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Rise of LLMs
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Can we maintain low latency
with high throughput?
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In this talk...

<) Latency-throughput tradeoff: Analyzing LLM batching policies
“* Finding a free lunch: Arithmetic Intensity Slack in LLM Inference

#2 Stall-free batching: Leveraging chunked prefill to overcome the
latency-throughput tradeoff

- Evaluations: Key results and analysis



What causes the latency-throughput
tradeoff in LLM inference systems?



-| Background: LLM Inference 101
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Background: LLM Inference Process

e Token passed from prefill phase through decoder to
generate the next token until EOS

e Decode phase requires a full forward pass of the model
o Leads to low compute utilization
e Multi-GPU Inference

o Tensor-Parallelism splits the model weights and
KV-cache equally across GPU workers

o Pipeline-Parallelism splits the model layer-wise where

each GPU is responsible for a subset layers
e Scheduling Policies

o Prefill and Decode Prioritizing
o Iteration-Level batching



How to improve parallelism during
decode phase? (=

Batching



i
)
/)

 Background: Batching LLM Inference
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Decode efficiency increases linearly with batch size ?

Batch size = [N Throughput



Motivation

e Low compute utilization during decodes
e Throughput-Latency Trade-off
o Request-level batching has low TBT latency at cost of
throughput
o Iteration-level has higher throughput but more
batches lead to latency spikes
e Pipeline bubbles waste GPU cycles
o When waiting for micro batches to complete in prior
stages
o Can also arise due to non-uniform batch execution
times



O The Prefill-Decode Scheduling Conundrum
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4 The Latency-Throughput Tradeoff
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How can be we achieve both hig
throughput and low-latency? (=
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Sarathi-Serve

e |[teration-level scheduler

e Chunked-Prefills and Stall-free batching
o Determine token budget

e SFB and chunked-prefills ensure uniform compute in
hybrid batches
o Reduces bubbles for PP, leading to scalable

deployments

e Implemented on top of the open-source implementation
of vLLM

e Used FlashAttention v2 and Flashinfer kernels for paged
chunk prefill



Determining Token Budget

e TBT minimization
o Smaller token budget is preferable
e Chunked-prefill computation
o Overhead from memory reads
e Tile-quantization effect also affects the choice of token
budget
o Happens when matrix dimensions aren’t divisible
by the tile size so thread blocks perform
extraneous computation
e Hardware properties can affect token budget as well



45 The Prefill-Decode Scheduling Conundrum
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NN Decode-only @ Decode + Full Prefill

2 Mixed Batching
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Key Insight

Prefill computation can be done at a

marginal cost with careful batching
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O Observation: Arithmetic Intensity Slack
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& Stall-free Batching
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Evaluations =
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Evaluation Setup

Model Attention GPU Memory
“|Mechanism Configuration Total (per-GPU)
Mistral-7B| GQA-SW 1 A100 80GB (80GB)
Yi-34B| GQA 2 A100s (TP2) 160GB (80GB)
LLaMA2-70B| GQA 8 A40s (TP4-PP2) 384GB (48GB) Model relaxed SLO| strict SLO
Falcon-180B| GQA |4 A100sx2 nodes (TP4-PP2)| 640GB (80GB) ¢ P99 TBT (s) P99 TBT (s)
Mistral-7B 0.5 0.1
Yi-34B 1 0.2
LLaMA2-70B 5 1
Pataset Prompt Tokens Output Tokens Falcon-180B S 1
Median P90 Std. | Median P90 Std.
openchat_sharegpt4 1730 5696 2088 415 834 101
arxiv_summarization 7059 12985 3638 208 371 265




., Background: Performance Metrics

Time to first token (TTFT): Time required for the first token to

show up from the time user submits a request

Time between tokens (TBT): Latency between each output token

Capacity: Maximum QPS that can be served while satisfying

latency SLOs
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Setup

= Serving Capacity under SLOs
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— Summary

Problem: State-of-the-art systems sacrifice decode latency to achieve higher
throughput

. Key Insight - Low arithmetic intensity of decodes allows for adding compute
intensive prefills with negligible decode latency cost

- Key Results - We achieve optimality in both latency and throughput
simultaneously leading up to 6x higher capacity under SLO constraints

Industry Adoption - Available in all major serving frameworks and more
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