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Introduction and Motivation

Unprecedented Scale
•  GPT-3: 175 billion parameters

•  Recommendation models: exceeding 1 trillion parameters

•  Performance gains come at enormous computational cost

Accessibility Challenge
•  Technical barriers limit development to select users

•  Specialized hardware and expertise required

•  Creates an uneven playing field in AI innovation

Need for Distributed Training Solutions

The Core Problem
Current distributed training methods require models to fit on a single 
GPU, creating a barrier for large model development. FSDP aims to 
democratize access to these powerful technologies by enabling 
efficient training of models that would otherwise exceed memory 
capacity.



Existing Parallelism Techniques

Pipeline Parallelism

Stage 1 Stage 2 Stage 3

Partitions model into stages across devices

Communicates activations across stage 
boundaries

 Requires model-specific integration

Tensor Parallelism

shard 1

W1

shard 2

W2

shard 3

W3

Shards computation inside a layer across 
devices

Computes on local shards, communicates as 
needed using AllReduce/AllGather

 Tightly coupled to model architecture

Zero-Redundancy 
Parallelism

Rank 1 Rank 2 Rank 3

On-demand parameter communication

Shards parameters, gradients and optimizers  
across devices

Communicates parameters on-demand

 Vulnerable to framework changes

Common Drawbacks
Architecture-Specific Integration
Methods tightly coupled with specific model architectures, limiting 
general applicability

Vulnerability to Framework Changes
Built upon rapidly evolving internal interfaces, making them susceptible 
to changes



Background - Evolution of PyTorch Distributed 
Training

Model Replication

Foundation using DistributedDataParallel 
(DDP)

•  Complete model replicas on each device

•  Synchronizes gradients via AllReduce

•  Requires all model params fit in single GPU

•  Out-of-memory errors for large models

Model Partitioning

Advanced techniques for larger models

•  Divides model into smaller components

•  Pipeline parallelism for sequential stages

•  Tensor RPC for remote computations

•  Code modifications required

Model Sharding

Efficient memory utilization approach

•  Parameters distributed across ranks

•  On-demand communication technique

•  Each device holds only parameter shards

•  FSDP adopts this approach

 Evolution shows growing complexity to address memory limitations and enable larger model training



Key Challenges Addressed by FSDP

User Experience
Traditional methods require complete model replication

Solves initialization hurdle with deferred initialization

Creates models on dummy device, initializes unit-by-unit on GPU

Enables efficient memory usage during initialization

Hardware Heterogeneity
Modern GPU clusters have varying bandwidth interconnects

Configurable sharding strategies for diverse hardware

Optimizes communication patterns for varying bandwidth

Adapts to hierarchical interconnects (high-bandwidth within machine)

Resource Utilization
Minimizing downtime is crucial for GPU utilization

Operation reordering to maximize overlap

Parameter prefetching to bridge communication gaps

"Squeezes out" idle times ("bubbles") during execution

Memory Planning
Efficient memory management is paramount

Optimizes memory usage with prudential allocation

Restricts blocks allocated for in-flight unsharded parameters

Suspends CPU execution to prevent memory defragmentation

FSDP: Industry-grade solution for efficient large model training



Model Sharding Strategies

Parameter Shards & Activation 
Communication

•  Parameters remain permanently sharded

•  Computations on parameter shards

•  Activations communicated between steps

Limitations
Communication on critical path between dependent computations makes 
overlapping with computation challenging.

On-Demand Parameter Communication

•  Parameters communicated on-demand

•  Each device performs computations as if model fully replicated

•  Requires parameters fit in GPU memory during computation

FSDP's Choice
FSDP adopts this approach because parameter communications don't 
have data dependencies on preceding computations.

 This strategy is sufficient for most current and near-future large model applications Page 8 of 20



System Design - Core Architecture

Decomposition Strategy
•  Model instances broken into smaller FSDP units

•  Each unit contains parameters and gradients

•  Optimizer states maintained in sharded form

Memory Management
•  Memory proportional to sharded model + largest unit

•  Strategic materialization reduces peak memory

•  Unsharded parameters discarded after use

FSDP Architecture Visualization

Key Advantage
FSDP's decomposition approach enables efficient training of models larger than 
single-device memory by controlling parameter visibility during computation.



Model Initialization and Deferred Initialization

Initialization Challenge
•  Models too large for single GPU memory

•  Traditional methods require full model on one device

•  Out-of-memory errors with large models

Deferred Initialization Solution
•  Allocate tensors on "fake" device

•  Record operations instead of executing

•  Replay on real GPU when needed

•  Initialize one FSDP unit at a time

Deferred Initialization Process

Key Benefits
Larger models possible Memory efficiency

Cross-submodule 
dependencies

Third-party library compatibility



Sharding Strategies and FlatParameter Design

Sharding Strategies

Full Replication (F=1) F = 1

Model fully replicated across all devices, similar to vanilla data parallelism 
using AllReduce for gradient reduction.

Full Sharding (F=W) F = W

Model completely sharded, with each device holding only 1/W of the model. 
Minimizes memory footprint but increases communication overhead.

Hybrid Sharding (1<F<W) 1 < F < W

Combines sharding and replication. Parameters sharded within groups, 
replicated in complementary groups. Balances memory savings and 
throughput.

FlatParameter Design



Communication Optimizations
Overlapping Communication & Computation

Uses separate CUDA streams for AllGathers, bypassing false 
dependencies to allow communication to overlap with computations.

Backward Prefetching
Issues the next AllGather before current ReduceScatter in backward 
pass, recording reverse forward order as a proxy for backward order.

Forward Prefetching
For workloads with static computational graphs, prefetches the next 
AllGather to help fill potential idle times.

Gradient Accumulation Variants
Offers two variations: with communication (reducing gradients across 
ranks) and without (saving unsharded gradients).

Communication-Computation Overlap



Memory Management and Rate Limiting

PyTorch's Caching Allocator Challenges

•  Frequent memory defragmentations near GPU memory capacity

•  Performance degradation with multiple CUDA streams

•  Fast CPU threads can run ahead of GPU execution

FSDP's Rate Limiter Solution
•  Intentionally blocks CPU threads to ensure proper caching 

allocator block reuse

•  Limits inflight AllGathers to at most two, minimum required for 
overlap

•  Prevents unnecessary memory over-allocation

•  Reduces costly `cudaMalloc` retries

Memory Fragmentation Visualization

Key Benefits
Improved memory utilization Reduced memory 

fragmentation

Consistent performance 
scaling

Better resource allocation



Implementation Details
Initialization Options

Deferred: Allocates model tensors on simulated device, replaying 
operations on real GPU

GPU Init: Initialize unsharded model on GPU, then shard with 
optimizer

CPU Init: Initialize on CPU with unit-by-unit streaming to GPU

FlatParameter Design
Inherits from nn.Parameter with similar behavior

Managed by FlatParamHandle for FSDP APIs

Consolidates storage for all parameter tensors within an FSDP unit

Boundaries dictate timing of AllGather and ReduceScatter

Runtime Integration with PyTorch
Forward Hooks: register_forward_pre_hook and 
register_forward_hook

Backward Hooks: register_hook on tensor outputs

Autograd Integration: queue_callback for communication with 
optimizer

Native Mixed Precision
Maintains low-precision (FP16/BF16) and full-precision (FP32) copies

Uses local sharded FlatParameter to reduce memory overhead

Independent precision for parameters, gradients, and buffers

FP16/BF16 Dynamic Alloc FP32



Evaluation Results
Scalability Comparison

•  DDP: Fails for models exceeding 2.28B parameters

•  Performance: Backward pre-fetching boosts by ~18%

Experimental Setup
•  Hardware: Up to 512 A100 80GB GPUs

•  Network: 2Tb/s RoCE network

•  Models: T5-11B, minGPT-175B

TFLOPS Performance

Key Insights
FSDP achieves ~55-60% of A100's peak 
BF16 tensor core utilization

Near-linear scalability from 128 to 512 
GPUs in terms of TFLOPS



Large Model Scalability Results

 Key Performance Metrics

173+ TFLOPS per GPU with batch size 1 
(~55% utilization)

186+ TFLOPS per GPU with batch size 2 
(~60% utilization)

Near-linear scalability from 128 to 512 
GPUs

 Scaling Challenges
Memory defragmentation with 128 GPUs at 
batch size 2

Communication overhead becomes 
significant with very large clusters

175B Model Performance Across GPU Configurations

Performance metrics for minGPT-175B model on A100 80GB GPUs with BF16 precision



Interoperability and Integration

Pipeline Parallelism Integration

FSDP can be functionally integrated with pipeline parallelism by 
wrapping each pipeline stage.

Default full sharding strategy may incur significant communication 
overhead due to unsharding for every micro-batch

Alternative sharding strategies keep parameters unsharded after 
forward pass

Reduces unnecessary AllGather communications per micro-batch

Trades higher memory usage (storing entire pipeline stage 
parameters) for reduced communication

Tensor Parallelism Integration

FSDP works well with tensor parallelism to create 2D parallelism for 
extremely large models.

Unlike FSDP, tensor parallelism keeps parameters sharded during 
computation

Crucial for sub-modules too large to fit in GPU memory

PyTorch provides 



Limitations and Considerations

Mathematical Equivalence Challenges
FSDP cannot always guarantee the same mathematical equivalence as 
local training, especially with optimizer computations.

Key Issues:
Optimizer operates on sharded parameters with FlatParameter sharding

Does not respect individual parameter boundaries
Computations relying on unsharded values become invalid

Current Approach:
Addressing this often involves uneven sharding or additional 
communication, which can impact performance. Co-designing optimizer 
computations with sharding remains an open research question.

Shared Parameter Handling
FSDP must ensure shared parameters are handled correctly across all 
usages.

Key Challenges:
Shared parameters must not be flattened into multiple FlatParameters

Incorrect handling can lead to errors like missing tensor storage
Issues if an FSDP unit uses a shared parameter already reshared

Recommended Solution:
Construct FSDP units such that the shared parameter belongs to the 
lowest-common-ancestor unit. This ensures the shared parameter remains 
unsharded throughout its usages.

 These limitations are active areas of research Page 19 of 20



Conclusion and Future Directions
FSDP Achievements

High Usability
Deferred initialization enables creation of models that exceed single-device 
memory capacity, lowering the barrier for entry.

Efficiency
Communication overlapping and prefetching techniques maximize GPU 
utilization and minimize idle times.

Scalability
Near-linear scalability demonstrated across 128-512 GPUs for models up to 
175B parameters.

Future Directions

Integration

Enhanced compatibility with 
pipeline and tensor parallelism.

Optimization

Refined sharding strategies for 
heterogeneous hardware.

 FSDP enables efficient training of large models with high usability and efficiency 

Thank you


