DINT: Fast In-Kernel Distributed Transactions
with eBPF

E:
7
& Y A

“Yang Zhou "Xingyu Xiang ~ Matthew Kiley Dha

Sowmya

: Minlan Yu
ranipragada

Harvard University Peking University Harvard University — Cornell University —Harvard University

* Co-primary author

Distributed Protocols for High Availability

Hadoop Kubernetes YouTube

| q Etcd running Spanner running
[ENeS(:I;ﬁ?ZBe] — distributed consensus distributed transaction <—— This work

protocols protocols

Distributed Transactions inside a Datacenter

OCC transaction txn_read_lock(R, W) // read regd—set (R) versions + values,
// Update write-set locally
txn_validate(R) // validate read-set versions

~

B E

txn_log(W) // log write-set updates
%\\ txn_commit // update backups+ primary
7T\

KV store

\Backups Primary log manager

Lock manager

Trend: storing states in memory
or persistent memory

J

Distributed transactions are network |O-intensive

Kernel Networking: High Kernel Overhead

sendto (int sockfd, const void buf[.len], size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen) -> ssize_t

entry SYSCALL 64 after_hwframe
do_syscall 64
__X64 sys sendto
Sysca I __sys_sendto

sock_sendmsg
%\inedt send(rjnsq
udp_sendmsg
Socket ip_make_skb ip_route_... udp_send_skb
ip_send_skb
Ip_output

ip finish output
ip finish output
ip finish output?2
neig.. neigh_hh_output
dev_queue_xmit
_dev_queue_xmit
_dev_xmi’ﬁ sé<b
i sch_direct xmit
Device dev_hard_start xmit

¢ 90% CPU time Priver & mix5e_xmit

Kernel Networking: High Kernel Overhead

OCC distributed

Dist. protocols - transactions

Socket layer
Transport layer

> 92% CPU time

Traffic control
NIC driver
NIC hardware

Only around 1!/, is on NIC driver

Kernel Bypass: Not a Panacea

Dist. protocols

DPDK (pata Plane Development Kit) OF RDMA:

Transport layer

« Customized networking stacks in user space or NIC

User-space driver « Busy polling instead of costly interrupt

NIC hardware >‘

Kernel Bypass: Not a Panacea

Dist. protocols

DPDK (pata Plane Development Kit) OF RDMA:

Transport layer

+ High performance

User-space driver — Dedicated resources (eg, busy-polling cores)

— Security vulnerabilities (user manages NICs)'?
NIC hardware

Kernel:
resource sharing, security

Kernel bypass:
high performance

DINT': Application-Customized Networking Stacks

Dist. protocols = Packet batching amortizes interrupt

Socket layer overhead (eg, Linux NAPI)
Transport layer High kerne ad Application
=1P_make_skb) states
Traffic control <:)/ Aoplicati lodi _UP(_jeiti
NIC driver pplication 10gIC

NIC hardware
Protocol Protocol
requests responses

+ High performance
+ Resource sharing: interrupt-driven

+ Secure: kernel manages NICs g

How to Guarantee Kernel Safety?

eBPF (extended Berkeley Packet Filter) tO safely run programs in kernel at runtime
« Guaranteeing safety via static verification
« Originally for packet filtering and monitoring

Dist. protocols

Socket layer eBPF maps
Transport layer @, (eg, array,
— Update ~ queue)
TC — Traff trol :
C AlUSREUUE, eBPF-offloaded logic ----- .

XDP — NIC driver
NIC hardware
Protocol Modify and forward

requests back as responses

Challenge of Kernel Offloads with eBPF

« eBPF programming model is constrained because of static verification
- Limited # of instructions, bounded loops, static memory allocation

* Distributed protocols are complex
— Some rare cases are too complex for eBPF: eg, failure, message loss, malloc

eawe<t) qemefq-[—g Iy be ¢ (Bey\mﬁre‘
. L‘(5 .' ?':2 ‘0 l' ‘,//qv'\dovv‘ '-‘ dD g_}_\/‘#: Jo 5*\4_@7
A€ .

et T AT AT ey
\\3 Z 1 el - Pa= %ﬁ’\i bf
< T Leave rare cases to
: user space

Lorve —

Offload common cases,
which tend to be “simple”

DINT Overall Architecture

—» Common path

--» Rare path

Transaction
Client

L —

Response

I~

~ , N
Transaction
server > Lock manager
. Request [| KV store —-4. Maolntalnmg
parser spilled KVs
-»> Log manager — :
UDP
~ . sockets !
......... _[BOOkkeeplng]4_._._._._._.1
User space /

_Kernel space

Offloading Lock Manager

OCC transaction
clients

Fail-and-retry (rare cases)

Hash(LocklD) |\ | Hash(LocklD"

v

Compare-and-swap atomics

v

v _ _-
= Lock
| state L
Primary
Kernel space Shared eBPF array Waiting queue?

Hard for eBPF (no malloc)

Offloading KV Store

Common cases: most KVs are small in typical workloads
« Dozens of bytes in transactional workloads (eg, TATP, SmallBank)
 Statically-allocated eBPF map to store small KVs and avoid malloc

User-space —— . [Malloced
chained buckets memory | D 1arge KVs (>648)
I 2) bucket overflow
Kernel buckets as a Bucket - -
large, fixed-size cache P T
Hash(Key) 7 i IR

Small | Small
keys | vals

Can we achieve fast GET and PUT? 8Bx4 64Bx4

Offloading KV Store

How to achieve fast GET especially for non-existing keys?

User
bucket Bloom Filter":
I « An approximate data structure that
Bloom quickly tells whether a key is in a set
GETs for non-existing keys Kembflilter Using a fixed size of bitset array

always check user space | — bucket

BF records
overflow keys

Offloading KV Store

How to achieve fast GET especially for non-existing keys?

Reconstruct BF
User | upon deletion

KV deletion?

bucket Removes unnecessary checks

BF records for non-existing keys
overflow keys

Offloading KV Store

How to achieve fast GET especially for non-existing keys?

Bloom filter to record overflow keys

« Write-back cache for fast PUT

« Lock sharing for fast locking

 Per-core circular logs for fast logging

» Piggybacking states on packets for
fast user-kernel synchronization

Offloading Log Manager

User space replays the logs on failure (rare cases)

Primary

Kernel space Per-CPU eBPF ringbufs (overwritable)

System Optimization: Interrupt Scheduling

Separating interrupt-handling cores and rare-case handling cores
= Avoiding user-kernel context switching overhead

Kernel space User space

@ —& &

& o
TT11T1 TTrnrl ITT1rri

Interrupts

) = {ak 2.4x throughput
e LLLLLLL

Handling rare cases

Implementation & Evaluation

e 2.1K lines eBPF and 4.3K C++ for OCC and 2PL distributed transactions
- 3-way primary-backup replication, 3-way sharding
- 6.1K lines of C++ for baselines

» Experiment setup:

— CloudLab r650 (10 clients, 3 servers) running unmodified Linux kernel 6.1.0
— TATP for OCC, SmallBank for 2PL

* Open source: https://github.com/DINT-NSDI24/DINT

https://github.com/DINT-NSDI24/DINT

99th-tail latency (us)

Tail Latency vs. Throughput

1000

—6— Linux Kernel —&— DINT
800~ Caladan (kernel-bypass)
600 - Packet copy

22x on SmallBank
400- |
16x higher tput over kernel

200+

S— O ‘

0 1.9x higher tput over Caladan
0 c 10 16% higher tail latency

Throughput (Mtps)

CPU Utilization vs. Throughput

N
o
|

—_
-
1

Core usage

—o— Linux Kernel @ —&— DINT
consolidation Caladan (kernel-bypass)

Interrupt-core

may hel
PP 5 10 15

Throughput (Mtps)

DINT Conclusion

We enable application-customized kernel networking stacks with:
« eBPF offloads for common cases, while user space for rare cases
 distributed transaction offloads, but generalizable to many distributed protocols

DINT

Kernel bypass: Kernel:
high performance resource sharing, security

Thank you!
yangzhou@g.harvard.edu

mailto:yangzhou@g.harvard.edu

