Attack of the Killer Microseconds
and
The Tail at Scale

Yang Zhou
Sep 25,2025

With slides from Prof. Amanda Raybuck last-year offering

Latency numbers every programmer should know

L1 Cache Reference

Branch Mispredict

L2 Cache Reference

Mutex Lock/Unlock

Main Memory Reference

Compress 1K Bytes with Zippy

Send 1K Bytes over 1 Gbps Network
Read 4K Randomly from an SSD
Read 1MB Sequentially from Memory
Round Trip within Same Datacenter
Read 1MB Sequentially from SSD
Disk Seek

Read 1MB Sequentially from Disk
Send Packet CA->Netherlands->CA

0.5ns

5ns

7ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

3 us

10 us

150 ps
250 ps
500 ps
1,000 ps
10,000 us
20,000 ps
150,000 ps

14x L1 cache

20x L2 cache, 200x L1 cache

~1GB/s SSD

1ms ~1GB/s SSD, 4X memory
10 ms 20x datacenter roundtrip
20 ms 80x memory, 20x SSD

150 ms

Handling nanosecond-scale events

e Hardware can efficiently handle nanosecond-scale events (e.g., cache

misses, ~100 ns)

o Out of order execution,
o Hyperthreads, Simultaneous Multithreading (SMT)
o Prefetching

e Programmers don’t have to think about this

: — - _ cache miss! -
W int var 4& wio hyperthreads [Ill cache miss (Il I I

varl++;
out-of-order
execution w/ hyperthreads - . - - -

var2++;
var3++;
vard++;

Handling millisecond-scale events

e Millisecond-scale events
o Disk reads — 10s of ms
o Wide-area network traffic — 10s of ms
o Low-end flash — a few ms

e Software can efficiently mask these
o OS can context switch to a different thread (microseconds)

e Programmers can use convenient synchronous (blocking) programming
models

The challenges of microsecond-scale events

e But microsecond-scale events remain challenging
o Datacenter RTT - a few s
o High-end flash — tens of us
o GPU/accelerator - tens of us

e Hardware techniques do not scale well
o Not enough independent instructions to fill pipelines for us
o Not enough hyperthreads to hide us

e Software techniques have too high of overhead

o Context switch time dominates microsecond-scale events
o These are the killer microseconds!

Can asynchronous programming models help?

e Asynchronous model: program sends a request to a device

o Continues to run other tasks while waiting
o Must periodically poll or use interrupts to figure out when request is complete

e Can be complex to implement at scale
o Case study: Google datacenter applications with multiple interacting systems in multiple
languages touched by thousands of devs
o Changing a Google DC app from an async to sync model resulted in:
m Improved performance
m Simpler and easier to understand code

How to waste a fancy, expensive NIC

100

Latency (us)

+~20us

RDMA

Two-sided

Thread
di tch Interrupts

Cumulative Overheads

How does the OS add so much overhead?

Receive (RX)
. h : user App 1 App 2
ocus on the receive pat
P SR - read) }----- read() --
_ kernel i f
e Multicore example space () r)
e Sources of overhead: runqueue EI runqueue |_|
. \ S
o Context swﬂches : \ load ‘
o Lots of queueing f imbalance
o Copies socket El [socket |_|]
o Load imbalance (balances runqueues \ 7 !
every 4 ms) s R
o Packets can arrive at the wrong core] TCP/IP)
Applications can interrupt each other i 4
\
network @ network
driver RX driver RX
_________ - - -
hardware " interrupts

Does this really matter?

100%
75%
> /
z
g sox | I/
25%
0% Q : © ’ {
0 10 20 30 40

Service time (us)

Yet another source of overhead

e “Datacenter Tax”: Tasks that result in computation that must span machines
o Serialization/Deserialization of data
o Memory allocation and deallocation
o Network stack costs
o Compression
o Encryption

e Between 20-25% of processor cycles are spent on these tasks

OK, so what do we do?

e Offload to dedicated accelerators?
o |0 tends to be fine-grained, closely coupled with main work at single-digit us latencies

e |Lookto HPC world

o But techniques are not directly applicable to WSCs — different workloads, smaller dev teams
o Focus on pure performance vs. performance-per-TCO

e “Microsecond aware” systems stacks
o Reduce lock contention & synch, low overhead interrupts, better scheduling, HW offload

e New HW optimizations for sync blocking, thread level parallelism, context

switches, pending IO handling, queue management, scheduling
o Better cache awareness, QoS support

Another problem for datacenters: Tail latency

e Datacenter applications should appear fast and interactive
o E.g., search auto-completion, snappy search results

e Temporary high latency episodes can degrade responsiveness at large scale

e Rare spikes in latency can affect a significant portion of requests
o Why/how?

What causes latency variability?

e Shared resources leading to contention
o And global resource sharing (e.g., network switches, shared FS)

e Background daemons and maintenance activities (e.g., garbage collection)
e Queueing at many layers
e Power limits and energy management

Parallelization to reduce latency

e Break a user request into parallelizable sub-operations
e Fan out requests from root server to leaf servers
e Leaf servers perform task, respond back to root server

N D -
N G -
\

leaf
servers

’
N D .

—_— .
.

root server

N D S
L1 1}
\.

Parallelization to reduce latency

e Break a user request into parallelizable sub-operations
e Fan out requests from root server to leaf servers
e Leaf servers perform task, respond back to root server

N D -
N G -
\

leaf
servers

’
N D .

—_— .
.

root server

N D S
L1 1}
\.

Effects of latency variability

e Large fanouts
exacerbate
degraded latency
from slow servers

e Significant lower
perf for a large
portion of user
requests

P (service latency > 1s)
P o O o0 o o 0
o b=t N W o~ 162 (=2} -~ (o o] w (=

== 1in100 == 1in1000 =- 1in10,000

/ e

[il

o 018

500 1,000 1,500 2,000
Numbers of Servers

How to reduce latency variability

e Separate service classes
o Separate latency-critical tasks from latency-insensitive/batch tasks

e Reduce head-of-line blocking
o Break longer requests into shorter requests, time-slice between them

e Manage background activity
o Careful scheduling of background tasks to reduce interference

e Butit's infeasible to eliminate all sources of latency variability...

Short term adaptations to latency variability

e Take advantage of techniques from fault tolerance (e.g., replication)

e Hedged requests: Send out request to multiple servers, use first reply

(©)

(©)

O

Cancel outstanding requests once first result is received
What if multiple servers execute the same request simultaneously & unnecessarily?
Must be careful to avoid adding unacceptable extra load — be smart at sending 2nd request

e Tied requests: A main source of latency in lagged requests is queueing

©)

(@)

Allow a client to choose a server based on queue lengths

Enqueue copies of a request at multiple servers simultaneously, allow servers to communicate
status to one another

What about message delays?

Longer term adaptations to latency variability

e Deal with coarser-grained phenomena like load imbalance, service variation

e Micropartitions: # partitions >> # machines
o Dynamic assignment and load balance of partitions among machines — finer grained

e Selective replication: More replication for popular items
o Spread the load among more replicas

e Latency-induced Probation: Don’t send requests to slow machines
o Keep probing machine to figure out when it is no longer suffering from slowdowns

Other considerations

e Large information retrieval
o “Good enough” results: Don’t wait for every last response, send reply when enough have
responded to achieve a “good enough” result
o Canary queries: Don’t send a potentially dangerous query to everyone at the same time. Send
to one and observe behavior; if safe, send to everyone else

e Mutations

o Latency variation in state updates is usually not much of a concern

o Updates are infrequent, off the critical path, and already latency tolerant
e Hardware trends

o Hardware variability is likely to increase
o Device heterogeneity and increasing scale make software tolerance even more important
o Better hardware can also make latency tolerance cheaper

Performance in datacenters is hard

e Faster hardware increases the importance of low-overhead techniques

o We don’t want software wasting our fancy new hardware
o Need to redesign software stacks with microsecond-scale in mind

e Latency variation can lead to unacceptable violations in performance

o Fan-out techniques common in datacenters exacerbate this
o Can take advantage of smart techniques to make applications latency tolerant

