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About UCCL Project
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ML Applications

UCCL Collective Library

UCCL Transport (CC, multipath, loss recovery)

Nvidia AMD Broadcom IBM AWS …

RDMA RC UC UD AF_XDP DPDK NVLink

Building the fastest collective communication library (CCL)

Open and collaborative platform: github.com/uccl-project/uccl

Rearchitecting CCL layer (keep NCCL API)

Rearchitecting transport layer (this talk)

• Up to 3.3× higher tput over NCCL on AWS

Supporting heterogeneous vendors



Fast Evolving ML Workloads
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DNN training: 
parameter servers, 

allreduce

LLM training: 
allreduce, allgather, 
and reduce-scatter

PD disaggregation: 
P2P transfer

DeepSeek-V3 MoE: 
all-to-all like

~2015 ~2020 2024 2025 Time



Slowly Evolving Networking

Host transport on RDMA NICs is hard to adapt to better suit ML workloads

• Hardware changes are time-consuming
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Meta disables CC 

(similar for DeepSeek MoE serving)

Severe flow collisions due to  

single-path nature of RDMA

LLM training: low flow entropy and 

high traffic burstiness

Standard RDMA CC DCQCN is not 

performance effective

Prune to deadlocks, head-of-line 

blocking, and pervasive congestion

Alibaba rebuilds network topo

Costly to build and maintain

Network incast in MoE serving

Application-transport codesigns

Inefficient loss recovery

Heterogeneous NICs



Overarching Problem: Network Extensibility

UCCL approach: a software-only extensible transport for GPU networking
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CPU CPU

PCIe switch PCIe switch

GPU

NIC

GPU

NIC

GPU

NIC

GPU

NIC

…

Server

Multipath Datacenter Network

Server

ML Applications

Collective Library (eg, NCCL)

UCCL Layer (CC, LB, loss recovery)

RC UC UD AF_XDP

Control header Data payload Network traffic

RC/UC/UD Queue Pair (QP)

= RDMA connection



UCCL Key Challenges

• How to decouple the data and control paths for existing RDMA NICs? 
− Eg, Nvidia NICs, Broadcom NICs, AWS EFA NICs

• How to achieve hardware-level performance for software control path? 
− Eg, 3.2 Tbps inter-server bandwidth
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Technique #1: Decoupling Control & Data Path

Leveraging UC/RC QPs + RDMA write with immediate

• Eg, for Nvidia and Broadcom NICs (that support UC or allow disabling RC’s CC logic)
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Control header

CPU

GPU

NIC

Data payload

CPU

GPU

NIC

Network traffic

Packets

write_with_imm verb

imm_data (4B)

src_addr, dst_addr, len

8b ConnID | 7b msgID | 8b chkSeq | 1b lastChk | 8b reserved 

32 bits



Leveraging UD QPs + send/recv with scatter-gather list

• Eg, for AWS EFA NICs (that cannot disable RC’s CC logic)
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CPU

GPU

NIC

CPU

GPU

NIC

Control header Data payload Network traffic

send verb sg_list 

{ cpu_addr, 64B }

{ gpu_addr, 8936B }

recv verb sg_list

{ cpu_addr, 64B }

{ gpu_addr, 10240B }

Technique #1: Decoupling Control & Data Path

9000B MTU packet



Leveraging UD QPs + send/recv with scatter-gather list

• Eg, for AWS EFA NICs (that cannot disable RC’s CC logic)

Handling out-of-order packet delivery

• Fusing scattered memcpy at the receiver GPU
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NIC

GPU

Application Tensor Buffer

Reduce/Copy

Transport Buffer…

DMA payloads

Kernel

Technique #1: Decoupling Control & Data Path



Multipathing with packet spraying
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Src QPs Dst QPsUD Scattered memcpy
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Send
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Multipath
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Technique #1: Decoupling Control & Data Path
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Technique #2: Efficient Software Transport
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SHM

connect()
accept()
regmr()

deregmr()
send()
recv()
flush()
poll()

App

UCCL Plugin

Collective Library

UCCL engines (TX, RX, Pacer)

…
Conn A1: paths, 

CC & LB states

Conn B1

Conn A2

QP QP QP…

Conn B2

…

Control coalescing at 32KB

Connection splitting

Run-to-completion execution

chained verbs posting, 

small message 

bypassing multipath



Implementation & Feature Support

12

• 27k LoC in C++
− Drop-in replacement for NCCL applications

− Packet spraying with 256 paths

− Latency-based CC, receiver-driven CC

− Efficient loss recovery by selective repeat

• Support both Nvidia and AMD GPUs
− Future: AWS Trainium

• Support a variety of NIC vendors: 
− RDMA: Nvidia, Broadcom, AWS EFA

− Non-RDMA: Nvidia, AWS ENA, IBM VirtIO



Evaluation: 4 AWS p4d (all-to-all)
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• 4×100G EFA NICs per node, Fattree over Ethernet
− NVLink disabled to emulate larger testbed

UCCL achieves up to 3.2× higher performance over NCCL on AWS



Evaluation: 2 HGX (all-to-all)
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NCCL CX-7 UCCL UC UCCL RC
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• 8×400G Nvidia CX-7 NICs per node, same rack over InfiniBand
− NVLink disabled to emulate larger testbed

UCCL matches NCCL performances on ASIC-based NICs



Dev Plan

• Dynamic membership with GPU servers joining and exiting

• GPU-initiated P2P communication (eg, IBGDA)
− For MoE all-to-all and PD disaggregation

− Generic to NIC vendors like AWS EFA and Broadcom, and GPU vendors like AMD

• Rearchitecting NCCL to unleash network hardware capability
− Scalable and efficient CPU proxy

− Low-cost async collectives with compute-communication ordering guarantee

− Device kernels in vendor-agnostic Triton language

• We would like to hear about your feature needs!
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Conclusion
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tinyurl.com/uccl-paper github.com/uccl-project/uccl

UCCL: building the fastest collective communication library

• Network transport layer, CCL layer, heterogeneous vendors, and more

• Open and collaborative platform---talk with us in the poster session

Thank you! 
yangzhou.rpc@gmail.com/berkeley.edu
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