NEO: Saving GPU Memory Crisis with CPU Offloading for Online LLM Inference

Xuanlin Jiang¹, **Yang Zhou**^{2,3}, Shiyi Cao², Ion Stoica², Minlan Yu⁴ ¹Peking University, ²UC Berkeley, ³UC Davis, ⁴Harvard University

The GPU Memory Crisis

> The GPU memory crisis in LLM inference

Existing Solutions

- Solution #1: quantization & sparsification
 - Could hurt output quality

Solution #2: memory offloading
 + on-demand swapping
 PCIe bandwidth is too low

NEO Key Insights

Observation #1: Only decoding attention requires KV-cache

NEO Key Insights

- Observation #2: CPUs are much closer to GPUs in terms of memory bandwidth than computation, while decoding attention is memory-bound
- FastDecode^[1]: modern x86 server CPU vs A10G GPU
 - Computation: 1 vs. 125 TFLOPS
 - Memory bandwidth: 200 vs. 600 GB/s
 - > Memory bandwidth is 1~2 orders of magnitudes closer!

Challenges

- > Key insight: offload KV-cache & decoding attention computation to CPU
- How to efficiently overlap CPU and GPU within each iteration?
 Should reconstruct the inference pipeline
- How to efficiently schedule requests across inference iterations?
 - Should use a dynamic adaptive scheduling policy

Strawman #1: Simple Offloading

> Problems:

- No CPU-GPU overlapping
- No computation-communication overlapping

Strawman #2: Symmetric Pipelining (FastDecode)

Decoding Stage

- > Problems:
 - Insufficient overlapping
 - Unused GPU memory

NEO Asymmetric Pipelining

ga = GPU attn (prefill + decode mixed) ca = CPU attn (decode only)

- Benefits:
 - \blacktriangleright Mixed batching + layer-wise swapping \rightarrow high overlapping
 - ➤ Partial offloading → high GPU memory utilization

NEO Load-Aware Scheduling: Principles

Greedy

- > Choose between GPU-only schedule and asymmetric pipelining schedule
- Pick the one with a higher estimated throughput

> Balancing

"Bubbles" should be minimized

> Hiding CPU

GPU must be busy when CPU is busy

> Maximizing GPU

Sufficient batch size should be achieved to utilize GPU fully

Check our paper for the detailed scheduling algorithm!

Evaluation: Setup

> Datasets:

Dataset	Avg. Input Length	Avg. Output Length
Azure Code	2047.85	27.88
OpenAl Summary Comparison	372.03	45.25

- Models: Llama-3.1-70B, Llama-3.1-8B, Llama-2-7B
- ➢ GPUs: 2×H100, A10G, T4

Evaluation: Latency vs Load

14% higher throughput on H100 (at 2 sec latency)
 6.6× higher on T4 (at 1 sec latency)

Evaluation: Throughput

Up to 79% higher throughput on A10G (increasing with more CPU cores)

Conclusion

- NEO: the first CPU offloading system for online LLM inference that achieves performance gains over GPU-only systems
 - > ... with the same hardware cost (i.e., local host CPU) and inference accuracy
 - > Key techniques: asymmetric pipelining & load-aware scheduling
 - Up to 14%-6.6× throughput gains on different GPUs

GitHub repo: NEO-MLSys25/NEO

Thank You!