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The GPU Memory Crisis

» The GPU memory crisis in LLM inference
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Existing Solutions

Solution #1: quantization &
sparsification
» Could hurt output quality

Solution #2: memory offloading

+ on-demand swapping
» PCle bandwidth is too low
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NEO Key Insights

» Observation #1: Only decoding attention requires KV-cache
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NEO Key Insights

» Observation #2: CPUs are much closer to GPUs in terms of memory
bandwidth than computation, while decoding attention is memory-bound

» FastDecodel'l: modern x86 server CPU vs A10G GPU
» Computation: 1 vs. 125 TFLOPS
» Memory bandwidth: 200 vs. 600 GB/s
» Memory bandwidth is 1~2 orders of magnitudes closer!



Challenges

> Key insight: offload KV-cache & decoding attention computation to CPU

» How to efficiently overlap CPU and GPU within each iteration?
» Should reconstruct the inference pipeline

» How to efficiently schedule requests across inference iterations?
» Should use a dynamic adaptive scheduling policy



Strawman #1: Simple Offloading
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> Problems:

» No CPU-GPU overlapping
» No computation-communication overlapping



Strawman #2: Symmetric Pipelining (FastDecode)
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» Problems:

> Insufficient overlapping
» Unused GPU memory



NEO Asymmetric Pipelining

ga = GPU attn (prefill + decode mixed)
ca = CPU attn (decode only)

CPU
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Repeat (L-1) times

> Benefits:
> Mixed batching + layer-wise swapping — high overlapping
» Partial offloading — high GPU memory utilization



NEO Load-Aware Scheduling: Principles

> Greedy

» Choose between GPU-only schedule and asymmetric pipelining schedule
> Pick the one with a higher estimated throughput

> Balancing
> "Bubbles” should be minimized

» Hiding CPU
» GPU must be busy when CPU is busy

» Maximizing GPU
» Sufficient batch size should be achieved to utilize GPU fully

Check our paper for the detailed scheduling algorithm!



Evaluation: Setup

» Datasets:
Dataset Avg. Input Length | Avg. Output Length
Azure Code 2047.85 27.88
OpenAl Summary Comparison 372.03 45.25

» Models: Llama-3.1-70B, Llama-3.1-8B, Llama-2-7B

> GPUs: 2xH100, A10G, T4




Evaluation: Latency vs Load
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> 14% higher throughput on H100 (at 2 sec latency)
» 6.6x higher on T4 (at 1 sec latency)



Evaluation: Throughput
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> Up to 79% higher throughput on A10G
(increasing with more CPU cores)



Conclusion

» NEO: the first CPU offloading system for online LLM inference that
achieves performance gains over GPU-only systems

> ... with the same hardware cost (i.e., local host CPU) and inference accuracy
> Key techniques: asymmetric pipelining & load-aware scheduling
» Up to 14%-6.6x throughput gains on different GPUs

GitHub repo: NEO-MLSys25/NEO

Thank You!
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