NanoFlow: Towards Optimal Large
Language Model
Serving Throughput

Kan Zhu, University of Washington; Yufei Gao, Tsinghua University and University
of Washington; Yilong Zhao, University of Washington and University of Californio,
Berkeley; Liangyu Zhao, University of Washington; Gefei Zuo, University of Michigarn;
Yile Gu and Dedong Xie, University of Washington; Tian Tang and Qinyu Xu,
Tsinghua University and University of Washington, Zihao Ye, Keisuke Kamahori,
and Chien-Yu Lin, University of Washington, Ziren Wang, Tsinghua University and
University of Washington; Stephanie Wang, Arvind Krishnamurthy,
and Baris Kasikci, University of Washington

Yigiao Lin

COMPUTER SCIENCE

Background

COMPUTER SCIENCE

Background -LLM Serving at Scale

e LLM usage has exploded (e.g., ChatGPT’s hundreds of millions of users) on
thousands of GPUs

e Throughput (tokens/sec) is critical for cost and performance

e LLMs are huge (billions of parameters) and use self-attention with large KV-
caches

e Conventional wisdom: inference is memory-bound (large models & attention
cache).

e Common solutions use inter-device parallelism (data, tensor, pipeline), but these

do not overlap resources within a GPU.
COMPUTER SCIENCE

Background - Resource Bottlenecks in LLM
Inference

e Inference ops vary: GEMMs (compute-bound) vs attention (memory/network-
bound) vs all-reduce (network)

e For a single batch, each op saturates its bottleneck resource (~80% individually),
but sequential execution yields only ~40% total GPU compute utilization

e They find modern LLM serving compute-bound overall (GEMMs dominate)

e Sequential execution means while memory/network ops run, expensive compute

units sit idle.

COMPUTER SCIENCE

Background - Resource Bottlenecks in LLM
Inference

o
Atiention . .

> W Oparation N
Prefill Prafill Up *
Requesls ﬂ Atterdion]
i * = WK — v 2> W a |3 |3 Davam 7|

Dharcanchi
Requasis ﬁ Decode
— W W -

J

M ultipy
AR |

LayerMomm
¥

L 4

LayerNorm

Embexdding
Layariorm

KN cach

Attambon

— | —

[

Weight ﬁ KV cache 1 n
(sharad by balches) {unigue par-batch) = All Galhar

% & @ e
L ==y iy B

Compute-bound operation Metwork-bound operation

Memory-bound operation

COMPUTER SCIENCE

Background -Limits of Current Serving Engines

e Common inter-device parallelism schemes include data parallelism, tensor
(model) parallelism, and pipeline parallelism. But the GPU operation still largely
sequential.

e none has achieved concurrency at the operation level inside the GPU.

e Goal: keep the GPU’s compute units as busy as possible, by finding

opportunities to overlap other operations.

COMPUTER SCIENCE

NanoFlow

COMPUTER SCIENCE

NanoFlow - Key Idea

e NanoFlow’s core insight: overlap heterogeneous ops within a GPU by running
them concurrently

e Split each input batch into nano-batches at the granularity of individual
operations

e Duplicate operations for each nano-batch so that previously sequential ops can
run in parallel.

e E.g., split a batch of requests so compute-heavy and memory-heavy operations

operate on different parts simultaneously.

COMPUTER SCIENCE

NanoFlow - Nano-Batching & Execution Units

e Nano-batch mechanism: Each large batch is divided into smaller “nano-
operations”, each handling a subset of data.

e Execution-unit scheduling: GPU SMs are partitioned so different operations run
on different SM subsets

e Example: Assign most SMs to the compute-intensive GEMM nano-ops, leaving
some SMs for memory-bound attention ops in parallel.

e Result: The GPU’s compute units are never idle during memory/network ops,

boosting utilization

COMPUTER SCIENCE

NanoFlow - Nano-Batching & Execution Units

Request
Batch

Nano-batches

COMPUTER SCIENCE

NanoFlow - Nano-Batching & Execution Units

Nano-batch Design Space

[MNumber of Nano-Batches]
]

DD

]

]

| :

DD |

]

X :

—— b

Smaller

i i
Batch Size Qverhead

COMPUTER SCIENCE

NanoFlow - Nano-Batching & Execution Units

[Size of Nano-Batches]

COMPUTER SCIENCE

NanoFlow - intra-device pipeline scheduler

Outputs
Inputs
NanoBatch Num

Execution Time Map Mixed Integer
Op,B -t Linear Programming

NanoBatch Size

Dependency
DAG

NanoOp Ordering

COMPUTER SCIENCE

NanoFlow - intra-device pipeline scheduler

Inputs

Execution Time Map

Op,B,R -t Outputs
Dependency Mixed Integer

DAG Linear Programming Resource Allocation
NanoBatch Num . R

NanoBatch Size

NanoOp Ordering

Search time: ~30 min

COMPUTER SCIENCE

NanoFlow - System Architecture

e Batch Scheduler: uses an asynchronous scheduling loop to reduce CPU

overhead.

e KV-Cache Manager: Offloads per-request key-value cache to CPU/SSD for long
dialogues

e The intra-device pipeline scheduler: find optimal nano-batch sizes and SM

allocations

COMPUTER SCIENCE

Evaluation

COMPUTER SCIENCE

Evaluation - Experimental Setup

e a single node with 8 NVIDIA A100 GPUs (DGX).

e LLaMA-2-70B (70 billion parameters), LLaMA-3-70B, Mixtral-87B, LLaMA-3-8B,
QWen2-72B, and Deepseek-67B.

e Workload:ShareGPT, LMSys Chat, and Splitwise datasets.

e Baseline: vLLM , DeepSpeed-FastGen, and TensorRT-LLM.

COMPUTER SCIENCE

Evaluation - Throughput

e NanoFlow ~1.9x throughput of vLLM/DeepSpeed:
FastGen/TensorRT baselines
e Reaches up to 68.5% of the theoretical optimal

token/s rate
e Applies to both synthetic constant-length and real

workload traces.

- LM e DeepSpeed-FasiGen TenscarfT-LLM NanoFlow (Ourd)

OO SPEETAIm BT o]

-
L
=
=

1

Per-GPU Token
Throughput (Rokens/s)
(=]

(=]
1=

o 8
Fi

Input 512 Input 1024 Input 512
Qutput 512 Output 512 Qutput 1024

(a) LLaMA-2-708, & GPU, TP=8, Constant Input & Output Length

—
wn
o
=]

B

1

=
(=]
=

Per-GM Token
Throughput (bokens/'s)
W
o
=)
b

o Splitwise LMSYS-Chat ShareGPT

(b) LLaMA-2-70B, 8 GPU, TP=§, Input & Output Length from Dataset

COMPUTER SCIENCE

- vLLM B DeepSpeed-FastGen - TensorRT-LLM e NanoFlow (Qurs)

------ optimal=1857 -------- e

1286 1263 1712

= =]
w o wu o
o © ©o o
e e < @

Per-GPU Token
Throughput (tokens/s)

e

Input 512 Input 1024 Input 512
Output 512 Output 512 Output 1024

(a) LLaMA-2-70B, 8 GPU, TP=8, Constant Input & Output Length

] — optimal=1B57 -----ccrmmmmmmoor e

1272

1259 1247

= =]
u o wu o
o © o©o o
e 2 2 @

Per-GPU Token
Throughput (tokens/s)

UCDAVIS

COMPUTER SCIENCE

<

LMSYS-Chat ShareGPT

Splitwise
(b) LLaMA-2-70B, 8 GPU, TP=8, Input & Output Length from Dataset

Evaluation — Latency

similar low latency.

service (up to 1.64x higher QPS)

#— wLLM

_1pao . - -
= | -
T - o f
BT .e
gf ™ ’ A
HiE 400 f /
- '
§ a0 -

oL a—etEtT

Z5 50 7.5 100 125 150 17.%
66 B2

Request rate (reqis)

(a) Splitwise

DeepSpeed-FastGen

Mormaiped lalency
Imamken|

1000
BOO
BEOO
400

200 preraraesfrrpra
ok

- TensorfT-LLM

11 a1
Request rate [reqis)

() LMSYS-Chat-1M

- NanoF low {Curs)

Result: NanoFlow sustains a much higher request rate before saturation, at

At low rates, NanoFlow’s latency = best baseline; at high rates, it maintains

Demonstrates that NanoFlow’s gains do not come at cost of much higher

1000
0D
¥ Bo0
% 400

Mormalized latency
ms &okopn|

= 200
o

o/

;
))

v

Y e ——

1]

g :
5 1 15 |
163

104
Request rate {regis)

(c) ShareGPT

20

R SCIENCE

Evaluation — Latency

e LR

1

E & 8 8
O O o O

Marmaieed laten oy
s ok]

&
=

L=

50 [7.57 100 125 150 175
BBk H2
Aequest rate: (regis)

ia) Spl itwise

Hormalized katency

&k

DespSpeed-Fastien == TensorfT-LLM == [Wanoflow {Ours)
1000 1000
= {
B0 §_ BOD f
55 '
GO0 EE. EOD |
400 iE 400 ..?
200 e s g —————— = agp ' ——
; i 5 - ..v_{'t—_n-—-'lf. i
0 P I [40 50 %a 5 1 15 |
121 104 164

ir1
Request rate [negisl

(b LMSYS5-Chat-1M

Reguest rate {reqis)

{c) Share(GPT

COMPUTER SCIENCE

Evaluation — Ablation Study

e Configurations compared: Non-overlap baseline (no splitting), Nano-batch only
(split but no overlap), and NanoFlow (full overlap).

e Nano-batch overhead: Splitting alone (without overlap) incurs some overhead
(slower than non-overlap) due to fragmentation

e Overlap benefit: Enabling overlapped scheduling yields large speedups over
baseline.

e Offloading: Adding KV offload slowed pipeline by a small %, but greatly improves
multi-turn throughput.

COMPUTER SCIENCE

Evaluation — Ablation Study

E MNon-overlap WM Nanobatch-only 9% ManoFlow B NanoFlow-offload

et
Ln
o
<

[
=
o
=

LA
o
=

Per-GPU Token
Throughput (tokens/s)

Input 1024 Input 512

Output 0 Output 512 Output 512 Qutput 1024 -
~mrer e mm wm ENCE

Input 512 Input 512

Percentagai®)

F’F"'I'ﬂﬂli?lgﬁ'.hl
—_ =

[T B [T R
E o & O A S o A O wn

Parceritacs| %]

Evaluation —

Resource Utilization

g

—— COmdine

— ETgy

-

U
L =

= Herak

|

| 500

(a) Non-overlap pipeline resource usage

1000 1500
Tirrss [LEs)

20060

2500

Joad

100

- E— —

£ 5

(]

g s

=

Einminll
od ! O o UL u L
100

g | — e

[’J_LI—.I—

£ 5p |

=

g 29

& o J Ll 1
108

E - == Hpbaori

§ 50

E 25

e % LI M

L] =00 1000 1500 2000 2500

Time {ush

(b} NanoFlow resource usage

3000

Evaluation — Portability to Other Models

e wllm NanoFlow
100 F-----mmmmmmmmmmmm e mm e e e e s OPHIMIE] = mmmmm e
%_‘ 80 78.5%
7 70.6% 67.4%
& 59.1%
o2 60 50.4%
=
EE 401 32.0%1306 30.8% 1213 27,45 31.99 12736
= A% 1147
o 5188
= 20
9.7%

Llama-3-70B Qwen2-72B Deepseek-67B Mixtral-8x7B Llama-3-8B

COMPUTER SCIENCE

Conclusion

COMPUTER SCIENCE

Conclusion

e NanoFlow introduces operation-level pipelining in LLM serving: overlapping
compute, memory, and network within each GPU

e Through auto-tuned nano-batches and execution-unit scheduling, it achieves
near-optimal throughput across models

e Key takeaway: Intra-device parallelism is a new frontier for high-throughput LLM

inference.

COMPUTER SCIENCE

Thank you

COMPUTER SCIENCE

	Slide 1: NanoFlow: Towards Optimal Large Language Model Serving Throughput
	Slide 2: Background
	Slide 3: Background -LLM Serving at Scale
	Slide 4: Background - Resource Bottlenecks in LLM Inference
	Slide 5: Background - Resource Bottlenecks in LLM Inference
	Slide 6: Background -Limits of Current Serving Engines
	Slide 7: NanoFlow
	Slide 8: NanoFlow - Key Idea
	Slide 9: NanoFlow - Nano-Batching & Execution Units
	Slide 10: NanoFlow - Nano-Batching & Execution Units
	Slide 11: NanoFlow - Nano-Batching & Execution Units
	Slide 12: NanoFlow - Nano-Batching & Execution Units
	Slide 13: NanoFlow - intra-device pipeline scheduler
	Slide 14: NanoFlow - intra-device pipeline scheduler
	Slide 15: NanoFlow - System Architecture
	Slide 16: Evaluation
	Slide 17: Evaluation - Experimental Setup
	Slide 18: Evaluation - Throughput
	Slide 19
	Slide 20: Evaluation – Latency
	Slide 21: Evaluation – Latency
	Slide 22: Evaluation – Ablation Study
	Slide 23: Evaluation – Ablation Study
	Slide 24: Evaluation – Resource Utilization
	Slide 25: Evaluation – Portability to Other Models
	Slide 26: Conclusion
	Slide 27: Conclusion
	Slide 28: Thank you

