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GPU Execution Model

A massive number of threads to execute an operation (kernel)

e Threads are grouped into warps.

e Threads within a warp can communicate by fast shuffle instructions or
cooperate to perform matrix multiply (quick).

e Warps within a thread block can communicate by reading from / writing to
shared memory (slow).
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GPU Memory Hierarchy

Comprise of high bandwidth memory (HBM), and on-chip SRAM (aka shared
memory).

SRAM: 19TB/s (20 MB)

Before execute an operation: HBM: 1.5 TB/s (40 GB)

e Load input from HBM to registers and SRAM
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Why Flash Attention v2 is proposed?

Language models with much longer context:

e GPT-4 [12] with context length 32k, MosaicML’s MPT with context length 65k,
and Anthropic’s Claude with context length 100k.

FlashAttention (v1) is still not as efficient as other primitives (GEMM):

e Modern GPUs have specialized compute units (e.g., Tensor Cores on Nvidia
GPUs) that makes matmul (matrix multiply) much faster.

e The forward pass only reaches 30-50% of the maximum throughput

e Optimized GEMM can reach up to 80-90% of the theoretical maximum device

throughput



What does FlashAttention v2 do?

e Algorithm: Tweak the algorithm from FlashAttention to reduce the number of
non-matmul FLOPs:

Non-matmul FLOPs is relatively more inefficient.
e Parallelism: Additionally parallelize over the sequence length:
Especially useful for long context.
e Work Partitioning: Decide how to partition the work between different warps.

Avoid communication between warp.



Recall: What does FlashAttention v1 do?
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Recall: What does FlashAttention v1 do?

Online softmax:

First Iteration

By computing attention with respect to each
block and rescaling the output, we get the
right answer at the end, while avoiding
expensive memory reads/writes of the
intermediate matrices S and P.
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FlashAttention2: Minor tweak to reduce non-matmul FLOPs
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FlashAttention2: Parallelism

FlashAttention1 parallelism over batch size and number of head.

e There are BS * #head thread blocks, each running on a Streaming multiprocessor.

V1: Parallelize over batch size and number of head.

|

V2: Parallelize over the b. h. and seq length dimension.

How to achieve parallelism over seq length?

V2: Swap order of loop



FlashAttention 1. How to achieve parallelism?

FlashAttention v1:

For j-th (K, V), for i-th Q, computer using Kj, Vj, Qi in SRAM, and update Oi, li, mi
in HBM
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batch_size =1, num_heads = 2, 2 blocks for parallelism.



FlashAttentionv2:How to achieve parallelism over seq length?
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batch_size =1, num_heads = 2
divide the seq length of Q.
8 blocks for parallelism.

FlashAttention v2
» Swap order of loop
« Parallelize outer loop

 Leads to improved occupancy

Forward pass
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Parallelize the workers (thread blocks) where

each worker takes care of a block of rows of
the attention matrix.



FlashAttentionv2: Work Partitioning Between Warps
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(a) FLASHATTENTION (b) FLASHATTENTION-2

Work partitioning between different warps in the forward pass



Benchmarking attention

agtention forward + badkward speed (A100 BOGE SXMA)
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Attention forward speed on A100 GPU

2X faster than FlashAttention

1.3X faster than Triton
10X faster than Pytorch

Reaches up to 230 TFLOPs/s, 73%
of the threoretical max on A100



End to End Performance

2.8X faster than baseline
1.3X faster than FlashAttention

Model Without FLASHATTENTION FLASHATTENTION FLASHATTENTION-2
GPT3-1.3B 2k context 142 TFLOPs/s 189 TFLOPs/s 196 TFLOPs/s
GPT3-1.3B 8k context 72 TFLOPS/s 170 TFLOPs/s 220 TFLOPs/s
GPT3-2.7B 2k context 149 TFLOPs/s 189 TFLOPs/s 205 TFLOPs/s
GPT3-2.7B 8k context 80 TFLOPs/s 175 TFLOPs/s 225 TFLOPs/s

Table 1: Training speed (TFLOPs/s/GPU) of GPT-style models on 8xA100 GPUs. FlashAttention-2
reaches up to 225 TFLOPs/s (72% model FLOPs utilization). We compare against a baseline running
without FlashAttention.



Summary

e FlashAttention2 is 2x faster than FlashAttention
e FlashAttention2 will also speed up training, finetuning, and inference

e Future Directions

o Device dependent
Hand-writing CUDA implementation, specially designed for specific attention implementation

O
o How the FlashAttention2 performs on sparse attention mechanisms
o Auto-tuning mechanisms for selecting optimal block sizes and partitioning strategies could

simplify the use of FlashAttention-2
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