
Optimizing SLO-oriented LLM 

Serving with PD-Multiplexing

Presenter: Yang Zhou

Oct 30, 2025



2

Background: LLM inference

✦LLM architecture



KV KV KVKVKVKV

KVKV

3

Background: LLM inference

✦LLM architecture

✦LLM inference process

User1

User2

P

P

PD D D

D D D

D D D
KV

①Being preempted for continuous batching

②KV cache reusing



4

Background: LLM inference

✦LLM architecture

✦LLM inference process

How to guarantee SLO, while improving goodput?

KV KV KVKVKVKV

KVKV

User1

User2

P

P

PD D D

D D D

D D D
KV

①Being preempted for continuous batching

②KV cache reusing



5

Existing solutions

✦Static PDD, Dynamic PDD, Chunked-prefill

✔ Meets SLO requirements for TTFT and TBT

✘ Cannot adapt to dynamic workload changes, leading to 

resource waste on certain nodes

✘ KV cache and model weights are separated, shrinking the KV 

cache pool, lowering cache hit rate, and degrading multi-turn 

dialogue performance

✘ Relies on high-performance interconnects between nodes to 

transfer KV data, requiring complex point-to-point 

communication implementations



6

Existing solutions

✦Static PDD, Dynamic PDD, Chunked-prefill

✔ Meets SLO requirements for TTFT and TBT

✔ Can dynamically adjust the resource ratio between Prefill 

and Decode to adapt to workload changes

✘ Resource allocation changes are at the GPU 

granularity — if either compute or memory needs 

adjustment, both must change — thus resource waste 

still exists

✘ Requires KV cache migration and cannot reuse KV cache 

across requests, resulting in redundant recomputation



7

Existing solutions

✦Static PDD, Dynamic PDD, Chunked-prefill

✔ Meets SLO requirements for TBT

✔ Can dynamically adjust the resource ratio between Prefill and

Decode to adapt to workload changes

✘ Requires balancing between SLO and high utilization — a small

TBT SLO target can lead to idle resources

✘ For long sequences, as the reused KV cache computation

increases, the system may even fail to meet the TBT SLO



8

Drift: LLM Inference with Efficient SLO Guarantee

✦Design goals

✦Freely match the compute ratio between Prefill and Decode (PD)

✦Allow Prefill/Decode resources to change dynamically with the workload

✦Decouple compute allocation from memory

✦Changes in compute resources do not affect memory layout—especially the design of 

the KV cache pool

✦PD execution is mutually independent

✦Prefill and Decode only perform necessary synchronization, with no need to trade off 

between SLO and utilization



9

A New Paradigm for LLM inference: Spatial 
Prefill–Decode Co-Execution

✦Using spatial multiplexing, Prefill and Decode are co-located across all GPUs 
within a single node. By adjusting the number of SMs allocated to each, the 
system can meet the desired SLO requirements.

✔ Flexible PD compute ratio 

matching

✔ Decoupled compute 

allocation from memory

✔ Independent execution of 

Prefill and Decode



10

Prefill–Decode Spatial Multiplexing Mechanism

✦Basic Prefill–Decode Spatial Multiplexing Execution

Prefill

Decode

C
o

m
p

u
te

 r
e
so

u
rc

e
s

Prefill

Decode Decode

Prefill

Decode

TTFT

TBT TBT TBT TBT

TTFT TTFT

A large time gap between 
Prefill and Decode execution 
leads to bubbles (idle periods).

All Decodes finish



11

Prefill–Decode Spatial Multiplexing Mechanism

✦Split Prefill by Transformer Blocks to align Prefill and 
Decode execution times, thereby reducing idle bubbles.

PBs

Decode

Prefill Blocks（PBs）

Decode Decode

PBs

Decode

TTFT

TBT TBT TBT TBT

TTFT TTFT

PBs

C
o

m
p

u
te

 r
e
so

u
rc

e
s



12

Prefill–Decode Spatial Multiplexing Mechanism

✦SLO-Aware Scheduling Method

•Prioritize meeting the TBT SLO by allocating just enough SMs to the Decode 

phase. 

•The remaining SMs are assigned to Prefill to maximize its execution speed, 

thereby achieving high throughput while maintaining SLO guarantees.



✦Real-world workloads

13

Evaluation

✦ Setting：

8×A100-SXM4-80GB

✦ Trace：

Mooncake Trace

While guaranteeing 

TBT SLO, significantly 

accelerate P99 TTFT.

+3.29×



✦Benchmarks with different input/output lengths

14

Evaluation

✦ ShareGPT：similar in and out

✦ OpenThoughts：short in, long out

✦ LooGLE：long in, short out

With a 100 ms TBT SLO 

target, the average 

effective throughput is 

significantly improved

+2.74×



Thank you!


	Slide 1: Optimizing SLO-oriented LLM Serving with PD-Multiplexing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

