PyTorch Fully Sharded Data Parallel (FSDP)

Efficient Training of Large Neural Networks with High Scalability

Authors - Yanli Zhao Meta Al yanlizhao@meta.com,
Andrew Gu Meta Al andgu@meta.com,
Rohan Varma Meta Al rvarm1@meta.com

Presented by - Vrushali Harane

Credits: Skywork.ai

Introduction and Motivation

- GPT-3: **175 billion** parameters
- Recommendation models: **exceeding 1 trillion** parameters
- Performance gains come at enormous computational cost

Accessibility Challenge

- Technical barriers limit development to select users
- Specialized hardware and expertise required
- Creates an uneven playing field in AI innovation

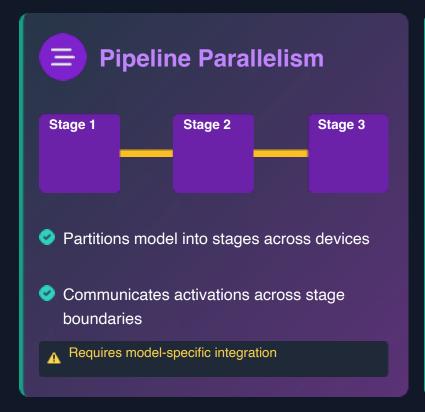
Need for Distributed Training Solutions

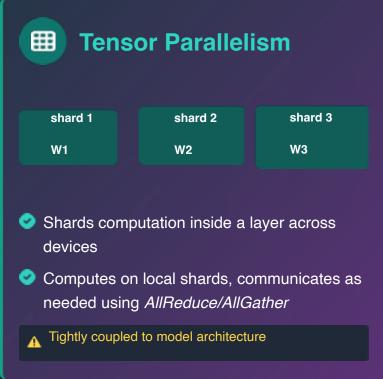


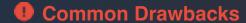
The Core Problem

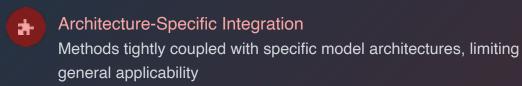
Current distributed training methods require models to fit on a single GPU, creating a barrier for large model development. FSDP aims to democratize access to these powerful technologies by enabling efficient training of models that would otherwise exceed memory capacity.

Existing Parallelism Techniques









Vulnerability to Framework Changes
Built upon rapidly evolving internal interfaces, making them susceptible to changes

Background - Evolution of PyTorch DistributedTraining

Model Replication

Foundation using **DistributedDataParallel** (DDP)

- Complete model replicas on each device
- Synchronizes gradients via AllReduce
- Requires all model params fit in single GPU
- Out-of-memory errors for large models

Model Partitioning

Advanced techniques for larger models

- ✓ Divides model into smaller components
- Pipeline parallelism for sequential stages
- ✓ Tensor RPC for remote computations
- Code modifications required

Model Sharding

Efficient memory utilization approach

- Parameters distributed across ranks
- On-demand communication technique
- Each device holds only parameter shards
- rSDP adopts this approach

Key Challenges Addressed by FSDP

User Experience

Traditional methods require complete model replication

- Solves initialization hurdle with deferred initialization
- Creates models on dummy device, initializes unit-by-unit on GPU
- Enables efficient memory usage during initialization

Hardware Heterogeneity

Modern GPU clusters have varying bandwidth interconnects

- Configurable sharding strategies for diverse hardware
- Optimizes communication patterns for varying bandwidth
- Adapts to hierarchical interconnects (high-bandwidth within machine)

Resource Utilization

Minimizing downtime is crucial for GPU utilization

- Operation reordering to maximize overlap
- Parameter prefetching to bridge communication gaps
- "Squeezes out" idle times ("bubbles") during execution

Memory Planning

Efficient memory management is paramount

- Optimizes memory usage with prudential allocation
- Restricts blocks allocated for in-flight unsharded parameters
- Suspends CPU execution to prevent memory defragmentation

Model Sharding Strategies

Parameter Shards & Activation Communication

- Parameters remain permanently sharded
- Computations on parameter shards
- Activations communicated between steps

! Limitations

Communication on critical path between dependent computations makes overlapping with computation challenging.

On-Demand Parameter Communication

- Parameters communicated on-demand
- Each device performs computations as if model fully replicated
- Requires parameters fit in GPU memory during computation

♥ FSDP's Choice

FSDP adopts this approach because parameter communications don't have data dependencies on preceding computations.

System Design - Core Architecture

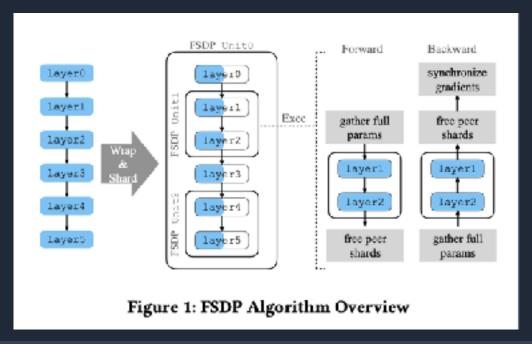
★ Decomposition Strategy

- Model instances broken into smaller FSDP units
- Each unit contains parameters and gradients
- Optimizer states maintained in sharded form

Memory Management

- Memory proportional to sharded model + largest unit
- Strategic materialization reduces peak memory
- Unsharded parameters discarded after use

T FSDP Architecture Visualization



Key Advantage

FSDP's decomposition approach enables efficient training of models larger than single-device memory by controlling parameter visibility during computation.

Model Initialization and Deferred Initialization

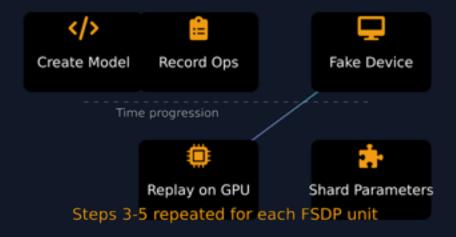
A Initialization Challenge

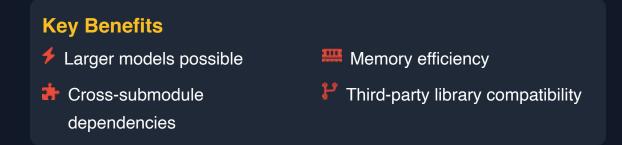
- Models too large for single GPU memory
- Traditional methods require full model on one device
- Out-of-memory errors with large models

Deferred Initialization Solution

- Allocate tensors on "fake" device
- Record operations instead of executing
- Replay on real GPU when needed
- Initialize one FSDP unit at a time

T Deferred Initialization Process





Sharding Strategies and FlatParameter Design

Sharding Strategies

Full Replication (F=1)

F = 1

Model fully replicated across all devices, similar to vanilla data parallelism using AllReduce for gradient reduction.

Full Sharding (F=W)

Model completely sharded, with each device holding only 1/W of the model. Minimizes memory footprint but increases communication overhead.

Hybrid Sharding (1<F<W)

Combines sharding and replication. Parameters sharded within groups, replicated in complementary groups. Balances memory savings and throughput.

FlatParameter Design

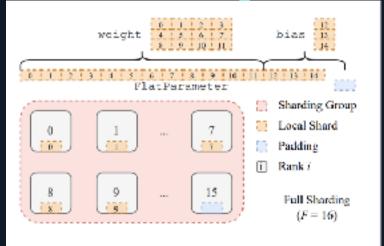


Figure 3: Full Sharding Across 16 GPUs

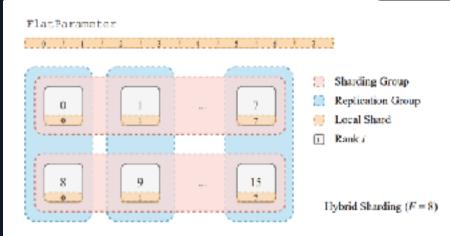


Figure 4: Hybrid Sharding on 16 GPUs: GPUs are configured into 2 sharding groups and 8 replication groups

Communication Optimizations

→ Overlapping Communication & Computation

Uses separate CUDA streams for AllGathers, bypassing false dependencies to allow communication to overlap with computations.

↑ Backward Prefetching

Issues the next AllGather before current ReduceScatter in backward pass, recording reverse forward order as a proxy for backward order.

↓ Forward Prefetching

For workloads with static computational graphs, prefetches the next AllGather to help fill potential idle times.

\$

Gradient Accumulation Variants

Offers two variations: with communication (reducing gradients across ranks) and without (saving unsharded gradients).

Communication-Computation Overlap

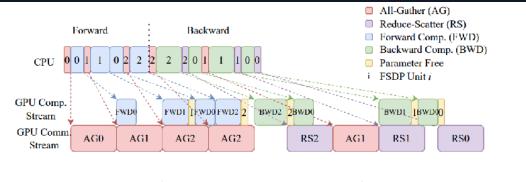


Figure 5: Overlap Communication and Computation

Memory Management and Rate Limiting

▲ PyTorch's Caching Allocator Challenges

- Frequent memory defragmentations near GPU memory capacity
- Performance degradation with multiple CUDA streams
- Fast CPU threads can run ahead of GPU execution.

FSDP's Rate Limiter Solution

- Intentionally blocks CPU threads to ensure proper caching allocator block reuse
- Limits inflight AllGathers to at most two, minimum required for overlap
- Prevents unnecessary memory over-allocation
- Reduces costly `cudaMalloc` retries

Memory Fragmentation Visualization

- Key Benefits
- Improved memory utilization
- Consistent performance scaling
- Reduced memory fragmentation
- Better resource allocation

Implementation Details

p Initialization Options

- Deferred: Allocates model tensors on simulated device, replaying operations on real GPU
- GPU Init: Initialize unsharded model on GPU, then shard with optimizer
- CPU Init: Initialize on CPU with unit-by-unit streaming to GPU

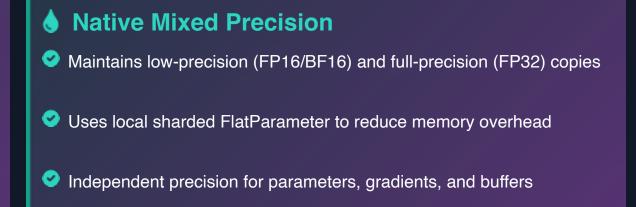
FlatParameter Design

FP16/BF16

- Inherits from nn.Parameter with similar behavior
- Managed by FlatParamHandle for FSDP APIs
- Consolidates storage for all parameter tensors within an FSDP unit
- Boundaries dictate timing of AllGather and ReduceScatter

♥ Runtime Integration with PyTorch

- Forward Hooks: register_forward_pre_hook and register_forward_hook
- Backward Hooks: register_hook on tensor outputs
- Autograd Integration: queue_callback for communication with optimizer



Dvnamic Alloc

FP32

Evaluation Results

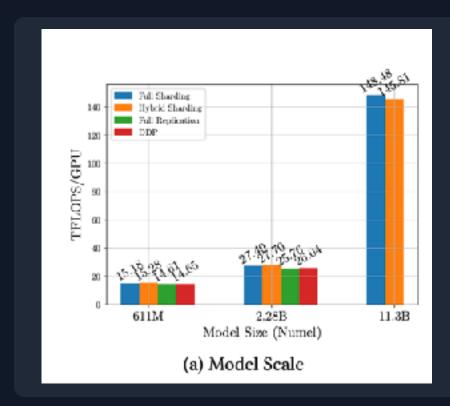
" Scalability Comparison

- **DDP:** Fails for models exceeding **2.28B parameters**
- **Performance:** Backward pre-fetching boosts by **~18%**

Experimental Setup

- Hardware: Up to 512 A100 80GB GPUs
- 몲 **Network:** 2Tb/s RoCE network
- Models: T5-11B, minGPT-175B

M TFLOPS Performance



Key Insights

- BF16 tensor core utilization
- FSDP achieves ~55-60% of A100's peak 🌟 Near-linear scalability from 128 to 512 GPUs in terms of TFLOPS

Large Model Scalability Results

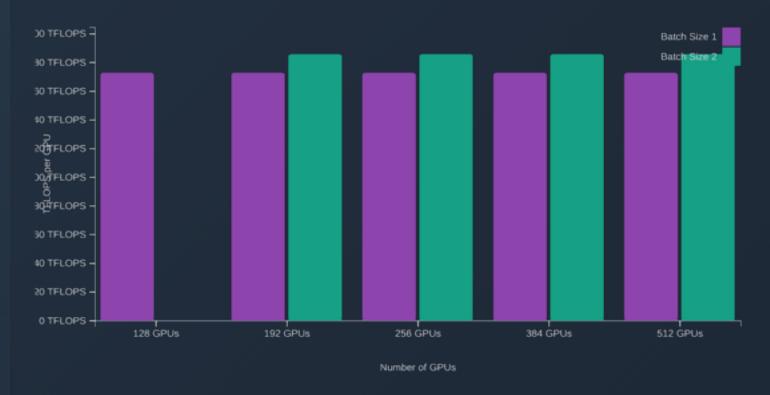
∠ Key Performance Metrics

- Near-linear scalability from 128 to 512
 GPUs

▲ Scaling Challenges

- Memory defragmentation with 128 GPUs at batch size 2
- Communication overhead becomes significant with very large clusters

175B Model Performance Across GPU Configurations



Performance metrics for minGPT-175B model on A100 80GB GPUs with BF16 precision

Interoperability and Integration

= Pipeline Parallelism Integration

FSDP can be functionally integrated with pipeline parallelism by wrapping each pipeline stage.

- Default full sharding strategy may incur significant communication overhead due to unsharding for every micro-batch
- Alternative sharding strategies keep parameters unsharded after forward pass
- Reduces unnecessary AllGather communications per micro-batch
- Trades higher memory usage (storing entire pipeline stage parameters) for reduced communication

III Tensor Parallelism Integration

FSDP works well with tensor parallelism to create 2D parallelism for extremely large models.

- Unlike FSDP, tensor parallelism keeps parameters sharded during computation
- Crucial for sub-modules too large to fit in GPU memory
- PyTorch provides

Limitations and Considerations

= Mathematical Equivalence Challenges

FSDP cannot always guarantee the same mathematical equivalence as local training, especially with optimizer computations.

Key Issues:

- Optimizer operates on sharded parameters with FlatParameter sharding
- Does not respect individual parameter boundaries
- Computations relying on unsharded values become invalid

Current Approach:

Addressing this often involves uneven sharding or additional communication, which can impact performance. Co-designing optimizer computations with sharding remains an open research question.

Shared Parameter Handling

FSDP must ensure shared parameters are handled correctly across all usages.

Key Challenges:

- Shared parameters must not be flattened into multiple FlatParameters
- Incorrect handling can lead to errors like missing tensor storage
- > Issues if an FSDP unit uses a shared parameter already reshared

Recommended Solution:

Construct FSDP units such that the shared parameter belongs to the lowest-common-ancestor unit. This ensures the shared parameter remains unsharded throughout its usages.

0

Conclusion and Future Directions

Y FSDP Achievements

Lack High Usability

Deferred initialization enables creation of models that exceed single-device memory capacity, lowering the barrier for entry.

★ Efficiency

Communication overlapping and prefetching techniques maximize GPU utilization and minimize idle times.

Near-linear scalability demonstrated across 128-512 GPUs for models up to 175B parameters.

Future Directions

P Integration

Enhanced compatibility with pipeline and tensor parallelism.

ॐ Optimization

Refined sharding strategies for heterogeneous hardware.

FSDP enables efficient training of large models with high usability and efficiency