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The Problem: Why Do We Even Need ZeRO?

The Growing Model Size Problem

Model Evolution:

● BERT-Large (2018): 0.3 Billion parameters

● GPT-2 (2019): 1.5 Billion parameters

● Megatron-LM (2019): 8.3 Billion parameters

● T5 (2019): 11 Billion parameters

● Future Goal: 1 TRILLION parameters

The Challenge:

● These models don't fit in GPU memory!



Existing Solutions & Their Limitations

1. Data Parallelism (DP)

● Good: Fast, efficient computation

● Bad: Every GPU keeps complete copy → MEMORY 

WASTE

● Limit: Only 1.4B parameters on 32GB GPU

2. Model Parallelism (MP)

● Good: Splits model → saves memory

● Bad: Lots of communication between GPUs

● Bad: Slow across multiple nodes

● Limit: ~20B parameters efficiently

3. Pipeline Parallelism (PP)

● Complex to implement

● Needs huge batch sizes

● Affects training convergence



Where Does Memory Actually Go?

For 1.5B parameter GPT-2 model:

1. Model States (Majority of Memory):

● Parameters (FP16): 3 GB

● Gradients (FP16): 3 GB

● Optimizer States (FP32): 18 GB

○ Parameters copy: 6 GB

○ Momentum: 6 GB

○ Variance: 6 GB

● TOTAL: 24 GB

1. Residual States:

● Activations: 60 GB (→ 8 GB with checkpointing)

● Temporary Buffers: 6 GB

● Fragmented Memory: Variable

Total: 90+ GB for a "3GB" model!



ZeRO's Core Insight

● Traditional Approach: Keep EVERYTHING on EVERY GPU

○ Wasteful: 64 GPUs = 64 complete copies

● ZeRO's Insight: Not everything is needed all the time!

● Example - Layer-by-Layer Processing:

○ Forward Pass Layer 3 → Only need Layer 3 parameters

○ Backward Pass Layer 5 → Only need Layer 5 parameters

Solution: 

● Partition everything across GPUs

● Communicate dynamically when needed



ZeRO-DP Stage 1 - Optimizer State Partitioning

Stage 1: Pos (Optimizer State Partitioning)

Without ZeRO (4 GPUs):

Total per GPU: 18 GB × 4 = 72 GB wasted!

With ZeRO Stage 1 (4 GPUs):

Result: 4x Memory Reduction

Communication: Same as baseline

GPU1 GPU2 GPU3 GPU4

Opt[ALL] 18GB Opt[ALL] 18GB Opt[ALL] 18GB Opt[ALL] 18GB

GPU1 GPU2 GPU3 GPU4

Opt[1/4] 4.5GB Opt[2/4] 4.5GB Opt[3/4] 4.5GB Opt[4/4] 4.5GB



ZeRO-DP Stage 2 - Gradient Partitioning

Stage 2: Pos+g (Add Gradient Partitioning)

● Key Insight: Each GPU only needs gradients for ITS parameters!

● During Backward Pass:

○ Layer N completes → Gradients ready → Reduce-Scatter: Send each 

gradient partition to the GPU that owns it →Other GPUs discard this gradient 

● Memory Saved:

○ Stage 1: 4Ψ (params+grads) + KΨ/Nd (opt states)

○ Stage 2: 2Ψ (params) + 14Ψ/Nd (grads+opt states)

● Result: 8x Memory Reduction (when Nd is large)

● Communication: Still same as baseline!



ZeRO-DP Stage 3 - Parameter Partitioning

Stage 3: Pos+g+p (Add Parameter Partitioning) 

● The Full Solution:

○ Each GPU stores only 1/Nd of:

■ Optimizer States and Gradients and Parameters

● During Forward/Backward:

○ Broadcast needed parameters from owner

○ Use them for computation

○ Discard immediately after use

○ Move to next layer

● Memory Reduction: Linear with GPU count!

○ 64 GPUs: 64x memory reduction

○ 1024 GPUs: 1024x memory reduction

● Trade-off:

○ Communication: 1.5x baseline (Still worth it!)



ZeRO-R - Optimizing Residual Memory

Three Optimizations:

1. Pa: Partitioned Activation Checkpointing

● Problem: Model Parallelism duplicates activations

● Solution: Partition activations across MP GPUs

● Benefit: 16x reduction (with MP degree 16)   

● Optional: Pa+cpu - Offload to CPU memory

● When: Extremely large models

1. CB: Constant Size Buffers

● Problem: Buffers grow with model size

● Solution: Fixed-size efficient buffers

● Benefit: Predictable memory usage

1. MD: Memory Defragmentation

● Problem: Fragmented memory → OOM errors

● Solution: Pre-allocated contiguous buffers

● Benefit: 30%+ more usable memory



● Maximum Trainable Model Size:

○ Baseline (Megatron-LM):

■ Single Node (16 GPUs): 20B parameters

■ Multi-Node: Efficiency collapses

○ ZeRO-100B:

■ 400 GPUs: 170B parameters

■ Efficiency maintained!

● 8.5x Larger Models!

● Real Models Enabled:

○ 13B without Model Parallelism (vs 1.4B baseline)

○ 100B+ with Model Parallelism

○ Theoretical: 1T with 1024 GPUs

Experimental Results - Model Size



Experimental Results - Speed & Efficiency

● Throughput Comparison (100B model): 

○ ZeRO: 38 TFlops/GPU

○ Baseline: <5 TFlops/GPU

● Aggregate Performance: 

○ 15 Petaflops sustained (400 GPUs)

■ = 15 million billion calculations/second! 

■ = 30%+ of theoretical peak

● Super-Linear Speedup (60B model):

● Why Super-Linear? 

● More GPUs → Less memory per GPU → Larger batches possible → Better GPU 

utilization

64 GPUs 128 GPUs 1256 GPUs

Baseline 2.2x Faster 4.8x Faster



Strengths & Limitations

Strengths

• Massive memory savings

• Maintains DP simplicity

• Compatible with MP

• Enabled trillion-scale models

Limitations

• Runtime complexity

• Pp needs more bandwidth

• Compute cost still high

• Complex scheduling



Final Takeaway

● ZeRO eliminates all major sources of GPU memory redundancy

● Partitions optimizer states, gradients, parameters, and activations

● Achieves near-linear memory scaling with number of GPUs

● Keeps Data Parallel simplicity with far better efficiency

● Enables 100B–1T parameter training on commodity clusters

● Outperforms Model Parallelism without its communication pain

● Shifts the bottleneck from memory → compute

● Foundation behind modern large-scale systems (DeepSpeed, MT-NLG, etc.)



Open Questions & Future Directions

Open Questions & Future Directions

● How far can Stage 3 scale before communication dominates?

● Can ZeRO handle trillion-scale models efficiently across slower interconnects?

● What’s the optimal balance of DP + MP + PP with ZeRO?

● How can ZeRO integrate with sequence parallelism and MoE architectures?

● Can optimizer/activation offload be made hardware-aware and adaptive?

● How does extreme batch scaling affect convergence and stability?

● Can ZeRO reduce FLOPs, not just memory?



Thank You !
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