ZeRO: Memory Optimization for
Training Trillion-Parameter Models

- Samyam Rajbhandari, Jeff Rasley , Olatunji Ruwase, Yuxiong He

- Hemang Singh

UCDAVIS



The Problem: Why Do We Even Need ZeRO?

The Growing Model Size Problem

Model Evolution:
BERT-Large (2018): 0.3 Billion parameters
GPT-2 (2019): 1.5 Billion parameters
. Megatron-LM (2019): 8.3 Billion parameters
. 15 (2019): 11 Billion parameters
Future Goal: 1 TRILLION parameters

The Challenge:
. These models don't fit in GPU memory!
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Existing Solutions & Their Limitations

1. Data Parallelism (DP)
e (Good: Fast, efficient computation
e Bad: Every GPU keeps complete copy — MEMORY
WASTE
e Limit: Only 1.4B parameters on 32GB GPU

2. Model Parallelism (MP)

Good: Splits model — saves memory

Bad: Lots of communication between GPUs
Bad: Slow across multiple nodes

Limit: ~20B parameters efficiently

3. Pipeline Parallelism (PP)
e (Complex to implement
e Needs huge batch sizes
e Affects training convergence
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Where Does Memory Actually Go?

For 1.5B parameter GPT-2 model:

1. Model States (Majority of Memory):

e Parameters (FP16): 3 GB

e Gradients (FP16): 3 GB

e Optimizer States (FP32): 18 GB
o Parameters copy: 6 GB
o Momentum: 6 GB
o Variance: 6 GB

° TOTAL: 24 GB

1. Residual States:
e Activations: 60 GB (— 8 GB with checkpointing)
e Temporary Buffers: 6 GB
e Fragmented Memory: Variable

Total: 90+ GB for a "3GB" model!
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ZeRO's Core Insight

e Traditional Approach: Keep EVERYTHING on EVERY GPU
o Wasteful: 64 GPUs = 64 complete copies

e ZeRO's Insight: Not everything is needed all the time!

e Example - Layer-by-Layer Processing:
o Forward Pass Layer 3 — Only need Layer 3 parameters
o Backward Pass Layer 5 — Only need Layer 5 parameters

Solution:

e Partition everything across GPUs
e Communicate dynamically when needed
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ZeRO-DP Stage 1 - Optimizer State Partitioning

Stage 1: Pos (Optimizer State Partitioning)

Without ZeRO (4 GPUs):
GPU1 GPU2 GPU3 GPU4
Opt[ALL] 18GB Opt[ALL] 18GB Opt[ALL] 18GB Opt[ALL] 18GB

Total per GPU: 18 GB x 4 = 72 GB wasted!

With ZeRO Stage 1 (4 GPUs):
GPU1 GPU2 GPU3 GPU4
Opt[1/4] 4.5GB Opt[2/4] 4.5GB Opt[3/4] 4.5GB Opt[4/4] 4.5GB

Result: 4x Memory Reduction
Communication: Same as baseline
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ZeRO-DP Stage 2 - Gradient Partitioning

Stage 2: Pos+g (Add Gradient Partitioning)

e Key Insight: Each GPU only needs gradients for ITS parameters!
e During Backward Pass:
o Layer N completes — Gradients ready — Reduce-Scatter: Send each
gradient partition to the GPU that owns it —Other GPUs discard this gradient
e Memory Saved:
o Stage 1: 4W (params+grads) + KW/Nd (opt states)
o Stage 2: 2W (params) + 14W/Nd (grads+opt states)

Result: 8x Memory Reduction (when Nd is large)
e Communication: Still same as baseline!
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ZeRO-DP Stage 3 - Parameter Partitioning

Stage 3: Pos+g+p (Add Parameter Partitioning)
e The Full Solution:
o Each GPU stores only 1/Nd of:
m Optimizer States and Gradients and Parameters
e During Forward/Backward:
o Broadcast needed parameters from owner
o Use them for computation
o Discard immediately after use
o Move to next layer
e Memory Reduction: Linear with GPU count!
o 64 GPUs: 64x memory reduction
o 1024 GPUs: 1024x memory reduction
e Trade-off:
o Communication: 1.5x baseline (Still worth it!)
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ZeRO-R - Optimizing Residual Memory

Three Optimizations:
1. Pa: Partitioned Activation Checkpointing
e Problem: Model Parallelism duplicates activations
Solution: Partition activations across MP GPUs
Benefit: 16x reduction (with MP degree 16)
Optional: Pa+cpu - Offload to CPU memory
When: Extremely large models

1. CB: Constant Size Buffers
e Problem: Buffers grow with model size
e Solution: Fixed-size efficient buffers
e Benefit: Predictable memory usage

1. MD: Memory Defragmentation
e Problem: Fragmented memory — OOM errors
e Solution: Pre-allocated contiguous buffers
e Benefit: 30%+ more usable memory
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Experimental Results - Model Size

e Maximum Trainable Model Size:
o Baseline (Megatron-LM):
m Single Node (16 GPUs): 20B parameters
m Multi-Node: Efficiency collapses
o ZeRO-100B:
m 400 GPUs: 170B parameters
m Efficiency maintained!
e 8.5x Larger Models!

e Real Models Enabled:
o 13B without Model Parallelism (vs 1.4B baseline)
o 100B+ with Model Parallelism
o Theoretical: 1T with 1024 GPUs
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Experimental Results - Speed & Efficiency

e Throughput Comparison (100B model):
o ZeRO: 38 TFlops/GPU
o Baseline: <5 TFlops/GPU
e Aggregate Performance:
o 15 Petaflops sustained (400 GPUSs)
m = 15 million billion calculations/second!
m = 30%-+ of theoretical peak
e Super-Linear Speedup (60B model):

64 GPUs 128 GPUs 1256 GPUs

Baseline 2.2x Faster 4.8x Faster
e Why Super-Linear?
e More GPUs — Less memory per GPU — Larger batches possible — Better GPU
utilization
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Strengths & Limitations

Strengths

o Massive memory savings

o Maintains DP simplicity

o Compatible with MP

o Enabled trillion-scale models
Limitations

o Runtime complexity

o Pp needs more bandwidth

o Compute cost still high

. Complex scheduling
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ANEIRELCEVEL

ZeRO0 eliminates all major sources of GPU memory redundancy

Partitions optimizer states, gradients, parameters, and activations

Achieves near-linear memory scaling with number of GPUs

Keeps Data Parallel simplicity with far better efficiency

Enables 100B-1T parameter training on commodity clusters

Outperforms Model Parallelism without its communication pain

Shifts the bottleneck from memory — compute

Foundation behind modern large-scale systems (DeepSpeed, MT-NLG, etc.)
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Open Questions & Future Directions

Open Questions & Future Directions

How far can Stage 3 scale before communication dominates?

Can ZeRO handle ftrillion-scale models efficiently across slower interconnects?
What’s the optimal balance of DP + MP + PP with ZeRO?

How can ZeRO integrate with sequence parallelism and MoE architectures?
Can optimizer/activation offload be made hardware-aware and adaptive?

How does extreme batch scaling affect convergence and stability?

Can ZeRO reduce FLOPs, not just memory?
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Thank You'!
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