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Distributed Protocols for High Availability

Hadoop Kubernetes

Etcd running 
distributed consensus 

protocols

YouTube

Spanner running 
distributed transaction 

protocols
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Electrode 
[NSDI’23] This work



Distributed Transactions inside a Datacenter
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OCC transaction 
clients

Backups Primary

txn_read_lock(R, W)  // read read-set (R) versions + values, 
         // lock write-set (W)
// Update write-set locally
txn_validate(R)          // validate read-set versions
txn_log(W)                // log write-set updates
txn_commit        // update backups+ primary

Trend: storing states in memory 
or persistent memory

Distributed transactions are network IO-intensive

Lock manager

KV store

Log manager

…



Kernel Networking: High Kernel Overhead
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CPU time

Calling 
stacks

sendto (int sockfd, const void buf[.len], size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen) -> ssize_t
entry_SYSCALL_64_after_hwframe
do_syscall_64

__x64_sys_sendto
__sys_sendto

sock_sendmsg
inet_sendmsg
udp_sendmsg

ip_make_skb udp_send_skbip_route_...
ip_send_skb
ip_output
ip_finish_output
__ip_finish_output
ip_finish_output2

neigh_hh_outputneig…
dev_queue_xmit
__dev_queue_xmit

__dev_xmit_skb
sch_direct_xmit

dev_hard_start_xmit
mlx5e_xmit

Syscall

Socket

IP

Device
Driver90% CPU time



Kernel Networking: High Kernel Overhead

[1] Experiment setting: TATP workload for the OCC transaction protocol with 3-way primary-backup replication and 3-way sharding, using UDP sockets from Linux kernel 6.1.0 5

Dist. protocols

NIC driver
Traffic control

…
Transport layer

Socket layer

NIC hardware

OCC distributed 
transactions

92% CPU time1

Only around  ⁄! !" is on NIC driver



Kernel Bypass: Not a Panacea

DPDK (Data Plane Development Kit) or RDMA: 
• Customized networking stacks in user space or NIC
• Busy polling instead of costly interrupt

Dist. protocols

NIC hardware

Transport layer

User-space driver
…

Kernel net. stack
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Kernel Bypass: Not a Panacea

DPDK (Data Plane Development Kit) or RDMA: 

+  High performance
 – Dedicated resources (eg, busy-polling cores)
 – Security vulnerabilities (user manages NICs)1,2

Dist. protocols

NIC hardware

Transport layer

User-space driver
…

Kernel net. stack
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Kernel bypass: 
high performance

Kernel: 
resource sharing, security

[1] Bellovin, Steven M. "Security Problems in the TCP/IP Protocol Suite." SIGCOMM CCR 1989
[2] Smolyar et al. "Securing Self-Virtualizing Ethernet Devices." USENIX Security 2015



DINT1: Application-Customized Networking Stacks

Dist. protocols

NIC driver
Traffic control

…
Transport layer

Socket layer

NIC hardware

Application logic
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High kernel overhead 
(eg, ip_make_skb)

Protocol 
requests

Protocol 
responses

+ High performance
+   Resource sharing: interrupt-driven
+   Secure: kernel manages NICs, but what if the logic is malicious? 

Packet batching amortizes interrupt 
overhead (eg, Linux NAPI)

Application 
states

Update

[1] DINT: an archaic word, meaning force and power



How to Guarantee Kernel Safety?
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eBPF (extended Berkeley Packet Filter) to safely run programs in kernel at runtime
• Guaranteeing safety via static verification
• Originally for packet filtering and monitoring

Dist. protocols

NIC driver
Traffic control

…
Transport layer

Socket layer

NIC hardware
Protocol 
requests

TC
XDP

Modify and forward 
back as responses

eBPF maps 
(eg, array, 

queue)Update
eBPF-offloaded logic



Challenge of Kernel Offloads with eBPF
• eBPF programming model is constrained because of static verification

− Limited # of instructions, bounded loops, static memory allocation
• Distributed protocols are complex

− Some rare cases are too complex for eBPF: eg, failure, message loss, malloc

9Mickens, James. "The Saddest Moment." Login Usenix Mag 39.3 (2014): 52-54

Offload common cases, 
which tend to be “simple”

Leave rare cases to 
user space



DINT Overall Architecture
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Request 
parser

Transaction 
server

Bookkeeping

Transaction
Client

Maintaining 
spilled KVs

Kernel space User space

Common path
Rare path

Re
qu

es
t

Response
UDP 

sockets

Lock manager

KV store

Log manager



Offloading Lock Manager
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…Lock 
state

OCC transaction 
clients

Primary
Kernel space

Compare-and-swap atomics

Hash(LockID)

Fail-and-retry (rare cases)

Waiting queue? 

Hard for eBPF (no malloc)
Shared eBPF array

Hash(LockID’)



Offloading KV Store
Common cases: most KVs are small in typical workloads 
• Dozens of bytes in transactional workloads (eg, TATP, SmallBank)
• Statically-allocated eBPF map to store small KVs and avoid malloc
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Hash(Key)

Bucket …Kernel buckets as a 
large, fixed-size cache

Malloc’ed 
memory

User-space 
chained buckets 1) large KVs (>64B)

2) bucket overflow

Small 
keys

Small 
vals

8B×4 64B×4

…
Can we achieve fast GET and PUT? 
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How to achieve fast GET especially for non-existing keys? 

Kernel 
bucket

User 
bucket

GETs for non-existing keys 
always check user space

Bloom 
filter

BF records 
overflow keys

Bloom Filter1: 
• An approximate data structure that 

quickly tells whether a key is in a set
• Using a fixed size of bitset array

[1] Bloom, Burton H. "Space/Time Trade-offs in Hash Coding with 
Allowable Errors." Communications of the ACM 13.7 (1970): 422-426

Offloading KV Store
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How to achieve fast GET especially for non-existing keys? 

Kernel 
bucket

User 
bucket

Bloom 
filter

BF records 
overflow keys

Removes unnecessary checks 
for non-existing keys

Reconstruct BF 
upon deletionKV deletion?

Offloading KV Store
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How to achieve fast GET especially for non-existing keys? 

Offloading KV Store

• Write-back cache for fast PUT
• Lock sharing for fast locking
• Per-core circular logs for fast logging
• Piggybacking states on packets for 

fast user-kernel synchronization
• …

Bloom filter to record overflow keys



Offloading Log Manager
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Primary

…

Kernel space

User space replays the logs on failure (rare cases)

Per-CPU eBPF ringbufs (overwritable)



System Optimization: Interrupt Scheduling
Separating interrupt-handling cores and rare-case handling cores
    ➥ Avoiding user-kernel context switching overhead
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…

Interrupts Handling rare cases

Kernel space User space

2.4× throughput



Implementation & Evaluation
• 2.1K lines eBPF and 4.3K C++ for OCC and 2PL distributed transactions

− 3-way primary-backup replication, 3-way sharding
− 6.1K lines of C++ for baselines

• Experiment setup: 
− CloudLab r650 (10 clients, 3 servers) running unmodified Linux kernel 6.1.0
− TATP for OCC, SmallBank for 2PL

• Open source: https://github.com/DINT-NSDI24/DINT
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https://github.com/DINT-NSDI24/DINT
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Tail Latency vs. Throughput

Caladan (kernel-bypass)

1.9× higher tput over Caladan 
16% higher tail latency

Packet copy
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16× higher tput over kernel

22× on SmallBank



CPU Utilization vs. Throughput
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DINTInterrupt-core 
consolidation 

may help



DINT Conclusion
We enable application-customized kernel networking stacks with: 
• eBPF offloads for common cases, while user space for rare cases
• distributed transaction offloads, but generalizable to many distributed protocols
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Kernel bypass: 
high performance

Kernel: 
resource sharing, security

DINT

Thank you! 
yangzhou@g.harvard.edu
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