
NanoFlow: Towards Optimal Large

Language Model

Serving Throughput

Yiqiao Lin

Background

Background -LLM Serving at Scale

● LLM usage has exploded (e.g., ChatGPT’s hundreds of millions of users) on

thousands of GPUs

● Throughput (tokens/sec) is critical for cost and performance

● LLMs are huge (billions of parameters) and use self-attention with large KV-

caches

● Conventional wisdom: inference is memory-bound (large models & attention

cache).

● Common solutions use inter-device parallelism (data, tensor, pipeline), but these

do not overlap resources within a GPU.

Background - Resource Bottlenecks in LLM
Inference

● Inference ops vary: GEMMs (compute-bound) vs attention (memory/network-

bound) vs all-reduce (network)

● For a single batch, each op saturates its bottleneck resource (~80% individually),

but sequential execution yields only ~40% total GPU compute utilization

● They find modern LLM serving compute-bound overall (GEMMs dominate)

● Sequential execution means while memory/network ops run, expensive compute

units sit idle.

Background - Resource Bottlenecks in LLM
Inference

Background -Limits of Current Serving Engines

● Common inter-device parallelism schemes include data parallelism, tensor

(model) parallelism, and pipeline parallelism. But the GPU operation still largely

sequential.

● none has achieved concurrency at the operation level inside the GPU.

● Goal: keep the GPU’s compute units as busy as possible, by finding

opportunities to overlap other operations.

NanoFlow

NanoFlow - Key Idea

● NanoFlow’s core insight: overlap heterogeneous ops within a GPU by running

them concurrently

● Split each input batch into nano-batches at the granularity of individual

operations

● Duplicate operations for each nano-batch so that previously sequential ops can

run in parallel.

● E.g., split a batch of requests so compute-heavy and memory-heavy operations

operate on different parts simultaneously.

NanoFlow - Nano-Batching & Execution Units

● Nano-batch mechanism: Each large batch is divided into smaller “nano-

operations”, each handling a subset of data.

● Execution-unit scheduling: GPU SMs are partitioned so different operations run

on different SM subsets

● Example: Assign most SMs to the compute-intensive GEMM nano-ops, leaving

some SMs for memory-bound attention ops in parallel.

● Result: The GPU’s compute units are never idle during memory/network ops,

boosting utilization

NanoFlow - Nano-Batching & Execution Units

NanoFlow - Nano-Batching & Execution Units

NanoFlow - Nano-Batching & Execution Units

NanoFlow - intra-device pipeline scheduler

NanoFlow - intra-device pipeline scheduler

NanoFlow - System Architecture

● Batch Scheduler: uses an asynchronous scheduling loop to reduce CPU

overhead.

● KV-Cache Manager: Offloads per-request key-value cache to CPU/SSD for long

dialogues

● The intra-device pipeline scheduler: find optimal nano-batch sizes and SM

allocations

Evaluation

Evaluation - Experimental Setup

● a single node with 8 NVIDIA A100 GPUs (DGX).

● LLaMA-2-70B (70 billion parameters), LLaMA-3-70B, Mixtral-87B, LLaMA-3-8B,

QWen2-72B, and Deepseek-67B.

● Workload:ShareGPT, LMSys Chat, and Splitwise datasets.

● Baseline: vLLM , DeepSpeed-FastGen, and TensorRT-LLM.

Evaluation - Throughput

● NanoFlow ~1.9× throughput of vLLM/DeepSpeed-

FastGen/TensorRT baselines

● Reaches up to 68.5% of the theoretical optimal

token/s rate

● Applies to both synthetic constant-length and real

workload traces.

Evaluation – Latency

● Result: NanoFlow sustains a much higher request rate before saturation, at

similar low latency.

● At low rates, NanoFlow’s latency ≈ best baseline; at high rates, it maintains

service (up to 1.64× higher QPS)

● Demonstrates that NanoFlow’s gains do not come at cost of much higher

latency.

Evaluation – Latency

Evaluation – Ablation Study

● Configurations compared: Non-overlap baseline (no splitting), Nano-batch only

(split but no overlap), and NanoFlow (full overlap).

● Nano-batch overhead: Splitting alone (without overlap) incurs some overhead

(slower than non-overlap) due to fragmentation

● Overlap benefit: Enabling overlapped scheduling yields large speedups over

baseline.

● Offloading: Adding KV offload slowed pipeline by a small %, but greatly improves

multi-turn throughput.

Evaluation – Ablation Study

Evaluation – Resource Utilization

Evaluation – Portability to Other Models

Conclusion

Conclusion

● NanoFlow introduces operation-level pipelining in LLM serving: overlapping

compute, memory, and network within each GPU

● Through auto-tuned nano-batches and execution-unit scheduling, it achieves

near-optimal throughput across models

● Key takeaway: Intra-device parallelism is a new frontier for high-throughput LLM

inference.

Thank you

	Slide 1: NanoFlow: Towards Optimal Large Language Model Serving Throughput
	Slide 2: Background
	Slide 3: Background -LLM Serving at Scale
	Slide 4: Background - Resource Bottlenecks in LLM Inference
	Slide 5: Background - Resource Bottlenecks in LLM Inference
	Slide 6: Background -Limits of Current Serving Engines
	Slide 7: NanoFlow
	Slide 8: NanoFlow - Key Idea
	Slide 9: NanoFlow - Nano-Batching & Execution Units
	Slide 10: NanoFlow - Nano-Batching & Execution Units
	Slide 11: NanoFlow - Nano-Batching & Execution Units
	Slide 12: NanoFlow - Nano-Batching & Execution Units
	Slide 13: NanoFlow - intra-device pipeline scheduler
	Slide 14: NanoFlow - intra-device pipeline scheduler
	Slide 15: NanoFlow - System Architecture
	Slide 16: Evaluation
	Slide 17: Evaluation - Experimental Setup
	Slide 18: Evaluation - Throughput
	Slide 19
	Slide 20: Evaluation – Latency
	Slide 21: Evaluation – Latency
	Slide 22: Evaluation – Ablation Study
	Slide 23: Evaluation – Ablation Study
	Slide 24: Evaluation – Resource Utilization
	Slide 25: Evaluation – Portability to Other Models
	Slide 26: Conclusion
	Slide 27: Conclusion
	Slide 28: Thank you

