
DINT: Fast In-Kernel Distributed Transactions
with eBPF

1

* Yang Zhou

Harvard University

* Xingyu Xiang

Peking University

Sowmya
Dharanipragada

Cornell University

Minlan Yu

Harvard University

* Co-primary author

Matthew Kiley

Harvard University

Distributed Protocols for High Availability

Hadoop Kubernetes

Etcd running
distributed consensus

protocols

YouTube

Spanner running
distributed transaction

protocols

2

Electrode
[NSDI’23] This work

Distributed Transactions inside a Datacenter

3

OCC transaction
clients

Backups Primary

txn_read_lock(R, W) // read read-set (R) versions + values,
 // lock write-set (W)
// Update write-set locally
txn_validate(R) // validate read-set versions
txn_log(W) // log write-set updates
txn_commit // update backups+ primary

Trend: storing states in memory
or persistent memory

Distributed transactions are network IO-intensive

Lock manager

KV store

Log manager

…

Kernel Networking: High Kernel Overhead

4

CPU time

Calling
stacks

sendto (int sockfd, const void buf[.len], size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen) -> ssize_t
entry_SYSCALL_64_after_hwframe
do_syscall_64

__x64_sys_sendto
__sys_sendto

sock_sendmsg
inet_sendmsg
udp_sendmsg

ip_make_skb udp_send_skbip_route_...
ip_send_skb
ip_output
ip_finish_output
__ip_finish_output
ip_finish_output2

neigh_hh_outputneig…
dev_queue_xmit
__dev_queue_xmit

__dev_xmit_skb
sch_direct_xmit

dev_hard_start_xmit
mlx5e_xmit

Syscall

Socket

IP

Device
Driver90% CPU time

Kernel Networking: High Kernel Overhead

[1] Experiment setting: TATP workload for the OCC transaction protocol with 3-way primary-backup replication and 3-way sharding, using UDP sockets from Linux kernel 6.1.0 5

Dist. protocols

NIC driver
Traffic control

…
Transport layer

Socket layer

NIC hardware

OCC distributed
transactions

92% CPU time1

Only around ⁄! !" is on NIC driver

Kernel Bypass: Not a Panacea

DPDK (Data Plane Development Kit) or RDMA:
• Customized networking stacks in user space or NIC
• Busy polling instead of costly interrupt

Dist. protocols

NIC hardware

Transport layer

User-space driver
…

Kernel net. stack

6

Kernel Bypass: Not a Panacea

DPDK (Data Plane Development Kit) or RDMA:

+ High performance
 – Dedicated resources (eg, busy-polling cores)
 – Security vulnerabilities (user manages NICs)1,2

Dist. protocols

NIC hardware

Transport layer

User-space driver
…

Kernel net. stack

6

Kernel bypass:
high performance

Kernel:
resource sharing, security

[1] Bellovin, Steven M. "Security Problems in the TCP/IP Protocol Suite." SIGCOMM CCR 1989
[2] Smolyar et al. "Securing Self-Virtualizing Ethernet Devices." USENIX Security 2015

DINT1: Application-Customized Networking Stacks

Dist. protocols

NIC driver
Traffic control

…
Transport layer

Socket layer

NIC hardware

Application logic

7

High kernel overhead
(eg, ip_make_skb)

Protocol
requests

Protocol
responses

+ High performance
+ Resource sharing: interrupt-driven
+ Secure: kernel manages NICs, but what if the logic is malicious?

Packet batching amortizes interrupt
overhead (eg, Linux NAPI)

Application
states

Update

[1] DINT: an archaic word, meaning force and power

How to Guarantee Kernel Safety?

8

eBPF (extended Berkeley Packet Filter) to safely run programs in kernel at runtime
• Guaranteeing safety via static verification
• Originally for packet filtering and monitoring

Dist. protocols

NIC driver
Traffic control

…
Transport layer

Socket layer

NIC hardware
Protocol
requests

TC
XDP

Modify and forward
back as responses

eBPF maps
(eg, array,

queue)Update
eBPF-offloaded logic

Challenge of Kernel Offloads with eBPF
• eBPF programming model is constrained because of static verification

− Limited # of instructions, bounded loops, static memory allocation
• Distributed protocols are complex

− Some rare cases are too complex for eBPF: eg, failure, message loss, malloc

9Mickens, James. "The Saddest Moment." Login Usenix Mag 39.3 (2014): 52-54

Offload common cases,
which tend to be “simple”

Leave rare cases to
user space

DINT Overall Architecture

10

Request
parser

Transaction
server

Bookkeeping

Transaction
Client

Maintaining
spilled KVs

Kernel space User space

Common path
Rare path

Re
qu

es
t

Response
UDP

sockets

Lock manager

KV store

Log manager

Offloading Lock Manager

11

…Lock
state

OCC transaction
clients

Primary
Kernel space

Compare-and-swap atomics

Hash(LockID)

Fail-and-retry (rare cases)

Waiting queue?

Hard for eBPF (no malloc)
Shared eBPF array

Hash(LockID’)

Offloading KV Store
Common cases: most KVs are small in typical workloads
• Dozens of bytes in transactional workloads (eg, TATP, SmallBank)
• Statically-allocated eBPF map to store small KVs and avoid malloc

12

Hash(Key)

Bucket …Kernel buckets as a
large, fixed-size cache

Malloc’ed
memory

User-space
chained buckets 1) large KVs (>64B)

2) bucket overflow

Small
keys

Small
vals

8B×4 64B×4

…
Can we achieve fast GET and PUT?

13

How to achieve fast GET especially for non-existing keys?

Kernel
bucket

User
bucket

GETs for non-existing keys
always check user space

Bloom
filter

BF records
overflow keys

Bloom Filter1:
• An approximate data structure that

quickly tells whether a key is in a set
• Using a fixed size of bitset array

[1] Bloom, Burton H. "Space/Time Trade-offs in Hash Coding with
Allowable Errors." Communications of the ACM 13.7 (1970): 422-426

Offloading KV Store

13

How to achieve fast GET especially for non-existing keys?

Kernel
bucket

User
bucket

Bloom
filter

BF records
overflow keys

Removes unnecessary checks
for non-existing keys

Reconstruct BF
upon deletionKV deletion?

Offloading KV Store

13

How to achieve fast GET especially for non-existing keys?

Offloading KV Store

• Write-back cache for fast PUT
• Lock sharing for fast locking
• Per-core circular logs for fast logging
• Piggybacking states on packets for

fast user-kernel synchronization
• …

Bloom filter to record overflow keys

Offloading Log Manager

14

Primary

…

Kernel space

User space replays the logs on failure (rare cases)

Per-CPU eBPF ringbufs (overwritable)

System Optimization: Interrupt Scheduling
Separating interrupt-handling cores and rare-case handling cores
 ➥ Avoiding user-kernel context switching overhead

15

…

Interrupts Handling rare cases

Kernel space User space

2.4× throughput

Implementation & Evaluation
• 2.1K lines eBPF and 4.3K C++ for OCC and 2PL distributed transactions

− 3-way primary-backup replication, 3-way sharding
− 6.1K lines of C++ for baselines

• Experiment setup:
− CloudLab r650 (10 clients, 3 servers) running unmodified Linux kernel 6.1.0
− TATP for OCC, SmallBank for 2PL

• Open source: https://github.com/DINT-NSDI24/DINT

16

https://github.com/DINT-NSDI24/DINT

0 5 10 15
Throughput (Mtps)

0

200

400

600

800

1000

99
th

-t
ai

l l
at

en
cy

 (μ
s)

Linux Kernel DINT

Tail Latency vs. Throughput

Caladan (kernel-bypass)

1.9× higher tput over Caladan
16% higher tail latency

Packet copy

17

16× higher tput over kernel

22× on SmallBank

CPU Utilization vs. Throughput

18

0 5 10 15
Throughput (Mtps)

0

10

20
Co

re
 u

sa
ge

Linux Kernel
Caladan (kernel-bypass)

DINTInterrupt-core
consolidation

may help

DINT Conclusion
We enable application-customized kernel networking stacks with:
• eBPF offloads for common cases, while user space for rare cases
• distributed transaction offloads, but generalizable to many distributed protocols

19

Kernel bypass:
high performance

Kernel:
resource sharing, security

DINT

Thank you!
yangzhou@g.harvard.edu

mailto:yangzhou@g.harvard.edu

