
Taming Throughput-Latency Tradeoff 
in LLM Inference With Sarathi-Serve

1

Authors: Amey Agarwal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, 
Bhargav Gulvani, Alexey Tumanov, Ramachandran Ramjee

Presenter: Sakthi Karimanal 



Rise of LLMs 

& Inference Systems 
2

(2021) (2022) (2023)

20-30x Higher 
Throughput



3Image credits: Redpanda

Can we maintain low latency 
with high throughput?



Demo 📺

4



In this talk…
 

 

 

 

Latency-throughput tradeoff: Analyzing LLM batching policies

Finding a free lunch: Arithmetic Intensity Slack in LLM Inference

Stall-free batching: Leveraging chunked prefill to overcome the 
latency-throughput tradeoff

Evaluations: Key results and analysis

5



What causes the latency-throughput 
tradeoff in LLM inference systems? 

6



 Background: LLM Inference 101

7

Prefill Decode

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Is tomato a 
fruit? 

Yes it is

High 
Parallelism

GPU Utilization

Low 
Parallelism

GPU Utilization



Background: LLM Inference Process

● Token passed from prefill phase through decoder to 
generate the next token until EOS

● Decode phase requires a full forward pass of the model 
○ Leads to low compute utilization 

● Multi-GPU Inference
○ Tensor-Parallelism splits the model weights and 

KV-cache equally across GPU workers
○ Pipeline-Parallelism splits the model layer-wise where 

each GPU is responsible for a subset layers
● Scheduling Policies 

○ Prefill and Decode Prioritizing
○ Iteration-Level batching



How to improve parallelism during 
decode phase? 

Batching 

8



9

t=0

A, B enter

A B

Timeline

Ad , Bd Ad , Bd

🥞 Background: Batching LLM Inference

p p
…

Prefill Batched 
Decode

Decode efficiency increases linearly with batch size 

🔼 Batch size ⇒ 🔼 Throughput
🚀



Motivation

● Low compute utilization during decodes
● Throughput-Latency Trade-off

○ Request-level batching has low TBT latency at cost of 
throughput

○ Iteration-level has higher throughput but more 
batches lead to latency spikes

● Pipeline bubbles waste GPU cycles
○ When waiting for micro batches to complete in prior 

stages
○ Can also arise due to non-uniform batch execution 

times



 The Prefill-Decode Scheduling Conundrum 

…



1

1

⚖ The Latency-Throughput Tradeoff

Sarathi-Serve

FasterTransformer
 

Orca
Prefill Prioritizing 

Decode Latency

vLLM
 

Th
ro

ug
hp

ut

Decode prioritizing

Prefill prioritizing

Iteration-level 
batching

Paged 
Attention

Existing batching policies make a harsh latency-throughput tradeoff 



How can be we achieve both high 
throughput and low-latency? 

12



Sarathi-Serve

● Iteration-level scheduler
● Chunked-Prefills and Stall-free batching

○ Determine token budget
● SFB and chunked-prefills ensure uniform compute in 

hybrid batches 
○ Reduces bubbles for PP, leading to scalable 

deployments
● Implemented on top of the open-source implementation 

of vLLM
● Used FlashAttention v2 and FlashInfer kernels for paged 

chunk prefill



Determining Token Budget

● TBT minimization
○ Smaller token budget is preferable

● Chunked-prefill computation
○ Overhead from memory reads

● Tile-quantization effect also affects the choice of token 
budget
○ Happens when matrix dimensions aren’t divisible 

by the tile size so thread blocks perform 
extraneous computation

● Hardware properties can affect token budget as well



13

🔎 The Prefill-Decode Scheduling Conundrum 

Ad , Bd

Ad , Bd

C

Cp + Ad , Bd

Ad , Bd
B

D

B C

Ad , Bd, Cd, Ddp

d

p

d p

 C, D enter

Timeline

Decodes for requests A, B stalled 

A exits B exits
Low batch size poor throughput

O
pt

io
n 

2
O

pt
io

n 
1

…

…

💥

?



 Mixed Batching 

14

Mistral 7B on A100 

Idea
Fused computation of prefill and 
decodes

Challenge
Naively combining prefill and decode 
operations leads to increase in latency

vLLM

A D

Orca

A D

B

BP+ AD

A D, BDP

Latency = 8ms

Latency = 16ms

Latency = 24ms

Decode Latency SLO = 10ms



Key Insight

Prefill computation can be done at a 
marginal cost with careful batching

15



16

 Observation: Arithmetic Intensity Slack

Constrained 
due to memory 
overhead in 
decode phase

Latency 
dominated 
by weight 
fetch time
Independent 
of num tokens

Latency 
dominated 
by compute

 Grows linearly
with num tokens



Key Idea
 Split large prefills into smaller chunks 
just enough to consume the leftover 
compute budget in decode batches

 Stall-free Batching



Demo 📺

18



Evaluations 

19



Evaluation Setup



20

 Background: Performance Metrics

 Time to first token (TTFT): Time required for the first token to 
show up from the time user submits a request

Time between tokens (TBT): Latency between each output token

Capacity: Maximum QPS that can be served while satisfying 
latency SLOs



21

 Serving Capacity under SLOs

Setup
ShareGPT4 trace on on A100 GPUs with strict (S) and relaxed (R) latency SLOs

adapt using different 
chunk sizes

5-6x higher capacity 



21

 Throughput-Latency Trade Off



 

 

 

Problem: State-of-the-art systems sacrifice decode latency to achieve higher 
throughput

Key Insight - Low arithmetic intensity of decodes allows for adding compute 
intensive prefills with negligible decode latency cost

Key Results - We achieve optimality in both latency and throughput 
simultaneously leading up to 6x higher capacity under SLO constraints

Industry Adoption - Available in all major serving frameworks and more

22

 Summary


