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How to guarantee SLO, while improving goodput?



Existing solutions

+Static PDD, Dynamic PDD, Chunked-prefill

v Meets SLO requirements for TTFT and TBT

X Cannot adapt to dynamic workload changes, leading to
resource waste on certain nodes

X KV cache and model weights are separated, shrinking the KV

cache pool, lowering cache hit rate, and degrading multi-turn

dialogue performance

(a) Splitwise

X Relies on high-performance interconnects between nodes to
transfer KV data, requiring complex point-to-point

communication implementations



Existing solutions

+Static PDD, Dynamic PDD, Chunked-prefill

v Meets SLO requirements for TTFT and TBT

v Can dynamically adjust the resource ratio between Prefill
and Decode to adapt to workload changes

X Resource allocation changes are at the GPU

granularity — if either compute or memory needs
Time,_

adjustment, both must change — thus resource waste
still exists
X Requires KV cache migration and cannot reuse KV cache

across requests, resulting in redundant recomputation



Existing solutions

+Static PDD, Dynamic PDD, Chunked-prefill

v Meets SLO requirements for TBT
v Can dynamically adjust the resource ratio between Prefill and
Decode to adapt to workload changes

X Requires balancing between SLO and high utilization — a small

TBT SLO target can lead to idle resources

X For long sequences, as the reused KV cache computation

Increases, the system may even fail to meet the TBT SLO



Drift: LLM Inference with Efficient SLO Guarantee

+Design goals

+Freely match the compute ratio between Prefill and Decode (PD)

+Allow Prefill/Decode resources to change dynamically with the workload

+Decouple compute allocation from memory
+Changes in compute resources do not affect memory layout—especially the design of
the KV cache pool
+PD execution is mutually independent

+Prefill and Decode only perform necessary synchronization, with no need to trade off

between SLO and utilization



A New Paradigm for LLM inference: Spatial
Prefill-Decode Co-Execution

+Using spatial multiplexing, Prefill and Decode are co-located across all GPUs
within a single node. By adjusting the number of SMs allocated to each, the
system can meet the desired SLO requirements.

v Flexible PD compute ratio
matching
v Decoupled compute

allocation from memory

Prefill
Decode iteratio

! TTET of batch

v Independent execution of
Prefill and Decode




Prefill-Decode Spatial Multiplexing Mechanism

+Basic Prefill-Decode Spatial Multiplexing Execution

A large time gap between
Prefill and Decode execution
leads to bubbles (idle periods).

Compute resources

TTFT TTFT TTFT
Prefill :
Decode Decode Decode
Decode
TBT TBT TBT TBT

All Decodes finish
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Prefill-Decode Spatial Multiplexing Mechanism

+Split Prefill by Transformer Blocks to align Prefill and
Decode execution times, thereby reducing idle bubbles.
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Prefill-Decode Spatial Multiplexing Mechanism

+SLO-Aware Scheduling Method

* Prioritize meeting the TBT SLO by allocating just enough SMs to the Decode
phase.
* The remaining SMs are assigned to Prefill to maximize its execution speed,

thereby achieving high throughput while maintaining SLO guarantees.
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Evaluation

+Real-world workloads _
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Evaluation

+Benchmarks with different input/output lengths

4+ ShareGPT: similar in and out
4+ OpenThoughts: short in, long out

4+ LooGLE: long in, short out

+2.74 %

With a 100 ms TBT SLO
target, the average
effective throughput is
significantly improved
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Thank you!
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