Taming Throughput-Latency Tradeoff
in LLM Inference With Sarathi-Serve

Authors: Amey Agarwal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra,
Bhargav Gulvani, Alexey Tumanov, Ramachandran Ramjee

Presenter: Sakthi Karimanal

Rise of LLMs

Technology

—— Fast f —— LM
ChatGPT sets record for fastest-growing user base - as e%?ﬂ AMET (2092r)ca _.(_205@“)

>
analyst note é 1.0
S:blr(ur:::l:):z 7:33 AM PST - Updated a year ago 1 Aa < = °
o E 0.5 20-30x Higher
o E B Throughput .
® . o O-O 3 % ' ! !
Google’s carbon emissions surge 2770 5 10 15 20
nearly 50% due to Al energy demand Request rate (req/s)

PUBLISHED TUE, JUL 2 2024.3:41 PM EDT | UPDATED MON, JUL 8 2024.9:32 AM EDT

& Inference Systems

2

Can we maintain low latency
with high throughput?

®)

” Throughput 0 : (Latency

/ f Trade
Off

Image credits: Redpanda 3

In this talk...

<) Latency-throughput tradeoff: Analyzing LLM batching policies
“* Finding a free lunch: Arithmetic Intensity Slack in LLM Inference

#2 Stall-free batching: Leveraging chunked prefill to overcome the
latency-throughput tradeoff

- Evaluations: Key results and analysis

What causes the latency-throughput
tradeoff in LLM inference systems?

-| Background: LLM Inference 101

4 GPU Utilization * GPU Utilization
Prefill Decode
lteration1 — Iteration2 - lteration 3 — Iteration 4 -

I T » I

. |s tomato a Ves it =
fruit? .

]]

High Low
Parallelism Parallelism

Background: LLM Inference Process

e Token passed from prefill phase through decoder to
generate the next token until EOS

e Decode phase requires a full forward pass of the model
o Leads to low compute utilization
e Multi-GPU Inference

o Tensor-Parallelism splits the model weights and
KV-cache equally across GPU workers

o Pipeline-Parallelism splits the model layer-wise where

each GPU is responsible for a subset layers
e Scheduling Policies

o Prefill and Decode Prioritizing
o Iteration-Level batching

How to improve parallelism during
decode phase? (=

Batching

i
)
/)

 Background: Batching LLM Inference

Timeline
A, B enter
Ao 5, Ay Ay
t=0 T
Prefill Batched
Decode

Decode efficiency increases linearly with batch size ?

Batch size = [N Throughput

Motivation

e Low compute utilization during decodes
e Throughput-Latency Trade-off
o Request-level batching has low TBT latency at cost of
throughput
o Iteration-level has higher throughput but more
batches lead to latency spikes
e Pipeline bubbles waste GPU cycles
o When waiting for micro batches to complete in prior
stages
o Can also arise due to non-uniform batch execution
times

O The Prefill-Decode Scheduling Conundrum

Timeline
C, D enter vLLM Decodes for A, B stalled
A, B, C, D, AR oo
TBT without TBT with
prefill interference prefill interference
C, D enter Orca Decodes for A, B stalled
A,, B, C, D, A, B, A,,B,C,D,| ***
A exits
C,Denter FasterTransformer Prefills for C, D stalled
Aa’Ba Ad,Bﬂ| Ad’Bd Ba Bd Cp,Dp
A exits B exits
C, D enter Sarathi-Serve No stalls
Ay By Ay By Cpi | A By Cpp By CyDyy | By Cy Dy | *00
A exits B exits

Prefill
Prioritized
Schedules

Decode
Prioritized
Schedule

Stall-free
Schedule

4

4 The Latency-Throughput Tradeoff

A
i ® vLLM
Sarathi-Serve " Prefill prioritizing
E ,."'Paged
= /" Attention
(@] p
3 lteration-level . .‘ Orca
< batching .-~ Prefill Prioritizing
iy FasterTransformer
Decode prioritizing
- >
\J Decode Latency

Existing batching policies make a harsh latency-throughput tradeoff |

How can be we achieve both hig
throughput and low-latency? (=

h

12

Sarathi-Serve

e |[teration-level scheduler

e Chunked-Prefills and Stall-free batching
o Determine token budget

e SFB and chunked-prefills ensure uniform compute in
hybrid batches
o Reduces bubbles for PP, leading to scalable

deployments

e Implemented on top of the open-source implementation
of vLLM

e Used FlashAttention v2 and Flashinfer kernels for paged
chunk prefill

Determining Token Budget

e TBT minimization
o Smaller token budget is preferable
e Chunked-prefill computation
o Overhead from memory reads
e Tile-quantization effect also affects the choice of token
budget
o Happens when matrix dimensions aren’t divisible
by the tile size so thread blocks perform
extraneous computation
e Hardware properties can affect token budget as well

45 The Prefill-Decode Scheduling Conundrum

Timeline
— <, D, Ad.Bd, Cd,
% C,Denter |7 v /
0 Decodes for requests A, B stalled
a
\ o
S— 2
Agd ———- CBJ Ad, K
N
c
.0
a
o)
-
Ay Ay i i o
A exits B exits

Low batch size poor throughput

13

NN Decode-only @ Decode + Full Prefill

2 Mixed Batching

-~ Mistral 7B on A100
2 4004 7.8x =
- 20.3x
Id 2300-
ea = 200 -
. . o
Fused computation of prefill and £ 100 = 1.0x
.UX
@ 1.0
decodes =
1 32 64
Batch Size
Cha"enge VLLM Decode Latency SLO =10ms

operations leads to increase in latency

Naively combining prefill and decode - B, -

Latency = 8ms Latency = 24ms
Orca

A | e

Latency = Tems
14

Key Insight

Prefill computation can be done at a

marginal cost with careful batching

L)

LS

15

O Observation: Arithmetic Intensity Slack

Compute Bound Region - Low MBU

=

S

o

o
1

Latency
— dominated
by compute

1200 -

1000 Grows linearly

with num tokens

Sl Prefill

Arithmetic Intensity (FLOPs/bytes)

600 -
Balanced - Sarathi-Serve Latency

= —» dominated
Constrained 200 - by Weight
due to memory S code Memory Bound Region - Low MFU fetch time

i 0 - T T T T T T T T

overhead in 0 250 500 750 1000 1250 1500 1750 2000
decode phase Number of Tokens 16

& Stall-free Batching

Baseline - vLLM Decode Latency SLO =10ms

! !

Split large prefills into smaller chunks

just enough to consume the leftover Latency = 8ms Latency = 24ms
compute budget in decode batches Sarathi-Serve
| Gain!
B0y | Bty o]
A

Latency = 9ms
~Uniform inter-token latency
based on TBT SLO

18

Evaluations =

19

Evaluation Setup

Model Attention GPU Memory
“|Mechanism Configuration Total (per-GPU)
Mistral-7B| GQA-SW 1 A100 80GB (80GB)
Yi-34B| GQA 2 A100s (TP2) 160GB (80GB)
LLaMA2-70B| GQA 8 A40s (TP4-PP2) 384GB (48GB) Model relaxed SLO| strict SLO
Falcon-180B| GQA |4 A100sx2 nodes (TP4-PP2)| 640GB (80GB) ¢ P99 TBT (s) P99 TBT (s)
Mistral-7B 0.5 0.1
Yi-34B 1 0.2
LLaMA2-70B 5 1
Pataset Prompt Tokens Output Tokens Falcon-180B S 1
Median P90 Std. | Median P90 Std.
openchat_sharegpt4 1730 5696 2088 415 834 101
arxiv_summarization 7059 12985 3638 208 371 265

., Background: Performance Metrics

Time to first token (TTFT): Time required for the first token to

show up from the time user submits a request

Time between tokens (TBT): Latency between each output token

Capacity: Maximum QPS that can be served while satisfying

latency SLOs

20

=

Setup

= Serving Capacity under SLOs

adapt using different
- .
chunk sizes

ShareGPT4 trace on on AI00 GPUs with strict (S) and relaxed (R) latency SLOs

Max Capacity
(@) =
n o

o
S

B Orca vLLM [Sarathi-Serve

63x

5.62x

LLaMA2-70B Falcon-180B

5-6x higher capacity

21

~—@— vLLM-32 -~ vLLM-128 —o— S5S5-2048
—&@— vLLM-64 —A— SS5-512

g
n

>
(=]

Max Capacity
5

o
n

o
o

Mistral-7B

/ ® ©
h— A A iy
M

B>

010 0.15 020 025 030 035 040 045 0.50
P99 TBT SLO (s)

= Throughput-Latency Trade Off

=2

02 03 04 05 06 07
P99 TBT SLO (s)

0.8 0.9 1.0

21

— Summary

Problem: State-of-the-art systems sacrifice decode latency to achieve higher
throughput

. Key Insight - Low arithmetic intensity of decodes allows for adding compute
intensive prefills with negligible decode latency cost

- Key Results - We achieve optimality in both latency and throughput
simultaneously leading up to 6x higher capacity under SLO constraints

Industry Adoption - Available in all major serving frameworks and more

22

