
FlashAttention-2: Faster Attention with

Better Parallelism and Work Partitioning
Author: Tri Dao

11/13 2025
Presented by Shuang Ma

GPU Execution Model

A massive number of threads to execute an operation (kernel)

● Threads are grouped into warps.

● Threads within a warp can communicate by fast shuffle instructions or

cooperate to perform matrix multiply (quick).

● Warps within a thread block can communicate by reading from / writing to

shared memory (slow).

GPU Memory Hierarchy

Comprise of high bandwidth memory (HBM), and on-chip SRAM (aka shared

memory).

Before execute an operation:

● Load input from HBM to registers and SRAM

● Computes

● Load output to HBM

Why Flash Attention v2 is proposed?

Language models with much longer context:

● GPT-4 [12] with context length 32k, MosaicML’s MPT with context length 65k,
and Anthropic’s Claude with context length 100k.

FlashAttention (v1) is still not as efficient as other primitives (GEMM):

● Modern GPUs have specialized compute units (e.g., Tensor Cores on Nvidia
GPUs) that makes matmul (matrix multiply) much faster.

● The forward pass only reaches 30-50% of the maximum throughput
● Optimized GEMM can reach up to 80-90% of the theoretical maximum device

throughput

What does FlashAttention v2 do?

● Algorithm: Tweak the algorithm from FlashAttention to reduce the number of

non-matmul FLOPs:

Non-matmul FLOPs is relatively more inefficient.

● Parallelism: Additionally parallelize over the sequence length:

Especially useful for long context.

● Work Partitioning: Decide how to partition the work between different warps.

Avoid communication between warp.

Recall: What does FlashAttention v1 do?

Standard softmax: Online softmax:
Instead computes “local” softmax with respect to

each block and rescale to get the right output at the

end:

“local” softmax

rescale

Recall: What does FlashAttention v1 do?

Online softmax:
By computing attention with respect to each

block and rescaling the output, we get the
right answer at the end, while avoiding
expensive memory reads/writes of the

intermediate matrices S and P.

First Iteration

Second Iteration

FlashAttention2: Minor tweak to reduce non-matmul FLOPs

V2: Maintain un-scaled Version

V2: Maintain un-scaled Version

V2: Scale the final to get the right output

V1

FlashAttention2: Parallelism

FlashAttention1 parallelism over batch size and number of head.

● There are BS * #head thread blocks, each running on a Streaming multiprocessor.

V1: Parallelize over batch size and number of head.

V2: Parallelize over the b. h. and seq length dimension.

How to achieve parallelism over seq length?

V2: Swap order of loop

FlashAttention 1: How to achieve parallelism?

FlashAttention v1:

For j-th (K, V), for i-th Q, computer using Kj, Vj, Qi in SRAM, and update Oi, li, mi

in HBM

batch_size = 1，num_heads = 2, 2 blocks for parallelism.

FlashAttentionv2:How to achieve parallelism over seq length?
FlashAttention v2

• Swap order of loop

• Parallelize outer loop

• Leads to improved occupancy

batch_size = 1，num_heads = 2
divide the seq length of Q.

8 blocks for parallelism.
Parallelize the workers (thread blocks) where

each worker takes care of a block of rows of
the attention matrix.

FlashAttentionv2: Work Partitioning Between Warps

Work partitioning between different warps in the forward pass

Benchmarking attention

2X faster than FlashAttention

1.3X faster than Triton
10X faster than Pytorch

Reaches up to 230 TFLOPs/s, 73%

of the threoretical max on A100

Attention forward speed on A100 GPU

End to End Performance

Table 1: Training speed (TFLOPs/s/GPU) of GPT-style models on 8×A100 GPUs. FlashAttention-2

reaches up to 225 TFLOPs/s (72% model FLOPs utilization). We compare against a baseline running
without FlashAttention.

2.8X faster than baseline

1.3X faster than FlashAttention

Summary

● FlashAttention2 is 2x faster than FlashAttention

● FlashAttention2 will also speed up training, finetuning, and inference

● Future Directions
○ Device dependent

○ Hand-writing CUDA implementation, specially designed for specific attention implementation

○ How the FlashAttention2 performs on sparse attention mechanisms

○ Auto-tuning mechanisms for selecting optimal block sizes and partitioning strategies could

simplify the use of FlashAttention-2

	Slide 1: FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning
	Slide 2: GPU Execution Model
	Slide 3: GPU Memory Hierarchy
	Slide 4: Why Flash Attention v2 is proposed?
	Slide 5: What does FlashAttention v2 do?
	Slide 6: Recall: What does FlashAttention v1 do?
	Slide 7: Recall: What does FlashAttention v1 do?
	Slide 8: FlashAttention2: Minor tweak to reduce non-matmul FLOPs
	Slide 9: FlashAttention2: Parallelism
	Slide 10: FlashAttention 1: How to achieve parallelism?
	Slide 11: FlashAttentionv2:How to achieve parallelism over seq length?
	Slide 12: FlashAttentionv2: Work Partitioning Between Warps
	Slide 13: Benchmarking attention
	Slide 14: End to End Performance
	Slide 15: Summary

