
NEO: Saving GPU Memory Crisis with 

CPU Offloading for Online LLM Inference

Xuanlin Jiang1, Yang Zhou2,3, Shiyi Cao2, Ion Stoica2, Minlan Yu4

1Peking University, 2UC Berkeley, 3UC Davis, 4Harvard University



The GPU Memory Crisis

➢ The GPU memory crisis in LLM inference

2

Small GPU 

memory size

Small KV-

cache size

Small 

batch size

Low GPU 

utilization

Low inference 

throughput

A10G GPU: 24GBModel Parameters

16GB

KV

cache

3.2GB

Reserved

5 requests 

(5000 tokens each)

Batch size needed to saturate GPU: ~128



Existing Solutions

➢ Solution #1: quantization & 

sparsification

➢ Could hurt output quality

➢ Solution #2: memory offloading 

+ on-demand swapping

➢ PCIe bandwidth is too low

3

Model Parameters
KV 

cache

Quantized 

Parameters
KV cache

GPU Memory

Model Parameters
KV 

cache

GPU Memory

CPU KV cache

Swap inSwap out



NEO Key Insights

➢ Observation #1: Only decoding attention requires KV-cache

4

Tokenizer Pre-layer Pre-proj Post-proj Post-layer Detokenizer

Prefill attn

Decode attn

KV-cache

store

load

KV-cache is only used here!

L transformer layers



NEO Key Insights

➢ Observation #2: CPUs are much closer to GPUs in terms of memory 

bandwidth than computation, while decoding attention is memory-bound

➢ FastDecode[1]: modern x86 server CPU vs A10G GPU

➢ Computation: 1 vs. 125 TFLOPS

➢ Memory bandwidth: 200 vs. 600 GB/s

➢ Memory bandwidth is 1~2 orders of magnitudes closer!

5



Challenges

➢ Key insight: offload KV-cache & decoding attention computation to CPU

➢ How to efficiently overlap CPU and GPU within each iteration?

➢ Should reconstruct the inference pipeline

➢ How to efficiently schedule requests across inference iterations?

➢ Should use a dynamic adaptive scheduling policy

6



Strawman #1: Simple Offloading

➢ Problems:

➢ No CPU-GPU overlapping

➢ No computation-communication overlapping

7

Pre-layer Pre-proj Post-proj Post-layerPrefill attn

Decode attn

GPU

CPU

Comm Swap out

L transformer layers



Strawman #2: Symmetric Pipelining (FastDecode)

➢ Problems:

➢ Insufficient overlapping

➢ Unused GPU memory

8

Pre-layer Pre-proj Post-proj Post-layerPrefill attnGPU

Comm Swap out

Prefilling Stage

CPU

GPU

Decoding Stage

Pre-layer
pr1 po1 pr1po0 pr0 po0 Post-layer

pr0 po1

Decode attn0 Decode attn1 Decode attn0 Decode attn1

L transformer layers

Repeat (L-1) times



Comm

NEO Asymmetric Pipelining

➢ Benefits:

➢ Mixed batching + layer-wise swapping → high overlapping

➢ Partial offloading → high GPU memory utilization

9

CPU

GPU Pre-layer
pr1 po1 pr1po0 pr0 po0 Post-layer

pr0 po1

ca0 ca1 ca0 ca1

Repeat (L-1) times

ga0 ga0

Swap out Swap out

ga = GPU attn (prefill + decode mixed)

ca = CPU attn (decode only)



NEO Load-Aware Scheduling: Principles

➢ Greedy

➢ Choose between GPU-only schedule and asymmetric pipelining schedule

➢ Pick the one with a higher estimated throughput

➢ Balancing

➢ ”Bubbles” should be minimized

➢ Hiding CPU

➢ GPU must be busy when CPU is busy

➢ Maximizing GPU

➢ Sufficient batch size should be achieved to utilize GPU fully

10

Check our paper for the detailed scheduling algorithm!



Evaluation: Setup

➢ Datasets:

➢ Models: Llama-3.1-70B, Llama-3.1-8B, Llama-2-7B

➢ GPUs: 2×H100, A10G, T4

11

Dataset Avg. Input Length Avg. Output Length

Azure Code 2047.85 27.88

OpenAI Summary Comparison 372.03 45.25



Evaluation: Latency vs Load

12

➢ 14% higher throughput on H100 (at 2 sec latency)

➢ 6.6× higher on T4 (at 1 sec latency)

2xH100 + Llama-3.1-70B

Azure Code

T4 + Llama-2-7B

OpenAI Summary Comparison



Evaluation: Throughput

13

➢ Up to 79% higher throughput on A10G 

(increasing with more CPU cores)

A10G + Llama-3.1-8B 



Conclusion

➢ NEO: the first CPU offloading system for online LLM inference that 

achieves performance gains over GPU-only systems

➢ … with the same hardware cost (i.e., local host CPU) and inference accuracy

➢ Key techniques: asymmetric pipelining & load-aware scheduling

➢ Up to 14%-6.6× throughput gains on different GPUs

14

Thank You!

GitHub repo: NEO-MLSys25/NEO


	Slide 1: NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference
	Slide 2: The GPU Memory Crisis
	Slide 3: Existing Solutions
	Slide 4: NEO Key Insights
	Slide 5: NEO Key Insights
	Slide 6: Challenges
	Slide 7: Strawman #1: Simple Offloading
	Slide 8: Strawman #2: Symmetric Pipelining (FastDecode)
	Slide 9: NEO Asymmetric Pipelining
	Slide 10: NEO Load-Aware Scheduling: Principles
	Slide 11: Evaluation: Setup
	Slide 12: Evaluation: Latency vs Load
	Slide 13: Evaluation: Throughput
	Slide 14: Conclusion

