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Background



Background -LLM Serving at Scale

● LLM usage has exploded (e.g., ChatGPT’s hundreds of millions of users) on 

thousands of GPUs

● Throughput (tokens/sec) is critical for cost and performance

● LLMs are huge (billions of parameters) and use self-attention with large KV-

caches

● Conventional wisdom: inference is memory-bound (large models & attention 

cache).

● Common solutions use inter-device parallelism (data, tensor, pipeline), but these 

do not overlap resources within a GPU.



Background - Resource Bottlenecks in LLM 
Inference

● Inference ops vary: GEMMs (compute-bound) vs attention (memory/network-

bound) vs all-reduce (network)

● For a single batch, each op saturates its bottleneck resource (~80% individually), 

but sequential execution yields only ~40% total GPU compute utilization

● They find modern LLM serving compute-bound overall (GEMMs dominate)

● Sequential execution means while memory/network ops run, expensive compute 

units sit idle.



Background - Resource Bottlenecks in LLM 
Inference



Background -Limits of Current Serving Engines

● Common inter-device parallelism schemes include data parallelism, tensor 

(model) parallelism, and pipeline parallelism. But the GPU operation still largely 

sequential.

● none has achieved concurrency at the operation level inside the GPU.

● Goal: keep the GPU’s compute units as busy as possible, by finding 

opportunities to overlap other operations.



NanoFlow



NanoFlow - Key Idea

● NanoFlow’s core insight: overlap heterogeneous ops within a GPU by running 

them concurrently

● Split each input batch into nano-batches at the granularity of individual 

operations

● Duplicate operations for each nano-batch so that previously sequential ops can 

run in parallel.

● E.g., split a batch of requests so compute-heavy and memory-heavy operations 

operate on different parts simultaneously.



NanoFlow - Nano-Batching & Execution Units

● Nano-batch mechanism: Each large batch is divided into smaller “nano-

operations”, each handling a subset of data.

● Execution-unit scheduling: GPU SMs are partitioned so different operations run 

on different SM subsets

● Example: Assign most SMs to the compute-intensive GEMM nano-ops, leaving 

some SMs for memory-bound attention ops in parallel.

● Result: The GPU’s compute units are never idle during memory/network ops, 

boosting utilization



NanoFlow - Nano-Batching & Execution Units



NanoFlow - Nano-Batching & Execution Units



NanoFlow - Nano-Batching & Execution Units



NanoFlow - intra-device pipeline scheduler



NanoFlow - intra-device pipeline scheduler



NanoFlow - System Architecture

● Batch Scheduler: uses an asynchronous scheduling loop to reduce CPU 

overhead.

● KV-Cache Manager: Offloads per-request key-value cache to CPU/SSD for long 

dialogues

● The intra-device pipeline scheduler: find optimal nano-batch sizes and SM 

allocations



Evaluation



Evaluation - Experimental Setup

● a single node with 8 NVIDIA A100 GPUs (DGX).

● LLaMA-2-70B (70 billion parameters), LLaMA-3-70B, Mixtral-87B, LLaMA-3-8B, 

QWen2-72B, and Deepseek-67B.

● Workload:ShareGPT, LMSys Chat, and Splitwise datasets.

● Baseline: vLLM , DeepSpeed-FastGen, and TensorRT-LLM.



Evaluation - Throughput

● NanoFlow ~1.9× throughput of vLLM/DeepSpeed-

FastGen/TensorRT baselines

● Reaches up to 68.5% of the theoretical optimal 

token/s rate

● Applies to both synthetic constant-length and real 

workload traces.





Evaluation – Latency

● Result: NanoFlow sustains a much higher request rate before saturation, at 

similar low latency.

● At low rates, NanoFlow’s latency ≈ best baseline; at high rates, it maintains 

service (up to 1.64× higher QPS)

● Demonstrates that NanoFlow’s gains do not come at cost of much higher 

latency.



Evaluation – Latency



Evaluation – Ablation Study

● Configurations compared: Non-overlap baseline (no splitting), Nano-batch only 

(split but no overlap), and NanoFlow (full overlap).

● Nano-batch overhead: Splitting alone (without overlap) incurs some overhead 

(slower than non-overlap) due to fragmentation

● Overlap benefit: Enabling overlapped scheduling yields large speedups over 

baseline. 

● Offloading: Adding KV offload slowed pipeline by a small %, but greatly improves 

multi-turn throughput.



Evaluation – Ablation Study



Evaluation – Resource Utilization



Evaluation – Portability to Other Models



Conclusion



Conclusion

● NanoFlow introduces operation-level pipelining in LLM serving: overlapping 

compute, memory, and network within each GPU

● Through auto-tuned nano-batches and execution-unit scheduling, it achieves 

near-optimal throughput across models

● Key takeaway: Intra-device parallelism is a new frontier for high-throughput LLM 

inference.



Thank you
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