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The GPU Memory Crisis

➢ The GPU memory crisis in LLM inference
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Existing Solutions

➢ Solution #1: quantization & 

sparsification

➢ Could hurt output quality

➢ Solution #2: memory offloading 

+ on-demand swapping

➢ PCIe bandwidth is too low
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NEO Key Insights

➢ Observation #1: Only decoding attention requires KV-cache
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NEO Key Insights

➢ Observation #2: CPUs are much closer to GPUs in terms of memory 

bandwidth than computation, while decoding attention is memory-bound

➢ FastDecode[1]: modern x86 server CPU vs A10G GPU

➢ Computation: 1 vs. 125 TFLOPS

➢ Memory bandwidth: 200 vs. 600 GB/s

➢ Memory bandwidth is 1~2 orders of magnitudes closer!
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Challenges

➢ Key insight: offload KV-cache & decoding attention computation to CPU

➢ How to efficiently overlap CPU and GPU within each iteration?

➢ Should reconstruct the inference pipeline

➢ How to efficiently schedule requests across inference iterations?

➢ Should use a dynamic adaptive scheduling policy
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Strawman #1: Simple Offloading

➢ Problems:

➢ No CPU-GPU overlapping

➢ No computation-communication overlapping
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Strawman #2: Symmetric Pipelining (FastDecode)

➢ Problems:

➢ Insufficient overlapping

➢ Unused GPU memory

8

Pre-layer Pre-proj Post-proj Post-layerPrefill attnGPU

Comm Swap out

Prefilling Stage

CPU

GPU

Decoding Stage

Pre-layer
pr1 po1 pr1po0 pr0 po0 Post-layer

pr0 po1

Decode attn0 Decode attn1 Decode attn0 Decode attn1

L transformer layers

Repeat (L-1) times



Comm

NEO Asymmetric Pipelining

➢ Benefits:

➢ Mixed batching + layer-wise swapping → high overlapping

➢ Partial offloading → high GPU memory utilization
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NEO Load-Aware Scheduling: Principles

➢ Greedy

➢ Choose between GPU-only schedule and asymmetric pipelining schedule

➢ Pick the one with a higher estimated throughput

➢ Balancing

➢ ”Bubbles” should be minimized

➢ Hiding CPU

➢ GPU must be busy when CPU is busy

➢ Maximizing GPU

➢ Sufficient batch size should be achieved to utilize GPU fully
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Check our paper for the detailed scheduling algorithm!



Evaluation: Setup

➢ Datasets:

➢ Models: Llama-3.1-70B, Llama-3.1-8B, Llama-2-7B

➢ GPUs: 2×H100, A10G, T4
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Dataset Avg. Input Length Avg. Output Length

Azure Code 2047.85 27.88

OpenAI Summary Comparison 372.03 45.25



Evaluation: Latency vs Load
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➢ 14% higher throughput on H100 (at 2 sec latency)

➢ 6.6× higher on T4 (at 1 sec latency)

2xH100 + Llama-3.1-70B

Azure Code

T4 + Llama-2-7B

OpenAI Summary Comparison



Evaluation: Throughput
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➢ Up to 79% higher throughput on A10G 

(increasing with more CPU cores)

A10G + Llama-3.1-8B 



Conclusion

➢ NEO: the first CPU offloading system for online LLM inference that 

achieves performance gains over GPU-only systems

➢ … with the same hardware cost (i.e., local host CPU) and inference accuracy

➢ Key techniques: asymmetric pipelining & load-aware scheduling

➢ Up to 14%-6.6× throughput gains on different GPUs
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Thank You!

GitHub repo: NEO-MLSys25/NEO


	Slide 1: NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference
	Slide 2: The GPU Memory Crisis
	Slide 3: Existing Solutions
	Slide 4: NEO Key Insights
	Slide 5: NEO Key Insights
	Slide 6: Challenges
	Slide 7: Strawman #1: Simple Offloading
	Slide 8: Strawman #2: Symmetric Pipelining (FastDecode)
	Slide 9: NEO Asymmetric Pipelining
	Slide 10: NEO Load-Aware Scheduling: Principles
	Slide 11: Evaluation: Setup
	Slide 12: Evaluation: Latency vs Load
	Slide 13: Evaluation: Throughput
	Slide 14: Conclusion

