PyTorch Fully Sharded Data Parallel
(FSDP)

Efficient Training of Large Neural Networks with High Scalability

Authors - Yanli Zhao Meta Al yanlizhao@meta.com,
Andrew Gu Meta Al andgu@meta.com,
Rohan Varma Meta Al rvarm1@meta.com

Presented by - Vrushali Harane
Credits : Skywork.ai

Introduction and Motivation

@ Need for Distributed Training Solutions

&2 Unprecedented Scale

o

o

GPT-3: 175 billion parameters

Recommendation models: exceeding 1 trillion parameters

Performance gains come at enormous computational cost

Technical barriers limit development to select users The Core Problem

Specialized hardware and expertise required Current distributed training methods require models to fit on a single
A _ _ GPU, creating a barrier for large model development. FSDP aims to

Creates an uneven playing field in Al innovation : : :
democratize access to these powerful technologies by enabling

efficient training of models that would otherwise exceed memory

capacity.

Existing Parallelism Techniques

= Pipeline Parallelism

Stage 1 Stage 2 Stage 3

© Partitions model into stages across devices
© Communicates activations across stage

boundaries

A Requires model-specific integration

% Architecture-Specific Integration

Methods tightly coupled with specific model architectures, limiting

general applicability

B Tensor Parallelism

shard 1 shard 2 shard 3

W1 w2 w3

© Shards computation inside a layer across
devices

© Computes on local shards, communicates as
needed using AllReduce/AllGather

A Tightly coupled to model architecture

Zero-Redundancy
N :
Parallelism

Rank 1 Rank 2 Rank 3

On-demand parameter communication

& Shards parameters, gradients and optimizers
across devices

© Communicates parameters on-demand

A Vulnerable to framework changes

P Vulnerability to Framework Changes

to changes

Built upon rapidly evolving internal interfaces, making them susceptible

Background - Evolution of PyTorch Distributed
Training

Initial DDP Pipeline Parallelism Tensor RPC FSDP
O O O O
& . A o A) :

88 Model Replication & Model Partitioning @) Model Sharding
Foundation using DistributedDataParallel Advanced techniques for larger models Efficient memory utilization approach
(DDP)

v Complete model replicas on each device v Divides model into smaller components v Parameters distributed across ranks
On-demand communication technique
v Synchronizes gradients via AllIReduce v Pipeline parallelism for sequential stages
x Requires all model params fit in single GPU v Each device holds only parameter shards
o Tensor RPC for remote computations
% Qut-of-memory errors for large models & Code modifications required * FSDP adopts this approach

Evolution shows growing complexity to address memory limitations and enable larger model training

Key Challenges Addressed by FSDP

c User Experience s Hardware Heterogeneity
-’ Traditional methods require complete model replication o Modern GPU clusters have varying bandwidth interconnects
@ Solves initialization hurdle with deferred initialization @ Configurable sharding strategies for diverse hardware
© Creates models on dummy device, initializes unit-by-unit on GPU © Optimizes communication patterns for varying bandwidth

© Adapts to hierarchical interconnects (high-bandwidth within machine)
© Enables efficient memory usage during initialization

I~ Resource Utilization qm Memory Planning
Minimizing downtime is crucial for GPU utilization e Efficient memory management is paramount
@ Operation reordering to maximize overlap © Optimizes memory usage with prudential allocation
@ Parameter prefetching to bridge communication gaps © Restricts blocks allocated for in-flight unsharded parameters
@ "Squeezes out" idle times ("bubbles") during execution © Suspends CPU execution to prevent memory defragmentation

FSDP: Industry-grade solution for efficient large model training

Model Sharding Strategies

Parameter Shards & Activation
Communication

¥ Parameters remain permanently sharded
o Computations on parameter shards
o

Activations communicated between steps

Paramaeter Shard | [l Computation Activation Communication

G D D
GPU 1 GPU 2 GPU 3 GPU 4

© Limitations

Communication on critical path between dependent computations makes
overlapping with computation challenging.

& On-Demand Parameter Communication
—

Y Parameters communicated on-demand
2 Each device performs computations as if model fully replicated
o

Requires parameters fit in GPU memory during computation

Parameter Shard Temporary Full Paramatar [} Computation

@ FSDP's Choice

FSDP adopts this approach because parameter communications don't
have data dependencies on preceding computations.

¥ This strategy is sufficient for most current and near-future large model applications

Page 8 of 20

System Design - Core Architecture

& Decomposition Strategy

o

o

o

L

o

o

o

Model instances broken into smaller FSDP units

Each unit contains parameters and gradients

Optimizer states maintained in sharded form

Memory Management

Memory proportional to sharded model + largest unit
Strategic materialization reduces peak memory

Unsharded parameters discarded after use

“ FSDP Architecture Visualization

Figure 1: FSDP Algorithm Overview

Key Advantage

Baoawand

synchronize
aradients

I

free peee

shards
[ln;erl.
. -
| tayer2
+
gather fall
params

FSDP's decomposition approach enables efficient training of models larger than

single-device memory by controlling parameter visibility during computation.

Model Initialization and Deferred Initialization

A Initialization Challenge

¥ Models too large for single GPU memory
2 Traditional methods require full model on one device

2 Out-of-memory errors with large models

@ Deferred Initialization Solution

Allocate tensors on "fake" device
Record operations instead of executing

Replay on real GPU when needed

VARV "

Initialize one FSDP unit at a time

% Deferred Initialization Process

</> B .

Create Model Record Ops Fake Device

&= X

Replay on GPU Shard Parameters
Steps 3-5 repeated for each FSDP unit
Key Benefits
Larger models possible == Memory efficiency
2% Cross-submodule Third-party library compatibility

dependencies

Sharding Strategies and FlatParameter Design

2= FlatParameter Desi

£ Sharding Strategies

Sharding Group

Full Replication (F=1) F=1 i s PN ;|] o Localshune
L0 J L 9% L4) Pakling
Model fully replicated across all devices, similar to vanilla data parallelism | @ Ranks

using AllIReduce for gradient reduction.
Full Skardirg

{&=16)

Full Sharding (F=W) F=W Figure 3: Full Sharding Across 16 GPUs

~Earamnter

Model completely sharded, with each device holding only 1/W of the model.
Minimizes memory footprint but increases communication overhead.
Sha:ding Groap
L1 Replwalson Group
Local Share

1] Rank.

Hybrid Sharding (1<F<W) 1<F<W

Combines sharding and replication. Parameters sharded within groups,
. . . [Tvbrid Skarding | = 5)
replicated in complementary groups. Balances memory savings and

throughput.

Figure 4: Hybrid Sharding on 16 GPUs: GPUs are configured
into 2 sharding groups and 8 replication groups

Communication Optimizations

23 Overlapping Communication & Computation 22 Communication-Computation Overlap

Uses separate CUDA streams for AllGathers, bypassing false T——

dependencies to allow communication to overlap with computations. — D Backward e oy

' I Buckwaurd Comp. (BWD)
cpUu 00 ‘1 L 0# 22 2 # 0 l\ 1 ll 00 Parameter Free
B N i FSDP Unit;
- - ; LA RN S x' NS : .
. GPU L'ump.:, ’ . U A ‘ ' - . N
T Backward Prefetching Stream [M A P sl e SO 0

GPU Comm| I [] e
SFt ‘”"““’ AGD 1 AGI AG2 AG2 ‘ RS2 ’ AG1 ‘ RS1 ‘ RS0 ‘

Stream

Issues the next AllGather before current ReduceScatter in backward

pass, recording reverse forward order as a proxy for backward order. Figure 5: Overlap Communication and Computation

J Forward Prefetching

For workloads with static computational graphs, prefetches the next
AllGather to help fill potential idle times.

Offers two variations: with communication (reducing gradients across
ranks) and without (saving unsharded gradients).

Memory Management and Rate Limiting

A PyTorch's Caching Allocator Challenges

o

o

o

Frequent memory defragmentations near GPU memory capacity

Performance degradation with multiple CUDA streams

Fast CPU threads can run ahead of GPU execution

& FSDP's Rate Limiter Solution

o

Intentionally blocks CPU threads to ensure proper caching
allocator block reuse

Limits inflight AllGathers to at most two, minimum required for
overlap

Prevents unnecessary memory over-allocation

Reduces costly "cudaMalloc’ retries

#= Memory Fragmentation Visualization

© Improved memory utilization

© Consistent performance
scaling

Mocutcd
O ht (rate limited)

Lin m m AllGathers
to preven emorl over-allocation

© Reduced memory
fragmentation

© Better resource allocation

Implementation Details

%4 Initialization Options

© Deferred: Allocates model tensors on simulated device, replaying
operations on real GPU

© GPU Init: Initialize unsharded model on GPU, then shard with
optimizer

© CPU Init: Initialize on CPU with unit-by-unit streaming to GPU

© Forward Hooks: register_forward_pre_hook and
register_forward_hook

© Backward Hooks: register_hook on tensor outputs

@ Autograd Integration: queue_callback for communication with
optimizer

2 FlatParameter Design

© Inherits from nn.Parameter with similar behavior
© Managed by FlatParamHandle for FSDP APIs

© Consolidates storage for all parameter tensors within an FSDP unit

© Boundaries dictate timing of AllGather and ReduceScatter

& Native Mixed Precision
© Maintains low-precision (FP16/BF16) and full-precision (FP32) copies

© Uses local sharded FlatParameter to reduce memory overhead

@ Independent precision for parameters, gradients, and buffers

® - B

FP16/BF16 Dynamic Alloc FP32

Evaluation Results

@
|2 Scalability Comparison TFLOPS Performance

. DDP: Fails for models exceeding 2.28B parameters

T Performance: Backward pre-fetching boosts by ~18%

G

== Experimental Setup

® Hardware: Up to 512 A100 80GB GPUs E
=% Network: 2Tb/s RoCE network | L A
¥ Models: T5-11B, minGPT-175B j I_.

2256

Madel Size (Numel)

(a) Model Scalc

Key Insights

W FSDP achieves ~55-60% of A100's peak W Near-linear scalability from 128 to 512
BF16 tensor core utilization GPUs in terms of TFLOPS

Large Model Scalability Results

12 Key Performance Metrics 175B Model Performance Across GPU Configurations
© 173+ TFLOPS per GPU with batch size 1 0 TFLOPS - gaich size 1 [
(~55% utilization) 0 TFLOPS - .
30 TFLOPS ~
© 186+ TFLOPS per GPU with batch size 2 S
(~60% utilization) a%n.ops-
g
© Near-linear scalability from 128 to 512 XgFLoes
GPUs aiFLoPS -
30 TFLOPS <
20 TFLOPS =
A Scaling Challenges b
O TFLOPS ~
> Memory defragmentation with 128 GPUs at Sk e e e S
batch size 2 Number of GPUs
> Communication overhead becomes Performance metrics for minGPT-175B model on A100 80GB GPUs with BF16 precision

significant with very large clusters

Interoperability and Integration

= Pipeline Parallelism Integration B8 Tensor Parallelism Integration

FSDP can be functionally integrated with pipeline parallelism by FSDP works well with tensor parallelism to create 2D parallelism for
wrapping each pipeline stage. extremely large models.

© Default full sharding strategy may incur significant communication © Unlike FSDP, tensor parallelism keeps parameters sharded during

overhead due to unsharding for every micro-batch computation

© Crucial for sub-modules too large to fit in GPU memory

Alternative sharding strategies keep parameters unsharded after BT erevies
forward pass

© Reduces unnecessary AllGather communications per micro-batch

« Trades higher memory usage (storing entire pipeline stage
parameters) for reduced communication

Limitations and Considerations

= Mathematical Equivalence Challenges & Shared Parameter Handling
FSDP cannot always guarantee the same mathematical equivalence as FSDP must ensure shared parameters are handled correctly across all
local training, especially with optimizer computations. usages.

Key Challenges:
Key Issues: > Shared parameters must not be flattened into multiple FlatParameters

> Optimizer operates on sharded parameters with FlatParameter sharding
»> Incorrect handling can lead to errors like missing tensor storage

> Does not respect individual parameter boundaries > Issues if an FSDP unit uses a shared parameter already reshared

> Computations relying on unsharded values become invalid

Current Approach: Recommended Solution:

Construct FSDP units such that the shared parameter belongs to the
lowest-common-ancestor unit. This ensures the shared parameter remains

Addressing this often involves uneven sharding or additional
communication, which can impact performance. Co-designing optimizer
computations with sharding remains an open research question. unsharded throughout its usages.

® These limitations are active areas of research Page 19 of 20

Conclusion and Future Directions

¥ FSDP Achievements

av High Usability

Deferred initialization enables creation of models that exceed single-device
memory capacity, lowering the barrier for entry.

4 Efficiency

Communication overlapping and prefetching techniques maximize GPU
utilization and minimize idle times.

I Scalability

Near-linear scalability demonstrated across 128-512 GPUs for models up to

175B parameters.

4 Future Directions

FSDP Scalability Highlights

user

Deferred-initialization

memory - FSDP layer

Memory Managcmcn‘ . Flexible Sharding

Communication Optimization

¥ Integration = Optimization

Enhanced compatibility with
pipeline and tensor parallelism.

Refined sharding strategies for
heterogeneous hardware.

FSDP enables efficient training of large models with high usability and efficiency

Thank you

