
An Extensible Software Transport

Layer for GPU Networking

Yang Zhou

with: Zhongjie Chen, Ziming Mao, ChonLam Lao, Shuo Yang,
Pravein Govindan Kannan, Jiaqi Gao, Yilong Zhao, Yongji Wu,

Kaichao You, Fengyuan Ren, Zhiying Xu, Costin Raiciu, Ion Stoica

tinyurl.com/uccl-paper ⋄ github.com/uccl-project/uccl

May 29, 2025
Sky Summer Retreat

About UCCL Project

2

ML Applications

UCCL Collective Library

UCCL Transport (CC, multipath, loss recovery)

Nvidia AMD Broadcom IBM AWS …

RDMA RC UC UD AF_XDP DPDK NVLink

Building the fastest collective communication library (CCL)

Open and collaborative platform: github.com/uccl-project/uccl

Rearchitecting CCL layer (keep NCCL API)

Rearchitecting transport layer (this talk)

• Up to 3.3× higher tput over NCCL on AWS

Supporting heterogeneous vendors

Fast Evolving ML Workloads

3

DNN training:
parameter servers,

allreduce

LLM training:
allreduce, allgather,
and reduce-scatter

PD disaggregation:
P2P transfer

DeepSeek-V3 MoE:
all-to-all like

~2015 ~2020 2024 2025 Time

Slowly Evolving Networking

Host transport on RDMA NICs is hard to adapt to better suit ML workloads

• Hardware changes are time-consuming

4

Meta disables CC

(similar for DeepSeek MoE serving)

Severe flow collisions due to

single-path nature of RDMA

LLM training: low flow entropy and

high traffic burstiness

Standard RDMA CC DCQCN is not

performance effective

Prune to deadlocks, head-of-line

blocking, and pervasive congestion

Alibaba rebuilds network topo

Costly to build and maintain

Network incast in MoE serving

Application-transport codesigns

Inefficient loss recovery

Heterogeneous NICs

Overarching Problem: Network Extensibility

UCCL approach: a software-only extensible transport for GPU networking

5

CPU CPU

PCIe switch PCIe switch

GPU

NIC

GPU

NIC

GPU

NIC

GPU

NIC

…

Server

Multipath Datacenter Network

Server

ML Applications

Collective Library (eg, NCCL)

UCCL Layer (CC, LB, loss recovery)

RC UC UD AF_XDP

Control header Data payload Network traffic

RC/UC/UD Queue Pair (QP)

= RDMA connection

UCCL Key Challenges

• How to decouple the data and control paths for existing RDMA NICs?
− Eg, Nvidia NICs, Broadcom NICs, AWS EFA NICs

• How to achieve hardware-level performance for software control path?
− Eg, 3.2 Tbps inter-server bandwidth

6

The History Of The Intel Logo -
Hatchwise

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.hatchwise.com%2Fresources%2Fthe-history-of-the-intel-logo&psig=AOvVaw3WBj5zTj3y4KJ3oZbDgQw4&ust=1748334365484000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCIDT9JfbwI0DFQAAAAAdAAAAABAE

Technique #1: Decoupling Control & Data Path

Leveraging UC/RC QPs + RDMA write with immediate

• Eg, for Nvidia and Broadcom NICs (that support UC or allow disabling RC’s CC logic)

7

Control header

CPU

GPU

NIC

Data payload

CPU

GPU

NIC

Network traffic

Packets

write_with_imm verb

imm_data (4B)

src_addr, dst_addr, len

8b ConnID | 7b msgID | 8b chkSeq | 1b lastChk | 8b reserved

32 bits

Leveraging UD QPs + send/recv with scatter-gather list

• Eg, for AWS EFA NICs (that cannot disable RC’s CC logic)

8

CPU

GPU

NIC

CPU

GPU

NIC

Control header Data payload Network traffic

send verb sg_list

{ cpu_addr, 64B }

{ gpu_addr, 8936B }

recv verb sg_list

{ cpu_addr, 64B }

{ gpu_addr, 10240B }

Technique #1: Decoupling Control & Data Path

9000B MTU packet

Leveraging UD QPs + send/recv with scatter-gather list

• Eg, for AWS EFA NICs (that cannot disable RC’s CC logic)

Handling out-of-order packet delivery

• Fusing scattered memcpy at the receiver GPU

9

NIC

GPU

Application Tensor Buffer

Reduce/Copy

Transport Buffer…

DMA payloads

Kernel

Technique #1: Decoupling Control & Data Path

Multipathing with packet spraying

10

1
2
3
4

No reordering

2

4

3

11 2

3 4

Src QPs Dst QPsUD Scattered memcpy

1
2
3
4

1
2
3
4

4 1

3 2

1
2
3
4

UC/RC

Send

GPU
Recv

GPU

Multipath

network

Technique #1: Decoupling Control & Data Path

3

1

4

2

4

2

3

1

Technique #2: Efficient Software Transport

11

SHM

connect()
accept()
regmr()

deregmr()
send()
recv()
flush()
poll()

App

UCCL Plugin

Collective Library

UCCL engines (TX, RX, Pacer)

…
Conn A1: paths,

CC & LB states

Conn B1

Conn A2

QP QP QP…

Conn B2

…

Control coalescing at 32KB

Connection splitting

Run-to-completion execution

chained verbs posting,

small message

bypassing multipath

Implementation & Feature Support

12

• 27k LoC in C++
− Drop-in replacement for NCCL applications

− Packet spraying with 256 paths

− Latency-based CC, receiver-driven CC

− Efficient loss recovery by selective repeat

• Support both Nvidia and AMD GPUs
− Future: AWS Trainium

• Support a variety of NIC vendors:
− RDMA: Nvidia, Broadcom, AWS EFA

− Non-RDMA: Nvidia, AWS ENA, IBM VirtIO

Evaluation: 4 AWS p4d (all-to-all)

13

NCCL SRD UCCL CUBIC UCCL EQDS

1 4 16 64 256 1024
Data Size (KB)

0

500

1000

L
a

te
n

c
y
 (

µ
s
)

1 4 16 64 256 1024
Data Size (MB)

0

2.5

5

B
u

s
 B

W
 (

G
B

/s
)

Line Rate

• 4×100G EFA NICs per node, Fattree over Ethernet
− NVLink disabled to emulate larger testbed

UCCL achieves up to 3.2× higher performance over NCCL on AWS

Evaluation: 2 HGX (all-to-all)

14

NCCL CX-7 UCCL UC UCCL RC

1 4 16 64 256 1024
Data Size (KB)

0

100

L
a

te
n

c
y
 (

µ
s
)

1 4 16 64 256 1024
Data Size (MB)

0

25

50

B
u

s
 B

W
 (

G
B

/s
)

Line Rate

• 8×400G Nvidia CX-7 NICs per node, same rack over InfiniBand
− NVLink disabled to emulate larger testbed

UCCL matches NCCL performances on ASIC-based NICs

Dev Plan

• Dynamic membership with GPU servers joining and exiting

• GPU-initiated P2P communication (eg, IBGDA)
− For MoE all-to-all and PD disaggregation

− Generic to NIC vendors like AWS EFA and Broadcom, and GPU vendors like AMD

• Rearchitecting NCCL to unleash network hardware capability
− Scalable and efficient CPU proxy

− Low-cost async collectives with compute-communication ordering guarantee

− Device kernels in vendor-agnostic Triton language

• We would like to hear about your feature needs!

15

Conclusion

16

tinyurl.com/uccl-paper github.com/uccl-project/uccl

UCCL: building the fastest collective communication library

• Network transport layer, CCL layer, heterogeneous vendors, and more

• Open and collaborative platform---talk with us in the poster session

Thank you!
yangzhou.rpc@gmail.com/berkeley.edu

	Slide 1: An Extensible Software Transport Layer for GPU Networking
	Slide 2: About UCCL Project
	Slide 3: Fast Evolving ML Workloads
	Slide 4: Slowly Evolving Networking
	Slide 5: Overarching Problem: Network Extensibility
	Slide 6: UCCL Key Challenges
	Slide 7: Technique #1: Decoupling Control & Data Path
	Slide 8: Technique #1: Decoupling Control & Data Path
	Slide 9: Technique #1: Decoupling Control & Data Path
	Slide 10: Technique #1: Decoupling Control & Data Path
	Slide 11: Technique #2: Efficient Software Transport
	Slide 12: Implementation & Feature Support
	Slide 13: Evaluation: 4 AWS p4d (all-to-all)
	Slide 14: Evaluation: 2 HGX (all-to-all)
	Slide 15: Dev Plan
	Slide 16: Conclusion

