
Elastic Sketch: Adaptive and Fast
Network-wide Measurements

Tong Yang, Jie Jiang, Peng Liu Peking University, China
Qun Huang, ICT, CAS, China
Junzhi Gong, Yang Zhou, Peking University, China
Rui Miao, Alibaba Group, China
Xiaoming Li, Peking University, China
Steve Uhlig. Queen Mary University of London, UK

Tong Yang, Peking University
yangtongemail@gmail.com
http://net.pku.edu.cn/~yangtong

PART 01

PART 02

PART 03

PART 04

PART 06

Background

Elastic Sketch

Optimizations

Applications

Experimental results

PART 07 Conclusion

PART 05 Implementations

Outline

01
PART ONE

Background

0
1

Background

Measurement is important
 Network measurement provides indispensable
information for network applications.

Best solution: Sketch
 1) Memory efficient
 2) Constant speed
 3) High accuracy

0
1

Background

Most of existing solutions focus on:
 A good trade-off among
 1) memory usage
 2) speed
 3) accuracy

Recent work: UnivMon [SIGCOMM 16]
 the above 3 dimensions plus
 4) generality

0
1

Background
In addition to the above 4 dimensions , our paper
 5) adaptive to traffic characteristics
 6) cross platform

Measurements are especially important when
network is undergoing problems, such as
 1) network congestion
 2) scans
 3) DDoS attack
In these cases, traffic characteristics vary a lot

0
1

Background

traffic characteristics:

 1) the available Bandwidth

 2) flow size distribution

 3) packet arrival rate

0
1

Background---Bandwidth

Measurement
node

Measurement
node

Measurement
node

Collector

Measurement
node

Server

Server

Sketch

Merging

Merging

Naïve Solution：

Our Solution：

Compress

0
1

Background---packet rate
The packet rate is
 1) naturally variable
 2) could vary drastically.
Existing sketches
 1) fixed speed
 2) drop packets
 when packet rate becomes much higher
Our goal:
 1) minimize #memory accesses à 1
 2) minimize #hash computations à 1

0
1

Background---flow size distribution
Network traffic is skewed
 1) Majority: mice flows
 2) Minority: elephant flows
Separation is effective
 1) use large and small counters
 2) use different data structures
Our goal:
 1) accurate separation
 2) dynamically allocate memory

0
1

Background---Cross platform
Existing solutions:
 1) for CPU platforms
 2) for netFPGA (OpenSketch NSDI13)
 3) for P4Switch (UnivMon SIGCOMM16)
Our goal:
 1) P4Switch
 2) FPGA
 3) GPU
 4) OVS
 5) CPU
 6) multi-core

0
1

Background- Tasks and sketches
Tasks Sketch Algorithms

Flow size estimation Count-Min, CM-CU, Count, ASketch

heavyhitters Count-Min, CM-CU, Space-Saving
Hashpipe, ASketch, FlowRadar, UnivMon

Heavy changes RevSketch, FlowRadar, UnivMon
Superspreader

/DDoS detection TwoLevel

Flow size distribution MRAC, FlowRadar
Cardinality FM, LC, UnivMon

Entropy FlowRadar, UnivMon

0
1

Background- CM sketches

+1

+1

+1

+1

Insertion

19

24

26

18

Query

’frequency: 18
= Min{19, 24, 26, 18}

02
PART TWO

Elastic Sketches

 01

02

03

04

05

Rationale

Basic Version

Adaptivity

Software version

Hardware version

06 P4 version

Elastic
Sketch

07 Multi-Core version

0
2

Elastic (Rationale)
Goal: separate elephant flows from mice flows
Ostracism: vote for elephant flows
 Ostracism was a procedure in ancient Athens, any
citizen could be voted to be expelled.

Problem: one bucket to elect
 the largest one

One bucket

Flow ID, vote+, vote-

0
2

Elastic (Basic version)

f1
h(.)

<f1,5,T,15>
4

92

1

7

0

<ID, Vote+, flag, Vote
-

>

Heavy part Light part

<f3,10,F,11>

f5
h(.)

f8
h(.)

f1,6,T,15

f5,1,F,0

<f4,7,F,55>

11++

f9
h(.) f9,1,T,0 2

freq

𝜆=8, 55+1≥ 7 ∗ 𝜆

f8
g2(.)

g1(.)

f4

g1(
.)

g2(.)

+7

+7

+1

+1

A CM sketch

6

1

3

87

0

10

freq

For elephant flows: For mice flows: For a bucket:

0
2

Elastic (Basic version)

To query a flow, heavy part à light part

1. To query it in the heavy part
 check the flag of the mapped bucket
 1) flag = false: report the vote+ with no error
 2) flag = true: vote+ + f_light

2. To query it in the light part
 report its frequency f_light as how CM sketch does

0
2

Elastic (Basic version)

Error Bound:

Elephant collision: 1+ elephant flows are mapped to the
same bucket. Elephant collision rate

fA fB fC

0
2

Elastic (Adaptivity)

1) Adaptive to Available Bandwidth

2) Adaptive to Packet Rate

3) Adaptive to Flow Size Distribution

0
2

Elastic (Adaptive to Bandwidth)

To adapt to available bandwidth
 1) the light part is large
 2) compress the light part before sending

3 key operations to compress the sketch
 1) how to group counters?
 2) how to merge counters in a group?
 3) how to change hash functions?

0
2

Elastic (Adaptive to Bandwidth)

1) split the sketch A into 3 divisions
 2) build a sketch B
 3) counters with the same index as one group

10%6%3=10%3
10%8%4=10%4

87 3 4 88 12 2

3 77 0 6 5 10… …
11 10 0 1

9

0

15

9 8

31 12

51 14

A1

A2

Ad

A11[1] A12[1] A1Z[1]A12[3] A1Z[3]

max
99

88

6

15

12 8

77 12

14

…
B1[1] B1[3]B1[2]

Bd[1]AdZ[1]Ad1[1] Ad2[1]

999

h(.)%9 à
 h(.)%9%3
 =h(.)%3

0
2

Elastic (Adaptive to Bandwidth)
Merging sketches
 1) sum merging
 2) max merging

Peking University, China

4 January 2018 14

ABC

Background Rationale Structure Operation Evaluation Conclusion

Network wide aggregation: Our method
1. Corresponding maximum
2. sup-compression

1 3 4 12…
3 20 1 5…… …

2 4 1 7…
75 99 4 10…… …

+ =
2 4 4 12…

75 99 4 10…… …

maxA1[2] B1[2] C1[2]

Measurement
node

Measurement
node

Measurement
node

CollectorMeasurement
Tasks

Queries

Answers

periodic
report

Elastic Sketch
in data plane

Measurement
node

Server

Server

Sketch	merging

Sketch	merging

0
2

Elastic (Adaptive to packet rate)

Second, we show how to adapt to high packet rate?
 1) buffer the incoming packets in an input queue
 2) when # packets in the input queue > Threshold
 (1) access only the heavy part
 (2) the insertion operation is modified:
 if f1 is replaced by f2, then sizeof(f2)= sizeof(f1).

0
2

Elastic (Adaptive to flow size distribution)

Third, #elephant flows is unknown and can vary a lot
 1) # elephant flows in the heavy part is increasing
 2) heavy part should be adaptive to changes in
traffic distribution

Solution: copy the heavy part when #elephant flows
exceeds a threshold

0
2

Elastic (Adaptive to flow size distribution)

h(.)%4 à h(.)%8

<f1,…> <f3,…> <f6,…>

h(f3)%4=2
 h(f3)%8=6

f2
h(f2)%8

<f2,…>

<f1,…> <f3,…> <f6,…>

Copy part

03
PART THREE

Optimizations

0
3

Optimizations

To minimize the elephant collision rate,

1) Software Version

2) Hardware Version

3) P4Switch Version

4) Multi-Core Version

0
3

Optimizations (Software Version)
1) use one bucket to store multiple flows

 2) all the flows in each bucket share one vote- field
 3) try to evict the smallest flow in the mapped bucket

 4) use one array in the light part

<f11,5,T>

Heavy part <f3,72,F>f8

<f2,16,F>f9

. . .

. . .

<f51,5,T>

<f6,11,F>

<f1,74,F>

. . .

. . .
<f5,55,F>

<f4,7,F>

. . .

. . .

0

10+1

55+1

. . .

. . .

4

1

7

0 Light part

f4 2

+7

f8
+1

0<f9,1,T>

n-votes

12

40

0
3

Optimizations (Hardware Version)
1) using several sub-tables in the heavy part

 2) each flow have several candidate buckets, and thus the elephant
collision rate drops significantly.
 3) the sub-tables have the same operation but different hash functions,
thus suitable for hardware.

Heavy part 1

(f3,12,F,11)f8

(f4,7,T,55)

f3,12,F,12

f9 f9,1,T,0

. . .
f4

𝜆=8, 55+1≥ 7 ∗ 𝜆

(f1,9,T,3)

. . .

. . .

. . .
(f4,2,T,11)

f8

f4,2+7,T,11

Heavy part 2

To query f4 : 9 + value in light part

1
7
0

2

Light part

0
3

Optimizations (P4Switch Version)
1) each stage in two physical stages: voteall , and (key, vote+)

2) When voteall /vote+⩾ λ′, we perform an eviction operation.
We recommend λ′ = 32.
3) When an item in a bucket is evicted to the next stage, we
consider its frequency as 1.

4) When (f , vote+) is evicted by (f1, 1), we set the bucket to (f1,
vote+ + 1).

voteall ID vote+

0
3

Optimizations (Multi-Core Version)

f4

7
1

4
92
15
2

4
0
6

10

6
92
15
7

10max
h(.)%2

thread 1

thread 2

h(.)%2*3 +h(.)%3

04
PART FOUR

Applications

0
4

Applications

1) Flow size estimation

2) Heavy Hitter detection

3) Heavy Change detection

4) Flow Size Distribution

5) Entropy

6) Cardinality

05
PART Five

Implementations

0
5

Applications

1) P4Switch

2) FPGA

3) GPU

4) CPU

5) multi-core

6) OVS

06
PART SIX

Experimental results

0
6

Experiments (Setup)
Traces: CAIDA

Metrics:
 ARE, AAE, WMRE, RE, F1Score, Throughput

Trace Date #packets #flows (SrcIP)
CAIDA1 2015/02/19 1164.9M 2.6M
CAIDA2 2015/05/21 1081.0M 3.9M
CAIDA3 2016/01/21 1835.1M 8.9M
CAIDA4 2016/02/18 1799.7M 8.4M

0
6

Experiments (Setup)
Comparisons:

1) Flow size: CM, CU, Count

2) Heavy Hitter: UnivMon, SS, CM/C+heap,, Hash pipe

3) Heavy Change: UnivMon, Reversible sketch, FlowRadar

4) Distribution: MRAC

5) Entropy: UnivMon, Sieving

6) Cardinality: UnivMon, linear counting (LC)

0
6

Experiments (Memory/Bandwidth)

Memory or bandwidth needed to achieve 99%
precision and recall in heavy change detection

0
6

Experiments (Adaptivity)

Adaptivity to packet rate

0
6

Experiments (Setup)

Adaptivity to flow size distribution

0
6

Experiments (Processing Speed)

0
6

Experimental Results Summary

Compared to the state-of-the-art,

1) speed improvement: 44.6 ∼ 45.2 times
2) accuracy improvement: 2.0 ∼ 273.7 times

Applications for more tasks in the future work.

07
PART SEVEN

Conclusion

0
7

Conclusion

1. Elastic sketch:

1) elastic, generic, fast, and accurate

2) adaptive to traffic characteristics

3) one sketch for 6 tasks

2. Key techniques: ostracism and compression

3. implemented on 6 platforms

 P4Switch, FPGA, GPU, CPU, multi-core CPU and OVS

THANKS
Source code: https://github.com/ElasticSketch/ElasticSketch

Tong Yang
Peking University, China

Email: yangtongemail@gmail.com
Homepage: http://net.pku.edu.cn/~yangtong/

