapped to one of the w counters, whereas gi(.)
is mapped to -1 or +1 with the same probability. When
inserting a packet of flow e, for the ith mapped counter
Ai[hi(e)] (1 6 i 6 d), the Count sketch calculates gi(e)
and adds/subtracts the counter accordingly. When querying
a flow e, the Count sketch reports the median value of
A1[h1(e)]× g1(e), ..., Ad[hd(e)]× gd(e).

Applying S-Pyramid: For the Count sketch, we apply
counter-pair sharing and word acceleration techniques.
Since the S-Pyramid framework does not support negative
numbers, we also add bit arrays to record the sign of each
counter in the first layer L1.

9

Applying Mini-Pyramid: Since the M-Pyramid counter
does not support negative numbers, for a Count sketch,
besides replacing counters by the M-Pyramid counters, we
also add bit arrays to record the sign of each low part in the
M-Pyramid counters.

6.4 Augmented Sketches

The Augmented (A) sketch [23] adds an additional filter to
an existing sketch (e.g., CM). The filter is an array records
the ID, new count, and old count of the elephant flows.
When inserting a packet of flow e, ASketch first checks
the filter. If e exists in the filter, or the filter is not yet
full, ASketch simply updates the filter. Otherwise, ASketch
inserts e to the sketch and estimates its flow size. If the
estimated flow size is larger than the minimum new count
in the filter, we replace that flow with e. When querying a
flow e, ASketch first checks whether e is in the filter, if so,
ASketch reports the new count directly. Otherwise, ASketch
reports the estimated value in the sketch.

Applying S-Pyramid: For ASketch, we apply both counter-
pair sharing and word acceleration techniques to the sketch,
while keeping the filter unchanged.

Applying Mini-Pyramid: Given an ASketch, we only re-
place the counters in the counter arrays of the sketch by
M-Pyramid counters. The counters in the filter remain the
same, because there is no conflict in the filter, so the M-
Pyramid counter is not needed.

6.5 Spectral Bloom Filters

The Spectral Bloom Filter (SBF) [30] is quite similar to the
CM sketch, except that SBF uses only one counter array.
SBF proposes two optimizations to increase accuracy, one
of which is called Recurring Minimum (RM). It uses a
primary SBF and a secondary SBF to reduce error. When
performing an insertion or query operation, if the flow
has a RM (i.e., two or more mapped counters report the
minimum), it only operates the primary SBF. Otherwise, it
performs the insertion or query operation on the secondary
SBF additionally.

Applying Mini-Pyramid: Given a SBF using RM, we re-
place all counter in both primary and secondary SBF by the
M-Pyramid counters.

6.6 On-Off Sketches

The On-Off sketch [17] is specially designed for finding
persistent flows. It does some modifications on the basis of
the CM sketch. The data structure and the query process of
the On-Off sketch remain the same, except that each counter
contains a state field with two states: On and Off. All state
fields are periodically set to On. When inserting a packet, the
On-Off sketch checks all d mapped counters. If a counters’
state is On, it will be incremented by 1, and its state will be
set to Off. Otherwise, nothing will be done.

Applying Mini-Pyramid: Given an On-Off sketch, we re-
place all counters in the On-Off sketch by the M-Pyramid
counters. We also increase the number of the state fields
making them correspond to the low parts in the M-Pyramid
counters.

7 EXPERIMENTAL RESULTS

We conduct extensive experiments on both the S-Pyramid
framework and the Mini-Pyramid framework, focusing on
the following 4 key issues.

• How do techniques and parameters affect S-Pyramid
and Mini-Pyramid? We take SPCM and SPCU as examples,
apply different techniques, and compare the error. We take
MPCM as an example, adjust the parameter settings, and
select the best parameters.

• How accurate can both frameworks perform on sketches
using counter arrays? We implement both S-Pyramid and
Mini-Pyramid on sketches of CM [28], CU [14], Count [29],
and Augmented [23] using C++ program, and evaluate
the accuracy of S-Pyramid on single-core CPU.

• How about the throughput of both framework? We
evaluate the throughput of S-Pyramid and Mini-Pyramid
on the above 4 sketches on single-core CPU platforms. We
also take CM as an example to evaluate the throughput of
both frameworks on multi-core CPU platforms.

• How about the flexibility of Mini-Pyramid? What is
the performance when applying it to sophisticated
sketches? We implement Mini-Pyramid on SBF [30] and
the On-Off sketch [17], and compare the accuracy of the
sketches with and without applying Mini-Pyramid.

7.1 Experimental Setup
Traces: We use 3 real traces and a series of synthetic traces
shown as follows:
• CAIDA Trace: As many prior works [15], [34] do, we use

the anonymized trace from CAIDA [27]. We use a trace
with monitoring time of 1 minute, which contains 254k
flows, 27.1M packets. The maximum flow size is 917k.
In order to evaluate the performance of our algorithms
in large-scale measurement, for experiments on accuracy
and throughput, we further use a trace with monitoring
time of 5 minutes, which contains 5.45M flows, 133M
packets. The maximum flow size is 1.22M.

• IMC DC Trace: IMC Data Center Trace [50] is collected
from the data centers studied in [51]. The character of
data center traffic is that it contains a large number of
flows, while simultaneously contains a few extremely
large flows. The trace we use contains 1.40M flows, 10.0M
packets. The maximum flow size is 2.43M.

• Campus Trace: We also use a trace collected from the
campus network for the experiment. The trace contains
384k flows, 2.50M packets. The maximum flow size is
9.98k.

• Synthetic Traces: We generate a series of synthetic traces
that follow the Zipf [52] distribution using Web Polygraph
[53]. The skewness of the traces range from 0.0 to 1.5. Each
trace contains approximately 1.00M flows, 32.0M packets.
The maximum flow sizes range from 86 to 4.35M.

Computation platform: We conduct the experiments on a
server with a 18-core CPU (Intel i9-10980XE) and 128GB
total DRAM memory. Each core has three levels of cache
memory: 64KB L1 cache, 1MB L2 cache, and 24.75MB L3
cache shared by all cores. Each word consists of 64 bits.
Implementation: We implement both the S-Pyramid and
Mini-Pyramid frameworks by C++, and apply them to
sketches of CM [28], CU [14], Count [29], and Augmented

10

O S P 1 ~ 1 S P 1 ~ 2 S P 1 ~ 3 S P 1 ~ 4 S P 1 ~ 50 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
AR

E
 C M C U

(a) ARE.

O S P 1 ~ 1 S P 1 ~ 2 S P 1 ~ 3 S P 1 ~ 4 S P 1 ~ 50

5

1 0

1 5

2 0

Th
rou

gh
pu

t (M
pp

s)

 C M C U

(b) Throughput.

Figure 8. Comparison of different techniques/optimization methods on
S-Pyramid.

[23]. We also apply the Mini-Pyramid framework to SBF
[30] and the On-Off sketch [17] to verify its flexibility. For
S-Pyramid sketches, we apply the proposed techniques of
both counter-pair sharing and word acceleration. For SPCU,
we apply Ostrich policy in addition.

For all sketches, we set the number of hash functions d
to 4. For original sketches and Mini-Pyramid sketches, we
use 32-bit Bob hash [54]; for S-Pyramid sketches, we use 64-
bit Bob hash due to the usage of the hash bits by one hash
technique. For ASketches, we set the size of the filter to 32.
For SBF, we use Recurring Minimum optimization, and set
the size of the secondary SBF to 1/2 of the primary SBF. For
On-Off sketches, we set the parameters as the original paper
[17] recommends.

We verify that randomness has little effect on the perfor-
mance of Pyramid sketches by repeating experiments, and
report the results of a single run as the final experimental
results.
Evaluation metrics:
• Average Relative Error (ARE): 1

n

∑n
i=1

|fi−f̂i|
fi

, where n is the
number of flows, fi and f̂i are the actual and estimated
flow sizes respectively.

• Average Absolute Error (AAE): 1
n

∑n
i=1 |fi − f̂i|.

• F1 Score: 2·PR·RR
PR+RR , where PR (Precision Rate) refers to the

ratio of true positive instances to all detected instances,
and RR (Recall Rate) refers to the ratio of true positive
instances to all actual instances.

• Throughput: The number of packets operated per unit of
time, in million packets per second (Mpps).

• Average Number of Memory Accesses: The average number
of memory accesses in the sketch per operation 5. Note
that the accesses number of CM, CU, and Count is a
constant, which always equal to the number of hash
functions d.

7.2 Experiments on Techniques and Settings
In this subsection, we take SPCM and SPCU as examples to
compare the performance of the S-Pyramid framework us-
ing different techniques. We also take MPCM as an example
to compare the performance of Mini-Pyramid framework
using different parameter settings.

7.2.1 Experiments on S-Pyramid Techniques
We have proposed 5 techniques/optimization methods in
S-Pyramid: counter-pair sharing (T1), word constraint (T2),

5. Memory accesses to the filter in ASketches is not counted.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5

0 . 1

1

AR
E

S k e w n e s s

 P 1 P 2 P 3 P 4

(a) ARE.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 50 . 1

1

1 0

AA
E

S k e w n e s s

 P 1 P 2 P 3 P 4

(b) AAE.

Figure 9. Comparison of different parameter settings on Mini-Pyramid.

word sharing (T3), one hashing (T4), and Ostrich policy (T5).
We use SP1∼i

CM and SP1∼i
CU (1 6 i 6 5) to denote SPCM and

SPCU with the first i techniques, respectively. We use CAIDA
trace for the experiments. In the experiments, we maintain
the same memory usage and vary the techniques applied to
the sketches. As shown in Figure 8, we have the following 5
insights.

1) Counter-pair sharing (T1) significantly improves the ac-
curacy, while slightly degrading the throughput of CM,
and significantly degrades the throughput of CU.

2) Word constraint (T2) slightly improves the throughput,
while incurring severe accuracy loss.

3) Word sharing (T3) overcomes the main shortcoming of
word constraint, improving the accuracy without nega-
tive impact on throughput.

4) One hashing (T4) significantly improves the throughput
of CM, slightly improves the throughput of CU, while
not affecting accuracy.

5) Ostrich policy (T5) significantly improves the throughput
of CU, and has little negative effect on accuracy.

Summary and Analysis: As shown above, counter-pair
sharing significantly improves the accuracy, word acceler-
ation and Ostrich policy significantly improve the through-
put while sacrificing a little accuracy. It is worth noticing
that T2 ∼ T4 do not significantly accelerate SPCU. That’s
mainly because SPCU needs to get all reported values of
the d mapped counters during insertion. This process re-
quires frequent memory accesses at higher layers. Although
T2 guarantees that SPCU only performs 1 memory access
per layer, it still performs a large amount of memory ac-
cesses, resulting in low throughput. Fortunately, T5 reduces
the memory accesses performed during reporting process.
Therefore, SP1∼5

CU achieves similar throughput as SPCM.

7.2.2 Experiments on Mini-Pyramid Settings
When designing Mini-Pyramid, we mainly consider the
following two indicators: 1) accuracy, and 2) the maximum
value of the Mini-Pyramid counter. In order to achieve the
two goals, we compare the performance of the following 4
parameter settings:
• P1 (ours): 2 layers, low part consists of 3 4-bit counters,

high part consists of 1 16-bit counter.
• P2: 2 layers, low part consists of 4 2-bit counters, high part

consists of 1 19-bit counter.
• P3: 2 layers, low part consists of 2 8-bit counters, high part

consists of 1 13-bit counter.
• P4: 3 layers, 1st layer consists of 4 2-bit counters, 2nd layer

consists of 2 2-bit counters, 3rd layer consists of 1 13-bit
counter.

11

1 0 2 0 3 0 4 0 5 0 6 00 . 0 1

0 . 1

1

1 0
AR

E

M e m o r y (M B)

 C M S P C M M P C M

(a) Insertion on CM.

1 0 2 0 3 0 4 0 5 0 6 0

0 . 0 1

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 C U S P C U M P C U

(b) Insertion on CU.

1 0 2 0 3 0 4 0 5 0 6 0

1

1 0

AR
E

M e m o r y (M B)

 C S P C M P C

(c) Insertion on C.

1 0 2 0 3 0 4 0 5 0 6 00 . 0 1

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 A S P A M P A

(d) Insertion on A.

0 5 1 0 1 5 2 0 2 5

0 . 0 1

0 . 1

1

AR
E

D e l e t i o n P e r c e n t a g e (%)

 C M S P C M M P C M

(e) Deletion on CM.

Figure 10. ARE on CAIDA trace.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5

0 . 1

1

AR
E

S k e w n e s s

 C M S P C M M P C M

(a) Insertion on CM.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 50 . 0 1

0 . 1

1

AR
E

S k e w n e s s

 C U S P C U M P C U

(b) Insertion on CU.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 50 . 1

1

AR
E

S k e w n e s s

 C S P C M P C

(c) Insertion on C.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5

0 . 1

1

AR
E

S k e w n e s s

 A S P A M P A

(d) Insertion on A.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5
0 . 0 1

0 . 1

1

AR
E

S k e w n e s s

 C M S P C M M P C M

(e) Deletion on CM.

Figure 11. ARE on synthetic traces.

2 4 6 8 1 0 1 20 . 0 1

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 C M S P C M M P C M

(a) Insertion on CM.

2 4 6 8 1 0 1 2

0 . 0 1

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 C U S P C U M P C U

(b) Insertion on CU.

 C S P C M P C

2 4 6 8 1 0 1 2
0 . 1

1

1 0

AR
E

M e m o r y (M B)
(c) Insertion on C.

2 4 6 8 1 0 1 20 . 0 1

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 A S P A M P A

(d) Insertion on A.

0 5 1 0 1 5 2 0 2 5

0 . 0 1

0 . 1

1

AR
E

D e l e t i o n P e r c e n t a g e (%)

 C M S P C M M P C M

(e) Deletion on CM.

Figure 12. ARE on IMC DC trace.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 C M S P C M M P C M

(a) Insertion on CM.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0 . 0 1

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 C U S P C U M P C U

(b) Insertion on CU.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

1

1 0

AR
E

M e m o r y (M B)

 C S P C M P C

(c) Insertion on C.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 A S P A M P A

(d) Insertion on A.

0 5 1 0 1 5 2 0 2 5

0 . 0 1

0 . 1

1
AR

E

D e l e t i o n P e r c e n t a g e (%)

 C M S P C M M P C M

(e) Deletion on CM.

Figure 13. ARE on campus trace.

In order to test the performance of Mini-Pyramid on
different flow size distributions, we use synthetic traces for
the experiments. According to the results in Figure 9, we
have the following 2 insights.

1) Our parameter settings (P1) achieve lower ARE than
other parameter settings on most distributions. Although
P3 and P4 have lower ARE on some traces, P1 can always
achieve similar ARE.

2) Our parameter settings (P1) achieve lower AAE than
other parameter settings on most distributions. Note that
P1 performs better in AAE than in ARE. When skewness
is 1.5, P1 has higher ARE but achieves lower AAE than
P4.

Summary and Analysis: As shown above, our parameter
settings (P1) outperform other parameter settings on most

flow size distributions. Therefore, we recommend using P1

in Mini-Pyramid. It is worth noticing that the low part of
P1 has the same counter size as S-Pyramid and many prior
works (e.g., HeavyGuardian [36], Cold filter [37]) – 4 bits,
which is a typical threshold between mice flow and elephant
flow.

7.3 Experiments on Accuracy
In this subsection, we evaluate the accuracy of both
S-Pyramid and Mini-Pyramid. We implement 4 typical
sketches and use all 4 traces for the experiment. In our ex-
periments on synthetic traces, we maintain the same mem-
ory usage and deletion percentage, and vary the skewness
by using different traces. In other experiments, we maintain
the same amount of packets, and vary the memory usage of
sketches.

12

1 0 2 0 3 0 4 0 5 0 6 00 . 0 1

0 . 1

1

1 0
AA

E

M e m o r y (M B)

 C M S P C M M P C M

(a) Insertion on CM.

1 0 2 0 3 0 4 0 5 0 6 0
0 . 0 1

0 . 1

1

1 0

AA
E

M e m o r y (M B)

 C U S P C U M P C U

(b) Insertion on CU.

1 0 2 0 3 0 4 0 5 0 6 0

1

1 0

AA
E

M e m o r y (M B)

 C S P C M P C

(c) Insertion on C.

1 0 2 0 3 0 4 0 5 0 6 00 . 0 1

0 . 1

1

1 0

AA
E

M e m o r y (M B)

 A S P A M P A

(d) Insertion on A.

0 5 1 0 1 5 2 0 2 5
0 . 0 1

0 . 1

1

AA
E

D e l e t i o n P e r c e n t a g e (%)

 C M S P C M M P C M

(e) Deletion on CM.

Figure 14. AAE on CAIDA trace.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5
0 . 1

1

1 0

AA
E

S k e w n e s s

 C M S P C M M P C M

(a) Insertion on CM.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5

0 . 1

1

1 0

AA
E

S k e w n e s s

 C U S P C U M P C U

(b) Insertion on CU.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5
1

1 0

AA
E

S k e w n e s s

 C S P C M P C

(c) Insertion on C.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5
0 . 1

1

1 0

AA
E

S k e w n e s s

 A S P A M P A

(d) Insertion on A.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 5

0 . 1

1

1 0

AA
E

S k e w n e s s

 C M S P C M M P C M

(e) Deletion on CM.

Figure 15. AAE on synthetic traces.

2 4 6 8 1 0 1 20 . 0 1

0 . 1

1

1 0

AA
E

M e m o r y (M B)

 C M S P C M M P C M

(a) Insertion on CM.

2 4 6 8 1 0 1 2
0 . 0 1

0 . 1

1

1 0

AA
E

M e m o r y (M B)

 C U S P C U M P C U

(b) Insertion on CU.

 C S P C M P C

2 4 6 8 1 0 1 20 . 1

1

1 0

AA
E

M e m o r y (M B)
(c) Insertion on C.

2 4 6 8 1 0 1 21

1 0

AA
E

M e m o r y (M B)

 A S P A M P A

(d) Insertion on A.

0 5 1 0 1 5 2 0 2 5
0 . 0 1

0 . 1

1

AA
E

D e l e t i o n P e r c e n t a g e (%)

 C M S P C M M P C M

(e) Deletion on CM.

Figure 16. AAE on IMC DC trace.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

0 . 1

1

1 0

AA
E

M e m o r y (M B)

 C M S P C M M P C M

(a) Insertion on CM.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0 . 0 1

0 . 1

1

1 0

AA
E

M e m o r y (M B)

 C U S P C U M P C U

(b) Insertion on CU.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

1

1 0

AA
E

M e m o r y (M B)

 C S P C M P C

(c) Insertion on C.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

0 . 1

1

1 0

AA
E

M e m o r y (M B)

 A S P A M P A

(d) Insertion on A.

0 5 1 0 1 5 2 0 2 5
0 . 0 1

0 . 1

1
AA

E

D e l e t i o n P e r c e n t a g e (%)

 C M S P C M M P C M

(e) Deletion on CM.

Figure 17. AAE on campus trace.

ARE (Figure 10-13): The experimental results show that,
compared with the original sketches, S-Pyramid reduces the
ARE by 4.32 times on average, and Mini-Pyramid reduces
the ARE by 14.0 times on average.

As shown in Figure 10, on CAIDA trace, when using
50MB of memory, the ARE of SPCM, SPCU, SPC, and SPA
reach 4.57, 2.63, 2.18, and 4.57 times lower than the original
sketches, respectively; the ARE of MPCM, MPCU, MPC, and
MPA reach 21.0, 29.2, 4.54, and 21.0 times lower, respectively.
During the process of deletion, the ARE of SPCM and MPCM
reach 4.52 and 22.1 times lower than the original sketches
on average, respectively.

As shown in Figure 11, on synthetic traces, the ARE of
Mini-Pyramid decreases with the increasing of skewness.
When skewness is 0.3, the ARE of MPCM, MPCU, MPC, and

MPA are 0.147, 0.036, 0.625, and 0.147, respectively; when
skewness is 1.5, the ARE of MPCM, MPCU, MPC, and MPA
reach 0.042, 0.018, 0.416, and 0.042, respectively.

As shown in Figure 12-13, on IMC DC trace, the ARE
of S-Pyramid and Mini-Pyramid reach 5.34 and 8.76 times
lower than the original sketches on average, respectively.
On campus trace, the ARE of S-Pyramid and Mini-Pyramid
reach 7.12 and 10.0 times lower on average, respectively.
AAE (Figure 14-17): The experimental results show that,
compared with the original sketches, S-Pyramid reduces the
AAE by 3.58 times on average, and Mini-Pyramid reduces
the AAE by 13.2 times on average.

As shown in Figure 14, on CAIDA trace, when using
50MB of memory, the AAE of SPCM, SPCU, SPC, and SPA
reach 4.23, 1.93, 1.56, and 2.85 times lower than the original

13

C M (I) C U (I) C (I) A (I) C M (D) C (D) C M (Q) C U (Q) C (Q) A (Q)0

5

1 0

1 5

2 0

2 5
Th

rou
gh

pu
t (M

pp
s)

 O S P M P

(a) Throughput.

I n s e r t i o n D e l e t i o n Q u e r y0

1

2

3

4

5

M
em

ory
 Ac

ce
ss

 S P C M S P C U S P C S P A A

(b) # memory access.

Figure 18. Throughput and the average number of memory accesses on CAIDA trace, where O, P, and MP represent the original sketches, the
S-Pyramid sketches, and the Mini-Pyramid sketches, respectively; I, D, and Q represent insertion, deletion, and query, respectively.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 50
5

1 0
1 5
2 0
2 5

S k e w n e s s

 C U S P C U M P C U

Th
rou

gh
pu

t (M
pp

s)

(a) Insertion T on CU.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 50
5

1 0
1 5
2 0
2 5

S k e w n e s s

 C M S P C M M P C M

Th
rou

gh
pu

t (M
pp

s)

(b) Deletion T on CM.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 50
2
4
6
8

1 0
1 2

S k e w n e s s

 C U S P C U M P C U

Th
rou

gh
pu

t (M
pp

s)

(c) Query T on CU.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 50
1
2
3
4

M
em

ory
 Ac

ce
ss

S k e w n e s s

 C U S P C U M P C U

(d) Insertion MA on CU.

0 . 0 0 . 3 0 . 6 0 . 9 1 . 2 1 . 50
1
2
3
4

S k e w n e s s

 C U S P C U M P C U

M
em

ory
 Ac

ce
ss

(e) Query MA on CU.

Figure 19. Throughput and the average number of memory accesses on synthetic traces, where T and MA represent throughput and the average
number of memory accesses for short, respectively.

C M C U C A0

5

1 0

1 5

2 0

2 5

Th
rou

gh
pu

t (M
pp

s)

 O S P M P

(a) T on IMC DC trace.
C M C U C A0

5

1 0

1 5

2 0

2 5

Th
rou

gh
pu

t (M
pp

s)

 O S P M P

(b) T on campus trace.
C M C U C A0

1

2

3

4

M
em

ory
 Ac

ce
ss

 S P M P O

(c) MA on IMC DC trace.
C M C U C A0

1

2

3

4

M
em

ory
 Ac

ce
ss

 S P M P O

(d) MA on campus trace.

Figure 20. Throughput and the average number of memory accesses on insertion on other traces.

sketches, respectively; the AAE of MPCM, MPCU, MPC, and
MPA reach 19.8, 27.8, 4.12, and 19.8 times lower, respectively.
During the process of deletion, the AAE of SPCM and MPCM
reach 4.08 and 21.0 times lower than the original sketches
on average, respectively.

As shown in Figure 15, on synthetic traces, the AAE of
Mini-Pyramid decreases with the increasing of skewness.
When skewness is 0.3, the AAE of MPCM, MPCU, MPC,
and MPA are 3.01, 0.54, 10.49, and 3.01, respectively; when
skewness is 1.5, the AAE of MPCM, MPCU, MPC, and MPA
reach 0.14, 0.03, 1.40, and 0.14, respectively.

As shown in Figure 16-17, on IMC DC trace, the AAE
of S-Pyramid and Mini-Pyramid reach 4.34 and 6.98 times
lower than the original sketches on average, respectively.
On campus trace, the AAE of S-Pyramid and Mini-Pyramid
reach 6.42 and 9.78 times lower on average, respectively.
Summary and Analysis: As shown above, both S-Pyramid
and Mini-Pyramid achieve higher accuracy than the original
sketches. That’s mainly because both frameworks provide
hierarchical structures for sketches. Therefore, they can dy-
namically assign appropriate number of bit of each flows,

which reduce the memory waste. Note that when skewness
is 0, the performance of Mini-Pyramid is not as good.
That’s mainly because Mini-Pyramid is designed based on
the skewness of the network traffic, however, skewness =
0 means the traffic is normalized distributed. Therefore,
most of the low-parts overflow, and Mini-Pyramid cannot
separate the elephant flows and the mice flows. It is worth
noticing that S-Pyramid still performs well in this case. This
is because S-Pyramid has more granularity, so that it can
roughly allocate the bit numbers for each flow even if the
trace is not skewed.

7.4 Experiments on Throughput
In this subsection, we evaluate the throughput of both S-
Pyramid and Mini-Pyramid. For experiments on single-core,
we implement 4 typical sketches and use all 4 traces. For
experiments on multi-core, we take CM as an example and
use CAIDA trace for the experiment.

Normally, multi-thread programs use locks to avoid
conflict. However, locks reduce the efficiency of multi-core
parallelism, which in turn reduce the throughput. Fortu-

14

 S P C M L o c k - F r e e S P C M
 M P C M L o c k - F r e e M P C M

0 1 0 2 0 3 0 4 0 5 00

1 0 0

2 0 0

3 0 0

4 0 0
Th

rou
gh

pu
t (M

pp
s)

t h r e a d s
(a) Throughput.

0 1 0 2 0 3 0 4 0 5 00 . 9 9 0

0 . 9 9 5

1 . 0 0 0

1 . 0 0 5

1 . 0 1 0

No
rm

ali
ze

d A
RE

t h r e a d s

 S P C M M P C M

(b) Normalized ARE.

Figure 21. Insertion throughput on multi-core CPU. Normalized ARE
represents the ratio of ARE using multi-core to that using single-core.

nately, for sketches, lock-free is possible. That’s mainly
because sketches are probabilistic data structures with error,
therefore, error cause by read/write is acceptable. Besides,
the hash conflicts of sketches are controllable. Therefore,
there will be few read/write conflicts, causing little error.
We will verify this point in the following experiments.
Single-Core Throughput (Figure 18(a), 19(a)-(c), 20(a)-(b)):
The experimental results show that, compared with the orig-
inal sketches, S-Pyramid improves the throughput by 1.50
times on average, and Mini-Pyramid lower the throughput
by 21.3% on average.

As shown in Figure 18, on CAIDA trace, the insertion
throughput of SPCM, SPCU, SPC, and SPA reach 2.37, 2.04,
1.16, and 1.13 times higher than the original sketches,
respectively; that of MPCM, MPCU, MPC, and MPA are
95.1%, 79.3%, 69.2%, and 71.1% of the original sketches,
respectively. The deletion throughput of SPCM and SPC
reach 2.15 and 1.18 times higher than the original sketches,
respectively; that of MPCM and MPC are 85.6% and 66.6%
of the original sketches, respectively. The query throughput
of SPCM, SPCU, SPC, and SPA reach 1.38, 1.33, 1.01, and 1.22
times higher than the original sketches, respectively; that of
MPCM, MPCU, MPC, and MPA are 92.3%, 88.5%, 70.3%, and
88.4% of the original sketches, respectively.

As shown in Figure 19(a)-(c), on synthetic traces, the
insertion and query throughput of S-Pyramid increase with
the increasing of skewness. When skewness is 0.3, the in-
sertion and query throughput of SPCU are 19.8Mpps and
8.12Mpps, respectively; when skewness is 1.5, the inser-
tion and query throughput of SPCU reach 22.7Mpps and
9.71Mpps, respectively.

As shown in Figure 20(a)-20(b), the insertion throughput
of S-Pyramid on IMC DC and campus trace reach 1.68 and
1.71 times higher than the original sketches on average,
respectively; that of Mini-Pyramid on IMC DC and campus
trace are 20.7% and 21.7% lower on average, respectively.
The average number of memory accesses (Figure 18(b),
19(d)-(e), 20(c)-(d)): The experimental results show that,
compared with the original sketches, S-Pyramid reduces the
average number of memory accesses to 1.75 on average.

As shown in Figure 18(b), on CAIDA trace, for each
insertion, the average number of memory accesses of SPCM,
SPCU, SPC, and SPA reach 1.11, 1.07, 1.13, and 3.67, respec-
tively, while that of CM, CU, C, and A are 4, 4, 4, and 3.85,
respectively. For each query, the average number of memory
accesses of SPCM, SPCU, and SPA reach 2.23, 2.22, and 2.28,
respectively, while that of CM, CU, and A are 4, 4, and 4.00,

5 1 0 1 5 2 0 2 5 3 0

0 . 0 1

0 . 1

1

1 0

AR
E

M e m o r y (M B)

 S B F M P S B F

(a) ARE.

5 1 0 1 5 2 0 2 5 3 00 . 0 1

0 . 1

1

1 0

AA
E

M e m o r y (M B)

 S B F M P S B F

(b) AAE.

Figure 22. Application on the Spectral Bloom filter.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0 . 1

1

1 0

AA
E

M e m o r y (M B)

 O n - O f f M P O n - O f f

(a) Persistence Estimation.

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00 . 4

0 . 6

0 . 8

1 . 0

F1
 Sc

ore

M e m o r y (K B)

 O n - O f f M P O n - O f f

(b) Finding Persistent Items.

Figure 23. Application on the On-Off sketch.

respectively.
As shown in Figure 19(d)-(e), on synthetic traces, for

each query, the average number of memory accesses of S-
Pyramid decreases with the increasing of skewness. When
skewness is 0.3, the average number of memory accesses of
SPCU is 2.98; when skewness is 1.5, the average number of
memory accesses of SPCU reaches 2.24.

As shown in Figure 20(c)-(d), for each insertion, the
average number of memory accesses of S-Pyramid on IMC
DC trace and campus trace reach 1.40 and 1.28 on average,
respectively.
Multi-Core Throughput (Figure 21): The experimental re-
sults show that, the lock-free Pyramid sketches significantly
increase the throughput, while having little negative effect
on accuracy.

As shown in Figure 21(a), when using 36 threads, the
throughput of lock-free SPCM is 1.36 times higher than that
using locks, and the throughput of MPCM is 1.51 times
higher. Meanwhile, for both SPCM and MPCM, the difference
between the ARE of the lock-free version and the lock
version is less than 0.1%. Therefore, the experiment result
further verifies that read/write conflicts caused by multi-
thread version have little negative effect on accuracy.
Summary and Analysis: As shown above, on single-core
CPU platforms, S-Pyramid has a better throughput than the
original sketches. It can significantly reduce the number of
memory accesses and hash calculation. It is worth noticing
that the average number of memory accesses during inser-
tion is smaller than that during query, and the throughput
is also higher. This is because during insertion, the parent
counter need to be accessed only if an overflow occurs, and
overflows occur infrequently. Therefore S-Pyramid can sig-
nificantly improve the insertion throughput. Besides, both
lock-free S-Pyramid and lock-free Mini-Pyramid bring little
error. Therefore, Pyramid can also achieve high throughput
on multi-core CPU platforms.

15

7.5 Experiments on Flexibility

In this subsection, we evaluate the flexibility of Mini-
Pyramid. We implement the On-Off sketch [17] and SBF
[30], and apply Mini-Pyramid to them, in order to verify
that Mini-Pyramid can be applied to sophisticated sketches
and significantly improve the accuracy. We use CAIDA trace
for the experiments.
SBF (Figure 22): The experimental results show that, apply-
ing the Mini-Pyramid framework can improve the accuracy
of the SBF by 22.7 times on average. As shown in Figure 22,
when using 25MB of memory, the ARE of MPSBF is 26.3
times lower than SBF; the AAE of MPSBF is 17.4 times lower.
On-Off Sketches (Figure 23): The experimental results
show that, applying the Mini-Pyramid framework can im-
prove the accuracy of the On-Off sketch. As shown in
Figure 23(a), on persistence estimation task, when using
2.5MB of memory, the AAE of MPOn-Off is 8.87 times lower
than On-Off. As shown in Figure 23(b), on finding persistent
items task, when using 100KB of memory, the F1 score of
MPOn-Off is 0.946, while that of On-Off is 0.589.
Summary and Analysis: As shown above, by simply replac-
ing counters in the original sketches with M-Pyramid coun-
ters, both SBF and On-Off sketches achieve higher accuracy,
which shows the flexibility of Mini-Pyramid. Note that the
On-Off sketch is the state-of-arts in finding persistent flows,
therefore, MPOn-Off can be considered as a more accurate
work in this task.

8 CONCLUSION

Sketches are the bases of many Internet applications. How-
ever, most sketches do not work well for skewed network
traffic. To address the above problem, in this paper, we pro-
pose a sketch framework family – the Pyramid family. The
first member, the S-Pyramid framework, can significantly
improve both accuracy and speed. The second member,
the Mini-Pyramid framework, is more flexible in applica-
tion, but with lower speed. We apply both frameworks to
sketches of CM [28], CU [14], Count [29], and Augmented
[23], and further apply the Mini-Pyramid framework to
SBF [30] and the On-Off sketch [17]. The experimental
results show that both frameworks significantly improve the
accuracy, and the S-Pyramid framework also significantly
improves speed. All related source codes are released at
Github [31].

ACKNOWLEDGMENT

We would like to thank our editors Matthew Caesar, Ness
Shroff, Carrie Stein, and the anonymous reviewers for their
thoughtful feedback. We would like to thank Yuhan Wu and
Zheng Zhong for their helpful suggestions and discussions.
This work is supported by Key-Area Research and Devel-
opment Program of Guangdong Province 2020B0101390001,
National Natural Science Foundation of China (NSFC) (No.
U20A20179), the project of “FANet: PCL Future Greater-Bay
Area Network Facilities for Large-scale Experiments and
Applications” (No. LZC0019), and Computing and Network
Innovation Lab, Huawei Cloud.

REFERENCES

[1] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li.
Pyramid sketch: A sketch framework for frequency estimation of
data streams. Proceedings of the VLDB Endowment, 10(11):1442–
1453, 2017.

[2] Nick Duffield, Carsten Lund, and Mikkel Thorup. Learn more,
sample less: control of volume and variance in network measure-
ment. IEEE Transactions on Information Theory, 51(5):1756–1775,
2005.

[3] Jiaqi Zheng, Hong Xu, Guihai Chen, and Haipeng Dai. Minimiz-
ing transient congestion during network update in data centers.
In Network Protocols (ICNP), 2015 IEEE 23rd International Conference
on, pages 1–10. IEEE, 2015.

[4] David Plonka. Flowscan: A network traffic flow reporting and
visualization tool. In LISA, pages 305–317, 2000.

[5] Hongli Xu, Zhuolong Yu, Chen Qian, Xiang-Yang Li, Zichun Liu,
and Liusheng Huang. Minimizing flow statistics collection cost
using wildcard-based requests in sdns. IEEE/ACM Transactions on
Networking, 25(6):3587–3601, 2017.

[6] Xenofontas Dimitropoulos, Paul Hurley, and Andreas Kind. Prob-
abilistic lossy counting: an efficient algorithm for finding heavy
hitters. ACM SIGCOMM CCR, 38(1):5–5, 2008.

[7] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli,
and Erez Waisbard. Constant time updates in hierarchical heavy
hitters. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 127–140, 2017.

[8] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan
Chen. Sketch-based change detection: methods, evaluation, and
applications. In ACM IMC, pages 234–247. ACM, 2003.

[9] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen.
Reversible sketches for efficient and accurate change detection
over network data streams. In ACM IMC, pages 207–212. ACM,
2004.

[10] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar:
A better netflow for data centers. In 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), pages
311–324, 2016.

[11] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi
Liu, Naiqian Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, et al.
Lightguardian: A full-visibility, lightweight, in-band telemetry
system using sketchlets. In NSDI, pages 991–1010, 2021.

[12] Rafal Maison and Maciej Zakrzewicz. Prediction-based load shed-
ding for burst data streams. Bell Labs Technical Journal, 16(1):121–
132, 2011.

[13] Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and
Bin Cui. Burstsketch: Finding bursts in data streams. In Proceedings
of the 2021 International Conference on Management of Data, pages
2375–2383, 2021.

[14] Cristian Estan and George Varghese. New directions in traffic
measurement and accounting. ACM SIGMCOMM CCR, 32(4),
2002.

[15] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang
Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. Adaptive mea-
surements using one elastic sketch. IEEE/ACM Transactions on
Networking, 27(6):2236–2251, 2019.

[16] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer
Rexford. Beaucoup: Answering many network traffic queries, one
memory update at a time. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, pages 226–239, 2020.

[17] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong
Zhang, and Bin Cui. On-off sketch: a fast and accurate sketch
on persistence. Proceedings of the VLDB Endowment, 14(2):128–140,
2020.

[18] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang,
Yanwei Xu, and Gong Zhang. Toward nearly-zero-error sketch-
ing via compressive sensing. In 18th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 21), pages
1027–1044, 2021.

[19] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

[20] Wenjun Jiang, Jie Wu, Feng Li, Guojun Wang, and Huanyang
Zheng. Trust evaluation in online social networks using general-
ized network flow. IEEE Transactions on Computers, 65(3):952–963,
2016.

16

[21] Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi, and Davide
Patti. Implementation and analysis of a new selection strategy
for adaptive routing in networks-on-chip. IEEE Transactions on
Computers, 57(6):809–820, 2008.

[22] Assaf Shacham, Keren Bergman, and Luca P Carloni. Photonic
networks-on-chip for future generations of chip multiprocessors.
IEEE Transactions on Computers, 57(9):1246–1260, 2008.

[23] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented
sketch: Faster and more accurate stream processing. In Proceedings
of the 2016 International Conference on Management of Data, pages
1449–1463, 2016.

[24] Graham Cormode. Sketch techniques for approximate query
processing. Foundations and Trends in Databases. NOW publishers,
2011.

[25] Matthew Roughan, Yin Zhang, Walter Willinger, and Lili Qiu.
Spatio-temporal compressive sensing and internet traffic matri-
ces (extended version). IEEE/ACM Transactions on Networking,
20(3):662–676, 2011.

[26] Theophilus Benson, Aditya Akella, and David A Maltz. Unravel-
ing the complexity of network management. In NSDI, 2009.

[27] The CAIDA Anonymized Internet Traces. http://www.caida.
org/data/overview/.

[28] Graham Cormode and S Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications. Jour-
nal of Algorithms, 55(1):58–75, 2005.

[29] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding
frequent items in data streams. In Automata, Languages and Pro-
gramming. Springer, 2002.

[30] Saar Cohen and Yossi Matias. Spectral bloom filters. In ACM
SIGMOD, pages 241–252, 2003.

[31] Source code of the Pyramid family [online]. https://github.com/
Pyramid-Family/Pyramid-Family.

[32] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir
Braverman, Roy Friedman, and Vyas Sekar. Nitrosketch: Robust
and general sketch-based monitoring in software switches. In Pro-
ceedings of the ACM Special Interest Group on Data Communication,
pages 334–350. 2019.

[33] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar,
and Vladimir Braverman. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 101–114, 2016.

[34] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-
Chao Chen, and Gong Zhang. Sketchvisor: Robust network
measurement for software packet processing. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
pages 113–126, 2017.

[35] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig,
Shigang Chen, and Xiaoming Li. Heavykeeper: An accurate
algorithm for finding top-k elephant flows. IEEE/ACM Transactions
on Networking, 27(5):1845–1858, 2019.

[36] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and
Xiaoming Li. Heavyguardian: Separate and guard hot items in
data streams. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2584–2593,
2018.

[37] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming
Li, and Steve Uhlig. Cold filter: A meta-framework for faster
and more accurate stream processing. In Proceedings of the 2018
International Conference on Management of Data, pages 741–756,
2018.

[38] Tong Yang, Siang Gao, Zhouyi Sun, Yufei Wang, Yulong Shen, and
Xiaoming Li. Diamond sketch: Accurate per-flow measurement
for big streaming data. IEEE Transactions on Parallel and Distributed
Systems, 30(12):2650–2662, 2019.

[39] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li,
Ruijie Miao, Peng Liu, Ruwen Zhang, and Junchen Jiang. Co-
cosketch: high-performance sketch-based measurement over arbi-
trary partial key query. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 207–222, 2021.

[40] Burton H Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–426, 1970.

[41] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary
cache: a scalable wide-area web cache sharing protocol. IEEE/ACM
transactions on networking, 8(3):281–293, 2000.

[42] Josep Aguilar-Saborit, Pedro Trancoso, Victor Muntes-Mulero, and
Josep-Lluis Larriba-Pey. Dynamic count filters. ACM SIGMOD
Record, pages 26–32, 2006.

[43] Tong Yang, Alex X Liu, Muhammad Shahzad, Dongsheng Yang,
Qiaobin Fu, Gaogang Xie, and Xiaoming Li. A shifting framework
for set queries. IEEE/ACM Transactions on Networking, 25(5):3116–
3131, 2017.

[44] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharma-
purikar, and Abdul Kabbani. Counter braids: a novel counter
architecture for per-flow measurement. In ACM SIGMETRICS,
2008.

[45] Tao Li, Shigang Chen, and Yibei Ling. Per-flow traffic measure-
ment through randomized counter sharing. IEEE/ACM Transac-
tions on Networking, 20(5):1622–1634, 2012.

[46] Chengchen Hu, Bin Liu, Hongbo Zhao, Kai Chen, Yan Chen,
Chunming Wu, and Yu Cheng. Disco: Memory efficient and
accurate flow statistics for network measurement. In Distributed
Computing Systems (ICDCS), 2010 IEEE 30th International Conference
on, pages 665–674. IEEE, 2010.

[47] Haipeng Dai, Muhammad Shahzad, Alex X Liu, and Yuankun
Zhong. Finding persistent items in data streams. Proceedings of
the VLDB Endowment, 10(4):289–300, 2016.

[48] Xilai Liu, Yan Xu, Peng Liu, Tong Yang, Jiaqi Xu, Lun Wang,
Gaogang Xie, Xiaoming Li, and Steve Uhlig. Sead counter: Self-
adaptive counters with different counting ranges. IEEE/ACM
Transactions on Networking, 2021.

[49] Cuda toolkit documentation. http://docs.nvidia.
com/cuda/cuda-c-best-practices-guide/index.html#
coalesced-access-to-global-memory.

[50] Data Set for IMC 2010 Data Center Measurement. http://pages.
cs.wisc.edu/∼tbenson/IMC10 Data.html.

[51] Theophilus Benson, Aditya Akella, and David A Maltz. Network
traffic characteristics of data centers in the wild. In Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement, pages
267–280, 2010.

[52] David MW Powers. Applications and explanations of Zipf’s law.
In EMNLP-CoNLL. Association for Computational Linguistics,
1998.

[53] Alex Rousskov and Duane Wessels. High-performance bench-
marking with web polygraph. Software: Practice and Experience,
34(2):187–211, 2004.

[54] Hash website. http://burtleburtle.net/bob/hash/evahash.html.

Yuanpeng Li is currently pursuing the B.S. de-
gree in the School of Electronics Engineering
and Computer Science, Peking University, ad-
vised by Tong Yang. His research interests in-
clude network measurements, sketches, bloom
filters, and hash tables.

Xiang Yu is an undergraduate majoring in com-
puter science in the school of EECS, Peking Uni-
versity. He is currently following Tong Yang doing
researches and his research interests include
network measurements, sketches, Bloom filters,
and KV stores.

http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
https://github.com/Pyramid-Family/Pyramid-Family
https://github.com/Pyramid-Family/Pyramid-Family
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://burtleburtle.net/bob/hash/evahash.html

17

Yilong Yang received his B.S. degree in network
engineering from Xidian University in 2019. He is
currently a master’s student in the School of Cy-
ber Engineering, Xidian University. His research
interests cover analysis of protocols, deep learn-
ing neural network, and network measurement.

Yang Zhou graduated (summa cum laude) from
Peking University, advised by Tong Yang. He is
currently pursuing the Ph.D. degree with Harvard
University, advised by Minlan Yu. He is broadly
interested in streaming algorithms, networked
systems, and data-intensive systems.

Tong Yang received his Ph.D. degree in Com-
puter Science from Tsinghua University in 2013.
He visited Institute of Computing Technology,
Chinese Academy of Sciences (CAS) China
from 2013.7 to 2014.7. Now he is an asso-
ciate professor in Computer Science Depart-
ment, Peking University. His research interests
include network big data, sketches, network
measurement, Bloom filters, IP lookups, KV
stores, hash tables, etc. He published papers
in SIGCOMM, SIGKDD, SIGMOD, SIGCOMM

CCR, VLDB, ATC, ToN, TC, ICDE, INFOCOM, etc.

Zhuo Ma received his Ph.D. degree in Computer
Architecture from Xidian University, Xi’an, China,
in 2010. Now, he is a professor at school of Cy-
ber Engineering, Xidian University. His research
interests include cryptography, machine learning
in cyber security, and Internet of things security.

Shigang Chen received his M.S. and Ph.D. de-
grees in Computer Science from University of
Illinois at Urbana-Champaign in 1996 and 1999,
respectively. Prior to that, he received his B.S.
degree in Computer Science from University of
Science and Technology of China in 1993. After
graduating from UIUC, he worked with Cisco
Systems on network security for three years and
helped starting a network security company, Pro-
tego Networks. He joined University of Florida
as an assistant professor in 2002, and was pro-

moted to associate professor in 2008 and to professor in 2013. He
was a recipient of IEEE Communications Society Best Tutorial Paper
Award in 1999, NSF CAREER Award in 2007, and Cisco University
Research Award in 2007, 2012. He published 200+ peer-reviewed jour-
nal/conference papers and has 13 US patents. He holds University of
Florida Research Foundation Professorship in 2017-2020 and University
of Florida Term Professorship in 2017-2020. He is an IEEE Fellow and
an ACM Distinguished Member.

	Introduction
	Background and Motivation
	Prior Art and Limitations
	The Proposed Solution
	Key Contributions

	Related Work
	The S-Pyramid Framework
	Counter-Pair Sharing
	Word Acceleration
	Further Optimization Method

	The Mini-Pyramid Framework
	Data Structure and Operation
	Simplification

	Mathematical Analyses
	Analyses on the SPCM Sketch
	Analysis on the MPCM Sketch

	Case Studies
	CM sketches
	CU sketches
	Count Sketches
	Augmented Sketches
	Spectral Bloom Filters
	On-Off Sketches

	Experimental Results
	Experimental Setup
	Experiments on Techniques and Settings
	Experiments on S-Pyramid Techniques
	Experiments on Mini-Pyramid Settings

	Experiments on Accuracy
	Experiments on Throughput
	Experiments on Flexibility

	Conclusion
	References
	Biographies
	Yuanpeng Li
	Xiang Yu
	Yilong Yang
	Yang Zhou
	Tong Yang
	Zhuo Ma
	Shigang Chen

