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Background -LLM Serving at Scale

e LLM usage has exploded (e.g., ChatGPT’s hundreds of millions of users) on
thousands of GPUs

e Throughput (tokens/sec) is critical for cost and performance

e LLMs are huge (billions of parameters) and use self-attention with large KV-
caches

e Conventional wisdom: inference is memory-bound (large models & attention
cache).

e Common solutions use inter-device parallelism (data, tensor, pipeline), but these

do not overlap resources within a GPU.
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Background - Resource Bottlenecks in LLM
Inference

e Inference ops vary: GEMMs (compute-bound) vs attention (memory/network-
bound) vs all-reduce (network)

e For a single batch, each op saturates its bottleneck resource (~80% individually),
but sequential execution yields only ~40% total GPU compute utilization

e They find modern LLM serving compute-bound overall (GEMMs dominate)

e Sequential execution means while memory/network ops run, expensive compute

units sit idle.

COMPUTER SCIENCE




Background - Resource Bottlenecks in LLM
Inference
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Background -Limits of Current Serving Engines

e Common inter-device parallelism schemes include data parallelism, tensor
(model) parallelism, and pipeline parallelism. But the GPU operation still largely
sequential.

e none has achieved concurrency at the operation level inside the GPU.

e Goal: keep the GPU’s compute units as busy as possible, by finding

opportunities to overlap other operations.
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NanoFlow
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NanoFlow - Key Idea

e NanoFlow’s core insight: overlap heterogeneous ops within a GPU by running
them concurrently

e Split each input batch into nano-batches at the granularity of individual
operations

e Duplicate operations for each nano-batch so that previously sequential ops can
run in parallel.

e E.g., split a batch of requests so compute-heavy and memory-heavy operations

operate on different parts simultaneously.
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NanoFlow - Nano-Batching & Execution Units

e Nano-batch mechanism: Each large batch is divided into smaller “nano-
operations”, each handling a subset of data.

e Execution-unit scheduling: GPU SMs are partitioned so different operations run
on different SM subsets

e Example: Assign most SMs to the compute-intensive GEMM nano-ops, leaving
some SMs for memory-bound attention ops in parallel.

e Result: The GPU’s compute units are never idle during memory/network ops,

boosting utilization
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NanoFlow - Nano-Batching & Execution Units
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NanoFlow - Nano-Batching & Execution Units
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NanoFlow - Nano-Batching & Execution Units

[ Size of Nano-Batches ]
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NanoFlow - intra-device pipeline scheduler
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NanoFlow - intra-device pipeline scheduler
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Search time: ~30 min
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NanoFlow - System Architecture

e Batch Scheduler: uses an asynchronous scheduling loop to reduce CPU

overhead.

e KV-Cache Manager: Offloads per-request key-value cache to CPU/SSD for long
dialogues

e The intra-device pipeline scheduler: find optimal nano-batch sizes and SM

allocations
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Evaluation
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Evaluation - Experimental Setup

e a single node with 8 NVIDIA A100 GPUs (DGX).

e LLaMA-2-70B (70 billion parameters), LLaMA-3-70B, Mixtral-87B, LLaMA-3-8B,
QWen2-72B, and Deepseek-67B.

e Workload:ShareGPT, LMSys Chat, and Splitwise datasets.

e Baseline: vLLM , DeepSpeed-FastGen, and TensorRT-LLM.
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Evaluation - Throughput

e NanoFlow ~1.9x throughput of vLLM/DeepSpeed:
FastGen/TensorRT baselines
e Reaches up to 68.5% of the theoretical optimal

token/s rate
e Applies to both synthetic constant-length and real

workload traces.

- LM e DeepSpeed-FasiGen TenscarfT-LLM NanoFlow (Ourd)

OO SPEETAIm BT o]

-
L
=
=

1

Per-GPU Token
Throughput (Rokens/s)
(=]

(=]
1=

o 8
Fi

Input 512 Input 1024 Input 512
Qutput 512 Output 512 Qutput 1024

(a) LLaMA-2-708, & GPU, TP=8, Constant Input & Output Length

—
wn
o
=]

B

1

=
(=]
=

Per-GM Token
Throughput (bokens/'s)
W
o
=)
b

o Splitwise LMSYS-Chat ShareGPT

(b) LLaMA-2-70B, 8 GPU, TP=§, Input & Output Length from Dataset

COMPUTER SCIENCE



- vLLM B DeepSpeed-FastGen - TensorRT-LLM e NanoFlow (Qurs)

------ optimal=1857 -------- e

1286 1263 1712

= = ]
w o wu o
o © ©o o
e e < @

Per-GPU Token
Throughput (tokens/s)

e

Input 512 Input 1024 Input 512
Output 512 Output 512 Output 1024

(a) LLaMA-2-70B, 8 GPU, TP=8, Constant Input & Output Length

] — optimal=1B57 -----ccrmmmmmmoor e

1272

1259 1247

= = ]
u o wu o
o © o©o o
e 2 2 @

Per-GPU Token
Throughput (tokens/s)

UCDAVIS

COMPUTER SCIENCE

<

LMSYS-Chat ShareGPT

Splitwise
(b) LLaMA-2-70B, 8 GPU, TP=8, Input & Output Length from Dataset



Evaluation — Latency

similar low latency.

service (up to 1.64x higher QPS)
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Evaluation — Latency
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Evaluation — Ablation Study

e Configurations compared: Non-overlap baseline (no splitting), Nano-batch only
(split but no overlap), and NanoFlow (full overlap).

e Nano-batch overhead: Splitting alone (without overlap) incurs some overhead
(slower than non-overlap) due to fragmentation

e Overlap benefit: Enabling overlapped scheduling yields large speedups over
baseline.

e Offloading: Adding KV offload slowed pipeline by a small %, but greatly improves
multi-turn throughput.
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Evaluation — Ablation Study
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Evaluation — Portability to Other Models
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Conclusion
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Conclusion

e NanoFlow introduces operation-level pipelining in LLM serving: overlapping
compute, memory, and network within each GPU

e Through auto-tuned nano-batches and execution-unit scheduling, it achieves
near-optimal throughput across models

e Key takeaway: Intra-device parallelism is a new frontier for high-throughput LLM

inference.
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Thank you
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