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Abstract—With the scale of data to store or monitor in nowa-
days network constantly increasing, hash based data structures
are more and more widely used because of their high memory
efficiency and high speed. Most of them, like Bloom filters,
sketches and d-left hash tables use more than one hash function.
Furthermore, in order to achieve good randomicity, the hash
functions used, like MD5 and SHA1, are very complicated and
consume a lot of CPU cycles to carry out. As a consequence, the
implementation of these hash functions will be time-consuming.
In order to address this issue, we propose Single Hash technique
in this paper. It is based on the observation that the hash
functions we use produce 32-bit or 64-bit values which have
much bigger value ranges than that we need in practice. We
usually have to carry out modular operation to map the hash
results into a smaller range in the data structures listed above.
In this procedure, information carried by the high bits may be
discarded. For example, if in a Bloom filter the length of the
bit array is 220 while the hash functions we use are 32-bit hash
functions, there are 12 bits in the results of the hash functions
discarded in the procedure of modular. We can use these bits
to produce more hash values. Therefore, we propose to use a
few bit operations to make full use of the information produced
by one hash function and generate multiple hash values which
can be used in these data structures. Single Hash technique can
be applied to most of the hash based data structures. It can
significantly improve their speed, because instead of carrying
out multiple hash functions, we only need to compute one
hash function and a few simple operations (e.g., bit shift and
XOR). Other aspects of performance, like memory efficiency and
accuracy of these data structures will not be influenced by Single
Hash technique. In this paper, we apply it to three kinds of classic
hash based data structures, i.e., Bloom filters, CM sketches and
d-left hash tables as case studies, and evaluate their performance
with both mathematical analysis and extensive experiments. We
make all our codes open source on Github.

I. INTRODUCTION

A. Background and Motivation

Nowadays with the rapid development of network, the
demand for fast storage, query and monitoring of big data is
constantly increasing. Therefore, hash based data structures
are being more and more widely used due to their high
speed and high memory efficiency. These data structures can
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be divided into two kinds. The first kind supports accurate
queries, and the best known one is the hash table. Hash
tables use hash functions to map items into different addresses
in the table and use techniques like linked lists to solve
hash collisions (the hash collision means different items are
mapped into the same address). They do not have errors but
as a cost consume a lot of memory when the scale of data is
large, and the time overhead in the worst case is O(n). Hash
tables have been widely used in social network [1], database
indexing [2], packet forwarding [3], [4] and so on. Based on
classic hash tables, d-left hash technique [5] is applied to make
the items distributed more uniformly. It can make more items
stay in the table rather than stored in the linked lists. It can
also decrement the length of the linked lists. As a result, d-left
hash technique improves both speed and memory efficiency
of hash tables. The d-left hash table divides the table into
k sections where k is a parameter, and maps an item into
k positions with k independent hash functions, one in each
section, and stores it in the left most empty position. If all
the positions have been occupied by other items, it stores the
item in the left most position with the smallest depth, which
means the number of items already stored in the table or in
the linked list at this position. The second kind of the hash
based data structures are the approximate query data structures
such as Bloom filters [6] and sketches. These data structures
achieve a much smaller memory footprint and constant O(1)
time overhead at the cost of a little error rate. A bloom filter
is made up of a bit array and several hash functions. It can
determine whether an item belongs to a set. It maps each item
into several bits and uses these bits to represent the presence
of the item. Bloom filters are widely used in several fields of
computer science, such as web caching [7], IP lookup [8], P2P
networks [9], etc. Sketches extend the bits in Bloom filters
into counters and use counters to record the frequencies of
items in a set. There are many different schemes of sketches,
including some well known ones like CM sketches [10] and
CU sketches [11]. Sketches have been playing an important
role in data stream processing like finding frequent items [12],
identifying heavy hitters [13], tracking flows in network traffic
[14], [15] and other fields [16], [17].

Despite of their advantages, Bloom filters, sketches, and d-
left hash tables all have high hash computation overhead, as
multiple hash functions are needed in these data structures,
and hash functions with good performance are usually very
complicated. The computation of hash functions can consume
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a lot of CPU cycles and become the bottleneck of the system
performance. Therefore, we propose Single Hash technique,
which reduces the number of hash functions we need to one.
It significantly improves the speed of these hash based data
structures, while keeping the accuracy unchanged. It can be
applied to most of the data structures using multiple hash
functions and improve their performance.

B. Proposed Approach
We observe that the hash functions produce 32-bit or 64-

bit results, in other words, results with maximum values up
to 232 or 264. However, the range of random values we
actually need when implementing hash based data structures,
which is usually based on the length of the data structure
or the length of each section, is much smaller. When we
map the results of hash functions into this smaller range
with modular operation, the information carried by the high
bits is discarded. Based on this observation, we propose
to make full use of the information produced by one hash
function with bit operations to generate multiple hash values.
The formula to produce the ith hash value for key x is
Hi(x) = ((h (x) >> 16)⊕ (h (x) << i))%w, where h (.) is
the hash function we use, and the range we need is 0 ∼ w−1.
In this way, we only need to compute one hash function and a
few simple operations to get the multiple hash values we need
instead of computing multiple complicated hash functions.
Therefore, the speed is significantly improved. Notice that
the operations we use in Single Hash are bit operations like
shifting and XOR, which are much faster than addition or
multiplication. This is also meant to further improve the speed.

Single Hash technique can be applied to most of the data
structures that use multiple hash functions, like Bloom filters
[6], COMB [18], CM sketches [10], CU sketches [11], TCM
[19], d-left hash tables [5] and so on. In this paper, we apply
it to three most famous and representative data structures as
case studies, i.e., Bloom filters, CM sketches and d-left hash
tables. We carry out both mathematical analysis and extensive
experiments to evaluate the performance of our technique.
Experimental results show that Single Hash outperforms prior
art significantly in speed while keeping the same accuracy.

C. Key Contributions
The key contributions of this paper are as following:
1. We propose Single Hash technique, which uses one hash

function to produce multiple hash values that can be used
in most of the hash based data structures. It improves the
speed of these data structures significantly while keeping the
accuracy unchanged.

2. We apply Single Hash technique to Bloom filters, CM
sketches and d-left hash tables as case studies, and carry out
mathematical analysis and extensive experiments to show that
our Single Hash technique outperforms the state-of-the-art.

II. RELATED WORK AND BACKGROUNDS

A. Less Hashing
Less Hashing [20] is a well-known technique to improve the

Bloom filter and its variants. It uses two hash functions h1 (.)

and h2 (.) to simulate k hash values by computing gi (x) =
h1 (x)+ i×h2 (x) (1 6 i 6 k). Notice that gi (x) also has to
be mapped to range 0 ∼ m−1 to be used as an address, where
m is the length of the bit array. Thus one additional modular
operation will be needed in implementation. Less Hashing
reduces the number of hash functions needed in implementing
a Bloom filter from a variant k which can be larger than 10
into a constant value 2, improving the speed while without
influencing its accuracy. It has proved that a Bloom filter
does not necessarily need k independent hash functions. Based
on this conclusion, we notice the waste of information in
the modular operation and propose Single Hash technique.
Compared to Less Hashing, Single Hash reduces the number
of hash functions to one and uses fast bit operations to replace
the time consuming addition and multiplication operations,
leading to further improvements in speed. It can be applied
to most of the hash based data structures. In this paper, we
apply it to the following three kinds of data structures as case
studies.

B. Bloom filters

A Bloom filter [6] represents a set S of n items from a
universe U using an array of m bits, denoted by B[1]...B[m],
which are all set to 0 initially. The filter uses k independent
hash functions h1, h2...hk that maps each item to a random
number uniformly in the range [0,m−1]. (This assumption is
needed for the false positive rate derivation of Bloom filters).
For each item x ∈ S, the bits B[hi (x)] are set to 1 for 1 6 i 6
k (a bit can be set to 1 multiple times). To answer a query to
check if y is in S, we check whether all B[hi (y)] (1 6 i 6 k)
are 1. If not, y is definitely not a member of S. If all B[hi (y)]
are set to 1, y is probably in S, because a Bloom filter may
yield false positives. The probability of a false positive has
been well studied in the literature [6], and thus we only show
the formula of false positive rate f below.

f =

(
1−

(
1− 1

m

)nk
)k

=
(
1− e−nk

m

)k
The value of f is minimized as

(
1
2

)k
when k = ln2×

(
m
n

)
.

In practice, k must be an integer.
The Bloom filter also has partition schemes. The partition

version of a Bloom filter is to divide the bit array into k
sections if there are k hash functions. The ith (1 6 i 6 k)
hash function maps an incoming item to a value hi in range
0 ∼ m

k where m is the total number of bits in the bit
array. Then we set the hith bit in the ith section to 1. When
querying, we check all the k corresponding bits for an item in
the k sections, and if they are all 1 we report yes otherwise we
give a negative report. The partition version of the Bloom filter
has the same accuracy as the non-partition version when the
number of inserting items is big enough: if we represent the
number of inserted items with n, the probability that an item z
which has not been inserted has hash collisions in a section is



1−
(
1− 1

m/k

)n
, and the false positive rate is the probability

that z has hash collisions in all the k independent sections(
1−

(
1− 1

m/k

)n)k
≈
(
1− e kn

m

)k
, exactly the same as the

false positive rate of the non-partition Bloom filters stated
above.

Bloom filters are originally designed for membership
queries in a set. Recent years many variants of Bloom filters
have been proposed to meet the requirements in different
applications. Like Bloomier filters [21], Dynamic count filters
[22], and those support multiple sets membership queries
including COMB [18], shifting Bloom filter [23], [24] and
iSet [25]. They also use multiple hash functions, and some of
them even use much more hash functions than Bloom filters.
Our single Hash technique can also be applied to them, but
in this paper we only use the most representative one, Bloom
filter as an example to keep the paper reasonably concise.

C. Sketches

There are many kinds of sketches. Most of them are
designed to store the frequencies of items in a set. Among
them the most widely used one is the CM sketch [10].
The CM sketch has d arrays. Each array is relative with
an independent hash function hj(x) 1 6 j 6 d. When
inserting an item x, let ∀j(1 6 j 6 d) count[j, hj(x)] =
count[j, hj(x)] + 1. Similarly, when deleting the item, let
∀j(1 6 j 6 d) count[j, hj(x)] = count[j, hj(x)] − 1.
count[j, hj(x)] means the counter mapped by hj(x) in the jth
array. When querying an item x, the CM sketch carries out d
hash functions and gets all the corresponding counters. Then
it selects the minimum one as the frequency. The CM sketch
only has over-estimations. Other kinds of sketches usually
have similar data structures but different update and query
strategies, such as CU sketches [11], Count sketches [26],
Pyramid sketches [27] and Cold Filter [28]. Some sketches
are specially designed for certain fields, like gSketch [29] and
TCM [19] for graph streams. In this paper we focus on CM
sketches as a representor of this kind of data structures.

D. D-left Hash tables

The d-left hash table [5] splits the table into k sections, with
each section associated with a hash function hi (.) (1 6 i 6 k)
and uses linked lists to deal with hash collisions, which means
if there are multiple items mapped to the same position in the
table, only the first one is stored in the table, while the others
will be stored in a linked list at this position. It defines the
depth of each position with the number of items that have
already been stored in the table or the linked list at this
position. When inserting an item x, it computes the k hash
functions and finds the hi (x)th position in the ith section
for all i (1 6 i 6 k) and check the k positions. It finds the
position with the smallest depth and inserts the item in it. If
there are several positions with the smallest depth, it inserts
the item into the left most one. In this way, it makes the items
distributed more uniformly in the hash table and reduces both
the length and the number of the linked lists. In other words,

compared to classic hash tables, more items will stay in the
table rather than the linked lists in d-left hash tables. This
leads to better memory efficiency and lower time overhead in
the worst case.

III. ALGORITHM

A. Original Version

We observe that the hash functions we use nowadays
generate 32-bit or 64-bit results, in other words, results with
a maximum value up to 232 or 264. However, the range we
actually need when implementing hash based data structures
is much smaller. Take the CM sketch as an example: consider
that the memory we use in the implementation of a CM sketch
is 256K Bytes, and the size of the counters is no less than 2
Bytes, which means there are about 128K counters. Notice
that there are several arrays in a CM sketch. Therefore, the
length of each array, i.e., the number of counters in each
array, is within 218. This means when we compute modular
operations to map the results of hash functions into addresses
in the arrays, a lot of information carried by the high bits of
the hash results is discarded. Based on this observation, we
deem it practical to reduce hash calculation cost in these data
structures by making full use of the information produced by
hash functions and propose Single Hash technique. It can be
applied to most of the data structures which use multiple hash
functions and reduce the hash computation cost.

The basic idea of Single Hash technique is to make full
use of the randomness of hash computation results by shifting
operations. We use h (.) to represent the hash function we use,
and use k to represent the number of random values we need
to generate. The range we need to map the items into is from
0 to w − 1. We assume that h (.) generate 32-bit results. In
the original version, when inserting an item with key x, after
computing hash function h (x), we put it into the following
formula to get the ith random value Hi (x):

Hi(x) = (((h (x) >> 16)%w)⊕ ((h (x)%w) << i))%w

In the formula, we use h (x) >> 16 to get the high bits
of the result of the hash function, and use the remainder
of dividing it with w as the first parameter p1. h (x)%w is
the second parameter p2. If we use h (x)l to represent the
low 16 bits of h (x), in other words, h (x)%65536, we can
see that p2 =

((
p1 × 216

)
+ h (x)l

)
%w. Because h (x)l and

p1 are independent with each other, p2 is always uniformly
distributed in range 0 ∼ w − 1 whatever p1 is. Therefore, p1
and p2 are also independent. To generate different values, we
let p2i = p2 << i take part in the XOR operation with p1
to get the ith random value.

When the hash function we use is 64-bit, change 16 in the
formula into 32, and the performance will be better as there
are more bits to use.

B. Mathematical Analysis

In this section, we give a mathematical analysis of the
Single Hash technique. Consider the situation that there are
a set S with n items in it, and for each item x we need to



compute k random values {Hi (x) | 1 6 i 6 k} in range
0 ∼ w− 1. Given an item z which is not a member of S, we
want to calculate the probability of event α that for every i
in range 1 ∼ k, there is at least one xi in set S that satisfies
Hi (xi) = Hi (z). This probability is very important, because
in sketches, it is the probability that the item z collides with
other items in all the arrays and we can not get its correct
frequency, in other words, the error rate; in a d-left hash
table, it is the probability that a key-value pair has to be
stored in a linked list; and in a partition Bloom filter, it is
the false positive rate. It is the indication to show how well
the random values we generate work. If we use k independent
hash functions to generate k random values, Pr (α) is easy
to get. Because each hash function maps the item to range
0 ∼ w − 1 uniformly, we can see that the probability that
z collides with another item in a hash function is 1

w . The
probability that it collides with at least one of the n items is
1−
(
1− 1

w

)n
. Because the k hash functions are independent,

the probability that z suffers hash collisions in all the k hash
functions is

Pr (α) =

(
1−

(
1− 1

w

)n)k

=
(
1− e− n

w

)k
Because in the hash based data structures the length of arrays
always has a linear correlation with the number of inserted
items n, we can represent n

w with a constant c. Therefore, we
have:

Pr (α) =
(
1− e−c

)k
Now we are going to prove that using Single Hash tech-

nique Pr (α) will be the same. Here we assume the length of
each section in w is a prime, but experimental results show
that even if w is not a prime, the result will be nearly the same.
We use p1 to represent (h (x) >> 16)%w, and p2 to represent
h (x)%w. As stated above, p1 and p2 are independent. First
we prove the following theorem:

Theorem 1: For two independent variant p1 and p2, an
equation set with the following form has only one set of
solution: { .

(p1 << r)⊕ p2 = A1

(p1 << t)⊕ p2 = A2

(1)

Where A1, A2, r and t are all constants and t < r.
We let the two equations XOR with each other,and get

((p1 << r)⊕ (p1 << t))⊕ (p2 ⊕ p2) = A1 ⊕A2

which can be transformed into:

p1 ⊕ (p1 << (r − t)) = (A1 ⊕A2) >> t

We can get p1 with the this equation. We assume that there
are l bits in the binary form of p1 with no padding zeros,
which means 2l−1 6 p1 < 2l. Then the ith (1 6 i 6 l) bit
bi can be calculated as follows, where Bi is the ith bit of the
constant (A1 ⊕A2) >> t:

• bi = Bi, 1 6 i 6 (r − t).
• bi = Bi ⊕ bi−(r−t), (r − t+ 1) 6 i 6 l

After getting p1, we put it into the original equation set and
calculate p2. Therefore, this equation set has exactly one set
of solution. With theorem 1 we further prove the following
theorem:

Theorem 2: For each item x in set S and z, there will be
exactly one of the following three cases happening:

1) Hi (x) = Hi (z) for only one i in range 1 ∼ k.
2) Hi (x) 6= Hi (z) for all i in range 1 ∼ k.
3) Hi (x) = Hi (z) for all i in range 1 ∼ k.

To prove this theorem, we need to prove that if there are
integers r and t in range 1 ∼ k which meet the requirements
r 6= t and Hr (x) = Hr (z), Ht (x) = Ht (z), then we have
∀i (1 6 i 6 k), Hi (x) = Hi (z). Because p is a very big
prime and XOR is the binary form of addition without carries
and shares similar characteristic like addition, we can use the
properties of prime numbers and get:

((h (x) >> 16)%w)⊕ ((h (x)%w) << r)

= ((h (z) >> 16)%w)⊕ ((h (z)%w) << r)

((h (x) >> 16)%w)⊕ ((h (x)%w) << t)

= ((h (z) >> 16)%w)⊕ ((h (z)%w) << t)

According to theorem 1, we have:

(h (x) >> 16)%w = (h (z) >> 16)%w

h (x)%w = h (z)%w

Therefore, for all i in range 1 ∼ k, we have Hi (x) = Hi (z).

Theorem 3: In the Single Hash technique, we still have
Pr (α) = (1− e−c)

k.
We consider the event ε that there is at least one x in

set S that satisfies the second case in theorem 2 . Because
(h (x) >> 16)%w and h (x)%w are independent with each
other and uniformly distributed in range 0 ∼ w − 1, we can
see that:

Pr (ε) = 1−
(
1− 1

w2

)n

= 1− n

√(
1− 1

w2

)n2

= 1−
n

√
e

n2

w2

= 1− e c2

n

Because c is a small constant, while n can be very large in
the data structures, we have

Pr (ε) = o (1)

In other words, in applications ε almost does not happen.
Because obviously Pr (α | ε) = 1, we have

Pr (α) = Pr (α | ε)× Pr (ε) + Pr (α | ¬ε)× Pr (¬ε)
= Pr (ε) + Pr (α | ¬ε)× Pr (¬ε)
= o (1) + Pr (α | ¬ε)× (1− o (1))

Therefore, we can take Pr (α | ¬ε) as the asymptotic value
of Pr (α). Conditioned on ¬ε, for all the x in set S, pair



P (x) = ((h (x) >> 16)%w, h (x)%w) should be uniform-
ly distributed in G = {0, 2, ...w − 1}2−{P (z)}. When P (x)
is in the following set with w − 1 items:

{(a, b) | (a, b) ∈ G, a = Hi (z)⊕ (b << i) , b 6= h (z)%w}

we have Hi (x) = Hi (z). This becomes a variant of balls
and bins problem. There are k bins, and n balls. Each ball
has probability k(w−1)

w2−1 = k
w+1 to be stored in the bins,

otherwise discarded. When stored, the bin to put the ball
in is selected randomly. The number of balls that are not
discarded has binary distribution Bin

(
n, k

w+1

)
≈ Po (ck)

when Po (.) denote Poisson distribution. Because each ball
not discarded will be stored in the bins randomly, according to
a standard property of Poisson variables, the joint distribution
of the number of balls in the k bins is the same as the joint
distribution of k independent Po (c) variables. The probability
that there is at least one ball in each bin is:

Pr (Po (c) > 0)
k
=
(
1− e−c

)k
This is the asymptotic value of Pr (α).

C. Further Discussions and Improvements

In implementations, we can use a few improvements to
make the Single Hash easier to implement. First, because w
is usually very large and the influence of congruence will
be slight. Therefore, we do not have to use a prime as w.
Experiments show that when we use numbers like 100000 or
50000 as w there is still little difference in the performance.
Second, we notice that the modular operations computed
upon h (x) >> 16 and h (x) can also be removed without
influence on the randomness of the hash values, and this will
improve the speed a lot, as modular operations are very time-
consuming. The final version of the formula we use to produce
the ith hash value Hi (x) is:

Hi(x) = ((h (x) >> 16)⊕ (h (x) << i))%w

Although a rigorous mathematical proof of the randomness of
this formula is hard to give, we apply it to partition and non-
partition Bloom filters, CM sketches and d-left hash tables
and carry out extensive experiments to show that it works
quite well.

D. Applications

Single Hash technique can be applied to almost all the data
structures which use multiple hash functions. In this paper, we
apply it to three classic ones as case studies: Bloom filters,
CM sketches, and d-left hash tables. We assume that the
total length of the data structure is m, and it produces k
hash values for each item. When applying Single Hash to
the CM sketch, the d-left hash table, or the partition Bloom
filter, we just replace the k independent hash functions in the
classic version with hash values produced with one hash func-
tion h (.): Hi(x) = ((h (x) >> 16)⊕ (h (x) << i))%m

k ,
(1 6 i 6 k), and the other operations will be the same.
When applying it to a non-partition Bloom filter, the for-
mula to produce the ith hash value for item x will be

Hi(x) = ((h (x) >> 16)⊕ (h (x) << i))%m, and the other
operations are the same as a classic non-partition Bloom filter.
the mathematical analysis for Bloom filters without partitions
is different from above and controversial because addresses
produced by different hash functions are not separated, in
other words, hi(x) and hj(y) may indicate the same bit in
the array (hi(.) and hj(.) are different hash functions, and x
and y are different items), while in partition Bloom filters, CM
sketches and d-left hash tables they are in different sections.
But experiments show that the performance of the Single Hash
scheme is still out-standing.

IV. EXPERIMENTAL RESULTS

In this section, we apply Single Hash technique to three
well known hash based data structures: Bloom filters, CM
sketches, and d-left hash tables. For Bloom filters and CM
sketches, we carried out extensive experiments to compare the
accuracy and speed of the classic scheme, the Less Hashing
scheme, and the Single Hash scheme. For the d-left hash
table, as it is an accurate data structure with no error, we
compare the number and length of linked lists and speed of
the three schemes. Note that the Less Hashing has only been
applied to Bloom filters in [20], we extend it to the other two
data structures. The hash functions we use are 32-bit, and the
formula we use in single hash is the final version, namely
Hi = ((h (x) >> 16)

⊕
(h (x) << i))%w.

A. Experimental Setup

We carry out experiments with a set of strings generated
by Pseudo random number generation algorithm. The length
of each string is 20 Bytes. There are totally 1400769 strings
in the set, and the number of unique items is 84191, which
will be used in the experiments of Bloom filters and d-left
hash tables. The data obeys uniform distribution over different
keys. The host we implement experiments is a laptop which
has an Intel Core i5-6300HQ 2.30 GHZ CPU with 4 cores,
and 8 GB memory. It runs Ubuntu 15.04. We implement all
the codes with c++ and build them with GCC 5.2.1 and -O3
option.

B. Bloom Filters

We fix the number of unique items to insert into the
Bloom filters as n = 40k and fix the length of bit array
as m = 400K, and change the number of hash functions we
use, which is represented by k. We use the false positive rate
to evaluate the accuracy of a Bloom filter, which means the
probability of a Bloom filter to report yes when querying an
item not in it. To get the estimation of false positive rate, we
query n = 40k items not in the Bloom filter, and record the
times it reports yes as t. Then we calculate the false positive
rate f as f = t

n . We tested both partition version and non-
partition version. The results are shown in Figure 1 and Figure
2.

Figure 1 and Figure 2 show that the false positive rates
of both partition and non-partition versions of Single Hash,
Less Hashing and classic Bloom filters are always nearly the
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Fig. 1. False positive rate in non-partition Bloom filters.
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Fig. 2. False positive rate in partition Bloom filters.

same. The false positive rates of the three schemes first drop
and then increase when k is constantly increasing. Because as
stated in section II, Bloom filters have the best performance
when k = ln2m

n . The value of the equation is about 6 in
our experiments, which can be computed with the value of
n and m given above. It is also accordance with the lines in
figures. When k is smaller than 6, increasing k will increase
the chance that an item does not have hash collisions in at
least one of the k positions. But when k becomes too big, the
Bloom filters become crowded and the accuracy decreases.
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Fig. 3. Speed of different schemes of Bloom filters.

Figure 3 shows that when k changes the speed of Single
Hash is always much higher than that of the other two
schemes, about 1.5 ∼ 1.8 times of the speed of the Less

Hashing, and 1.8 ∼ 3.9 times of the speed of the classic
Bloom filter. The measurement we use for speed is Mqps, i.e.,
million queries per second. To evaluate the speed of the three
schemes, we query 80k items, and 50% of them are in the
Bloom filters while the others are not. To make the evaluation
more accurate, we repeat the experiment 100 times to get
the average speed. When k becomes larger, the difference
between Less Hashing and Single Hash will not change, but
the gap between the speed of these two and the classic Bloom
filter will enlarge as more hash functions need to be computed
in the classic Bloom filter. Note that there is no difference in
the speed of the partition version and the non-partition version
of Bloom filters.

C. Sketches

We insert all the 1400769 strings into the three schemes
of CM sketches: the Single Hash scheme, the Less Hashing
scheme, and the classic one. As stated above, the number of
unique items in these records is n = 84191, and we set the
total number of counters in each CM sketch fixed to m = 40K
and change the number of arrays k. We evaluate the accuracy
of the three schemes with average relative error (ARE) and
Correct rate (CR). We use fe to represent the frequency of
an item report by a CM sketch, and fr to report the correct
frequency. Because there are only over-estimations in CM
sketches, fe is always no smaller than fr. We define relative
error RE = fe−fr

fr
. ARE is the average value of the RE

of the n items. CR is defined as CR = tc
n , where tc means

the number of items whose reported frequency is equal to the
correct one. The following two figures show the ARE and
CR of the three schemes of CM sketches, respectively.
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Fig. 4. Average relative error in CM sketches.

Figure 4 and Figure 5 show that the ARE and CR of the
three kinds of CM sketches are nearly the same. In other
words, these three schemes have the same accuracy. The CM
sketch has the similar characteristic as Bloom filers. When
k increases, it first becomes more accurate, and then the
accuracy decreases because the length of each array decreases
and the CM sketch becomes crowded.

Figure 6 shows that when k changes the speed of Single
Hash is always much higher than that of the other two
schemes, about 2 ∼ 2.6 times of the speed of the Less
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Fig. 5. Correct rate in CM sketches.
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Fig. 6. Speed of different schemes of CM sketches.

Hashing, and 2.4 ∼ 5 times of the speed of the classic CM
sketch. The measurement we use for speed is still Mqps.
Similar to the experiment in Bloom filters, we repeat the
experiment 100 times to get the average speed. When k
further increases, the superiority of Single Hash will be more
significant.

D. D-left Hash Tables

We insert all the 84191 unique keys with random values
into the three schemes of d-left hash tables: Single Hash, Less
Hashing, and classic d-left hash tables. The three schemes
have the same length m = 85000, nearly 1 : 1 to the number
of items inserted. We change the number of sections k to
carry out a series of experiments. Because the d-left hash
table is an accurate data structure with no error, we evaluate
the performance of different schemes with the number and
average length of linked lists, which are important metrics of
d-left hash tables. The larger these two values are, the worse a
d-left hash table performs. The experimental results are shown
in the following figures.

Figure 7 and Figure 8 show that the number of linked lists
and their average length in the three kinds of d-left hash tables
are nearly the same. Because these three schemes have nearly
the same number of linked lists and the average length of
linked lists is almost always 1, there are the same number of
items inserted into hash tables in the three schemes. In other
words, the load factors in those three tables are the same,
and the uniformities of the distribution of items in these three
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Fig. 7. Number of linked lists in d-left hash tables.
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Fig. 8. Average length of linked lists in d-left hash tables.

schemes are nearly the same. Therefore, we can determine
that these three schemes have the same performance.
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Fig. 9. Speed of different schemes of d-left hash tables.

Figure 6 shows that when k changes the speed of Single
Hash is always higher than that of the other two scheme,
about 1.1 times higher than the speed of the Less Hashing,
and 1.1 ∼ 1.8 times higher than the speed of the classic d-
left hash table. The difference in speed is not that significant
because in hash tables we need to traverse linked lists and
compare character strings besides computing hash functions.
These operations are also time-consuming and they reduce
the influence of the decrement of hash computation overhead.
But when k becomes larger, the difference in speed between
Single Hash scheme and the classic scheme will further



enlarge. The measurement and the method we get the average
speed are still the same as the speed experiments above.

V. CONCLUSION

In this paper, we propose Single Hash technique, which
uses only one hash function and a few bit operations to
produce multiple hash values. It can be applied to almost all
of the hash based data structures and significantly improve
their speed while keeping the other metrics unchanged. We
apply it to three kinds of well known data structures as
an example in this paper: Bloom filters, CM sketches, and
d-left hash tables. We carry out mathematical analysis and
extensive experiments, and the results show that our Single
Hash technique outperforms the state-of-the-art.
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