
Evolvable Network Telemetry
at Facebook

Yang Zhou*, Ying Zhang, Minlan Yu*, Guangyu Wang,

Dexter Cao, Eric Sung, Starsky Wong

1

*

Network Telemetry is Critical for Network Management

2

Hundreds of thousands of
switches/routers

Millions of device interfacesBillions of time-series counters,
Deriving network topology

Data Centers,
Backbones, Edges

Alerting Traffic engineering Diagnosis Troubleshooting Verification Asset tracking

Network Telemetry

Key Challenge for Telemetry in Production: Evolvability

3

Network Telemetry: Constantly Evolving

Networks: Heterogeneous HW & SW

Application: Increasing Requirements

FBOSS
Pkt drops,
fan speed,
power, etc

Real-time,
accurate

❖ Network devices and management applications are constantly evolving.

Magnitude of Changes

4

Up to 30 code commits and 1000 LoC changes per week

Alerting rules

Telemetry runtime

Device-related schemas

Network Telemetry: Constantly Evolving

Networks: Heterogeneous HW & SW

Application: Increasing Requirements

Incident 1: Changes Affect Many Components

5

Takes multiple teams over three days to diagnose.

Traffic
Engineering

Unbalanced
traffic distribution

Topology

Missing some
linecards and circuits

Collection

Post-processing code
cannot recognize

Device

Linecard version:
integer (3) to string (3.0.0)

Frequent API changes of one component affect many other components

Even more frequent with
FBOSS open switching

Incident 2: Data Misinterpretation

6

TimeCP
U

 u
sa

ge 90th-p

Architecture
change

Missing CPU spikes
Bursty packet drops

Frequent hardware and software changes affect data values and semantics

TimeCP
U

 u
sa

ge Avg of
90th-pAvgTimeSu

b-
sw

1
CP

U
 u

sa
ge

TimeSu
b-

sw
0

CP
U

 u
sa

ge

Bringing Changes to First-Class Citizens in Telemetry

7

Build trustful telemetry
data despite changes

Data Misinterpretation

Caused by HW and SW changes

Change Propagation

API changes affect many other
components

Track API changes across
components

PCAT: Production Change-Aware Telemetry System

Change abstraction:
❖ Representing changes in a uniform and generic way

✓ Track and use changes easily

Change attribution:
❖ Layering design to clearly attribute changes to the right components

✓ Limit change propagation; track changes clearer

Change exploration:
❖ Allowing applications to explore change dependencies

✓ Improve timeliness/accuracy

8

PCAT: Production Change-Aware Telemetry System

9

Change abstraction:
❖ Representing changes in a uniform and generic way

✓ Track and use changes easily

Change attribution:
❖ Layering design to clearly attribute changes to the right components

✓ Limit change propagation; track changes clearer

Change exploration:
❖ Allowing applications to explore change dependencies

✓ Improve timeliness/accuracy

Change Abstraction: Change Cube

10

Consider the incident 1: Linecard Version Change → Unbalanced Traffic

Unbalanced
traffic

distribution

Missing some
linecards and

circuits

Post-processing
code cannot

recognize

Linecard version:
integer (3) to
string (3.0.0)

Device Topology Traffic
Engineering

Collection

Change Abstraction: Change Cube

11

Consider the incident 1: Linecard Version Change → Unbalanced Traffic

Traffic
distribution

Derived
circuit

Collected
interface data

Collection
data format

Device Topology Traffic
Engineering

Collection

Change

Change Abstraction: Change Cube

12

Consider the incident 1: Linecard Version Change → Unbalanced Traffic

Traffic
distribution

Derived
circuit

Collected
interface data

Collection
data format

Change cube: <Time, Entity, Property, Layer, Dependency>

Change cube

Linecard Derived switchInterface IntentEntity

Layer Device TopologyCollection
Traffic

Engineering

Property

Dependency

PCAT: Production Change-Aware Telemetry System

13

Change abstraction:
❖ Representing changes in a uniform and generic way

✓ Track and use changes easily

Change attribution:
❖ Layering design to clearly attribute changes to the right components

✓ Limit change propagation; track changes clearer

Change exploration:
❖ Allowing applications to explore change dependencies

✓ Improve timeliness/accuracy

Change Attribution: Three Generations of Telemetry Systems

14

Gen1: Deeply-coupled script
(models + collection code)

Collection
code

Models

Gen3: Fully modularGen2: Semi-modular

Change Attribution: Gen1 and Gen2

15

Gen1: Monolithic collection script

✗ Changes all over the place. ✓ Confine changes to one of the two layers.
✓ Track changes of two layers separately.

Collection
code

Models

Gen2: Decoupled models from collection code

Applications

Network-wide processing

Device-level processing

Collection infrastructure

Models
Collection & parsing

primitives

Change Attribution: Gen2’s Problems

16

✗ Enormous number of models.

Applications

Network-wide processing

Device-level processing

Collection infrastructure

Models

✗ Intents are deeply coupled with the vendor-dependent details:
models become hard to define and evolve.

models =
intents ×
vendors ×

device groups

10k =
100 alarm rules ×

10 vendors ×
10 (rack, spine, etc)

Change Attribution: Gen3 (PCAT) Layering Design

17

Intent models

Gen3: Limiting the impact of changes

Collection models

Data models

Job models

Alert if Interface.pkt_drops.Rate() > 1k/s

ModelDef(name='Interface',
properties=[

PropertyDef(name='pkt_drops', type=INT), ...

Vendor1 CLI: show interfaces {$if_name} drops
Vendor2 Thrift: getQueueDrops({$queues})

JobDef(model_name='Interface',
device_group='Rack switches',
frequency='5min', ...

Change Attribution: Gen3 (PCAT) Layering Design

18

Intent models

Collection models

Data models

Job models ✓ Track change clearer, ie, to specific layer.

✓ Limit change propagation, eg, easy to adjust
collection frequency.

Gen3: Limiting the impact of changes

PCAT: Production Change-Aware Telemetry System

19

Change abstraction:
❖ Representing changes in a uniform and generic way

✓ Track and use changes easily

Change attribution:
❖ Layering design to clearly attribute changes to the right components

✓ Limit change propagation; track changes clearer

Change exploration:
❖ Allowing applications to explore change dependencies

✓ Improve timeliness/accuracy

Change Exploration: Topology Derivation

Creates derived topology from normalized device-level data.

20

Stale derivationEvery 15 mins

Derived
circuit

Collected
interface data

TopoGen V1
cron jobs

TopologyCollection

TopoGen V1:

Change Exploration: Topology Derivation

Creates derived topology from normalized device-level data.

21

Derived
circuit

Collected
interface data

TopologyCollection

TopoGen V2:
Dependency

Real-time derivation

TopoGen V2
jobsPub/Sub

Reduce derivation delay
by 118 sec on average

PCAT: Production Change-Aware Telemetry System

Change abstraction:
❖ Representing changes in a uniform and generic way

✓ Track and use changes easily

Change attribution:
❖ Layering design to clearly attribute changes to the right components

✓ Limit change propagation; track changes clearer

Change exploration:
❖ Allowing applications to explore change dependencies

✓ Improve timeliness/accuracy

22

Open Questions: Adaptive Telemetry Primitives

23

Tr
af

fic
 s

iz
e

Time

< ms

Microburst

New microburst detection
solution

Efficiency AdaptivityVS.

Vendor A

Vendor B

Vendor C

Only work for certain
devices/vendors

❌

❌

✓

Partial knowledge
causes complexity

for applications

Need both efficient and adaptive telemetry primitives

Widely adapt to various
resource/programming conditions

Open Questions: Trustful Telemetry

24
Need telemetry verification and validation

❖ Telemetry data may get missed/corrupted in evolving environment.
❖ Business-critical applications (eg, TE) rely on correct telemetry data.

Quantitative comparisons
over time-series data

Power utilization
from switch

Power utilization
from PDU

One opportunity: cross-validations for counters

Match?

Summary

❖ Telemetry is critical for network management.
❖ Changes should be first-class citizens in evolvable telemetry.
❖ PCAT: Production change-aware telemetry system

✓ Change abstraction: change cubes.
✓ Change attribution: layering design.
✓ Change exploration: change-aware applications.

25

Algorithm
Language

Verification

Academia Industry
Evolvability

Scale
Heterogeneity

Thank You!

26

Icons from Flaticon.com, pngitem.com, veryicon.com,
onlinewebfonts.com

