NEO: Saving GPU Memory Crisis with
CPU Offloading for Online LLM Inference

Xuanlin Jiang', Yang Zhou??, Shiyi Cao?, lon Stoica?, Minlan Yu*

'Peking University, <UC Berkeley, 3UC Davis, “Harvard University

The GPU Memory Crisis

» The GPU memory crisis in LLM inference

Model Parameters A
16GB e-le11= Reserved
3.2GB Batch size needed to saturate GPU:; ~128
5 requests
(5000 tokens each)
I | N

SmallGEU __, Small Ky- . Smal! L(?\{V GEU __, Low inference
memory size cache size batch size utilization throughput

Existing Solutions

Solution #1: quantization &
sparsification
» Could hurt output quality

Solution #2: memory offloading

+ on-demand swapping
» PCle bandwidth is too low

GPU Memory

KV

Model Parameters

!

Quantized
Parameters

cache

KV cache

GPU Memory

KV
cache

Model Parameters

Swap out l I Swap in

NEO Key Insights

» Observation #1: Only decoding attention requires KV-cache

L transformer layers
A

Prefill attn

oIS ool — (e EEWE — Detokenizer

—

-

| stores | Decodeattn gt
I KV—cache ---------- I
) S e /

KV-cache is only used here!

NEO Key Insights

» Observation #2: CPUs are much closer to GPUs in terms of memory
bandwidth than computation, while decoding attention is memory-bound

» FastDecodel'l: modern x86 server CPU vs A10G GPU
» Computation: 1 vs. 125 TFLOPS
» Memory bandwidth: 200 vs. 600 GB/s
» Memory bandwidth is 1~2 orders of magnitudes closer!

Challenges

> Key insight: offload KV-cache & decoding attention computation to CPU

» How to efficiently overlap CPU and GPU within each iteration?
» Should reconstruct the inference pipeline

» How to efficiently schedule requests across inference iterations?
» Should use a dynamic adaptive scheduling policy

Strawman #1: Simple Offloading

L transformer layers

GPU Pre-proj

CPU

Comm

> Problems:

» No CPU-GPU overlapping
» No computation-communication overlapping

Strawman #2: Symmetric Pipelining (FastDecode)

Prefilling Stage

Comm

|
L transformer layers

Decoding Stage =~

GPU ;m pr- POy P PO, pr1 J*
CPU Decode attn, Decode attn, Decode attn, Decode attn;,

Repeat (L—1) times
» Problems:

> Insufficient overlapping
» Unused GPU memory

NEO Asymmetric Pipelining

ga = GPU attn (prefill + decode mixed)
ca = CPU attn (decode only)

CPU

Comm

Repeat (L-1) times

> Benefits:
> Mixed batching + layer-wise swapping — high overlapping
» Partial offloading — high GPU memory utilization

NEO Load-Aware Scheduling: Principles

> Greedy

» Choose between GPU-only schedule and asymmetric pipelining schedule
> Pick the one with a higher estimated throughput

> Balancing
> "Bubbles” should be minimized

» Hiding CPU
» GPU must be busy when CPU is busy

» Maximizing GPU
» Sufficient batch size should be achieved to utilize GPU fully

Check our paper for the detailed scheduling algorithm!

Evaluation: Setup

» Datasets:
Dataset Avg. Input Length | Avg. Output Length
Azure Code 2047.85 27.88
OpenAl Summary Comparison 372.03 45.25

» Models: Llama-3.1-70B, Llama-3.1-8B, Llama-2-7B

> GPUs: 2xH100, A10G, T4

Evaluation: Latency vs Load

vLLM —e— NEO

@ 2.00 2.00
>
c
3 1.60 1.60 -
L
S 1.20 1.20 A
Y4
bS]
. 0.80 0.80 A
O]
o
0 0.40 ’//c‘ 0.40 -
o
v [2
2000 | 000t
0.0 05 1.0 15 20 25 3.0 3.5 0.0 05 1.0 15 2.0 25 3.0 35
Ruquest rate (req/s) Ruquest rate (req/s)
2xH100 + Llama-3.1-70B T4 + Llama-2-7B
Azure Code OpenAl Summary Comparison

> 14% higher throughput on H100 (at 2 sec latency)
» 6.6x higher on T4 (at 1 sec latency)

Evaluation: Throughput

t

x2large
x4large
x8large

't

Relative throughput
=
S
o

A—

.
S

100 200 300 400
Avg. output length
A10G + Llama-3.1-8B

> Up to 79% higher throughput on A10G
(increasing with more CPU cores)

Conclusion

» NEO: the first CPU offloading system for online LLM inference that
achieves performance gains over GPU-only systems

> ... with the same hardware cost (i.e., local host CPU) and inference accuracy
> Key techniques: asymmetric pipelining & load-aware scheduling
» Up to 14%-6.6x throughput gains on different GPUs

GitHub repo: NEO-MLSys25/NEO

Thank You!

	Slide 1: NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference
	Slide 2: The GPU Memory Crisis
	Slide 3: Existing Solutions
	Slide 4: NEO Key Insights
	Slide 5: NEO Key Insights
	Slide 6: Challenges
	Slide 7: Strawman #1: Simple Offloading
	Slide 8: Strawman #2: Symmetric Pipelining (FastDecode)
	Slide 9: NEO Asymmetric Pipelining
	Slide 10: NEO Load-Aware Scheduling: Principles
	Slide 11: Evaluation: Setup
	Slide 12: Evaluation: Latency vs Load
	Slide 13: Evaluation: Throughput
	Slide 14: Conclusion

