
Yixin Dong

Carnegie Mellon University

Nov 4, 2025

Structured Generation and the New Trend

Context

Introduction01

Structural Tag03

XGrammar v102

Xgrammar v204

Introduction
Part 01

Large Language Model Generation with Structures

Problem: LLM Generation with Structures

Fig: https://arxiv.org/pdf/2304.11477

Code generation Function/tool calling Embodied Agents

Language Code JSON Schema DSL (e.g. PDDL)

Structured Outputs

Problem: LLM's Limited Ability with Complex Structures

Structures are increasingly complex
● Advanced agents
● Complex tool calling
● DSLs unfamiliar to LLMs

LLM's generation ability is limited
● On-device small LMs
● Compressed models

Background: Constrained Decoding

An example of constrained decoding with JSON Schema

Background: Constrained Decoding

Apply a per-token mask to
prevent generating invalid tokens
according to the structure

The overhead of the mask generator
is crucial!

Integration with LLM Serving Frameworks

● XGrammar is designed for easy integration and cross-platform support (with C++, Python,

and JavaScript APIs)

○ Its core is implemented in C++, so easy to port to other platforms

● XGrammar has already been integrated with vLLM, SGLang, MLC-LLM, WebLLM, VILA

XGrammar Open-Source Project
XGrammar has been adopted by these LLM serving engines:

And industrial collaborators:

⋯

⋯

XGrammar v1
Part 02

Flexible And Efficient Structured Generation Engine

XGrammar: Flexible and Efficient Structured Generation Engine

XGrammar is a structured generation library that features

Flexibility: Full support for context-free grammar

Efficiency: SOTA performance in constraint decoding

Zero-overhead JSON Schema generation

Integration: Easy to integrate with existing LLM serving frameworks

vLLM, MLC-LLM, SGLang, etc

More Powerful: Context-free Grammar

Prior methods mainly support regex as input
grammar

XGrammar support the more powerful CFG,
therefore supporting
● Regex
● JSON, JSON Schema
● SQL
● Python (w/ additional state maintained)

Previous Mask Generation Method

Check if each token matches,
then generate the mask

Every token checking is very slow!

Our optimization: most token
checking can be fast via
preprocessing

The Adaptive Token Mask Cache (Cont'd)

● Most tokens can be determined ahead

of time – context-independent tokens

● Plus a minority of tokens that need to

check at runtime – context-dependent

tokens

● So before running, we can compile a

token mask cache – for each node,

calculate accept/reject for the context-

independent tokens

Context-dependent tokens: less than 1% for Llama-3.1 w/ JSON grammar (1134 out of
128k)

Overlapping Mask Generation and LLM Inference

● Top: constrained decoding pipeline without overlapping

● Bottom: constrained decoding pipeline with overlapping

Evaluation

Overhead of masking logits.
(Llama-3-8B, AMD 7950X
CPU, RTX 4090)

Up to 3.5x on JSON schema
Up to 10x on CFG-guided

Time per output token for end-
to-end LLM inference. (Llama-
3-8B, AMD 7950X CPU, H100
GPU)

Up to 14x in JSON-schema
Up to 80x in CFG-guided

Multimodal Generation w/ VILA

XGrammar has been integrated into VILA to enable structural generation with multimodal input

{
"description": "The image ...",
"objects": [

"mountains made of meat",
"valleys and rivers made of sliced ham",
...

],
"setting": {

"location": "a surreal landscape made of meat",
"time_of_day": "daytime",
"lighting": "bright and sunny"

},
"colors": [

"pink and red for the mountains",
...

]
}

Question Schema

Structural Tags
Part 03

Flexible and Dynamic Structural Generation API

The Structural Tag

● If LLM outputs {"name": "get_weather" è We follow the schema of get_weather

● If LLM outputs {"name": "find_address" è We follow the schema of find_address

● Do dispatches between grammars

The Structural Tag
● The Structural Tag is a JSON DSL

● The Structural Tag provides a convenient way to describe output structure

● E.g. Tool Calling

Function-Calling

Allow any output until a trigger is

encountered, then dispatch to the

corresponding tag.

When the end tag is encountered,

the grammar will allow any

following output, until the next

trigger is encountered.

Types of Structural Tags
• Basic Formats:

• ConstStringFormat

• JSONSchemaFormat

• AnyTextFormat

• GrammarFormat

• RegexFormat

• QwenXMLParameterFormat

• Combinatorial Formats:

• SequenceFormat

• OrFormat

• TagFormat

• TriggeredTagsFormat

• TagsWithSeparatorFormat

Force Thinking
The output should start with a

reasoning part (<think>...</think>),

then can generate a mix of text and

tool calls.

Force non-thinking mode
Qwen-3 has a hybrid thinking mode

that allows switching between

thinking and non-thinking mode.

Thinking mode is the same as above,

while in non-thinking mode, the

output would start with a empty

thinking part <think></think>, and

then can generate any text.

XGrammar v2
Part 04

Zero Overhead Function Calling

Dispatching Dispatched

AC Automaton

Pattern[0]:
“<function=”

Pattern[1]: “<think>”

Pattern[2]: “<call>”

…

Grammar[0]

Grammar[1]

Grammar[2]

Patte
rn[0]

Pattern[1]
Pattern[2]

Dispatched Grammar Completed

Rule 1
Pos 0

PDA Parser

Rule 1
Pos 0

Rule 2
Pos 0

Rule 3
Pos 0

Earley Parser

Rule B
Pos 0

Rule A
Pos 0

Rule 2
Pos 0 Rule C

Pos 0

Rule A
Pos 0

Rule 3
Pos 0 Rule C

Pos 0

Rule B
Pos 0

Rule A
Pos 0

Rule B
Pos 0

Rule C
Pos 0

👎Worst
exponential states

👍linear states

Earley Parser

(all equivalent)

(all equivalent)

(all equivalent)

Thanks.
Repo: https://github.com/mlc-ai/xgrammar
Papers: https://arxiv.org/abs/2411.15100
Blog: https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-
structured-generation-with-xgrammar
Documentation: https://xgrammar.mlc.ai/docs/

https://github.com/mlc-ai/xgrammar
https://github.com/mlc-ai/xgrammar
https://github.com/mlc-ai/xgrammar
https://arxiv.org/abs/2411.15100
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://xgrammar.mlc.ai/docs/

