SOSP 2023

The 29th ACM Symposium on Operating Systems Principles
October 23-26, 2023

Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints

Zhuang Wang, Zhen Jia, Shui Zheng, Zhen Zhang, Xinwei Fu, T. S. Eugene Ng, Yida Wang

Large models

Characteristics

Recent large language models (LLMs)

			_			
Model	Parameters	Accelerator	S	Training time	Developer	Year
Turing-NLG	17.2B	256 V100	T	_	Microsoft	2020
GPT-3	175B	—	1	_	OpenAI	2020
OPT-175B	175B	992 A100	1	2 months	Meta	2021
Gopher	280B	4096 TPU v	3	1.3 months	Google	2021
MT-NLG	530B	4480 A100	1	3 months	Microsoft & NVIDIA	2022
PaLM	540B	6144 TPU v	4	2 months	Google	2022
GPT-4	1.76T	_		4-7 months	OpenAI	2023

Larger training models

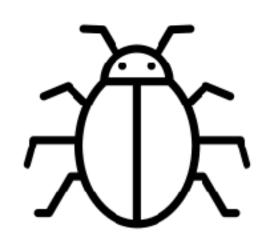
More GPUs involved

Longer training time

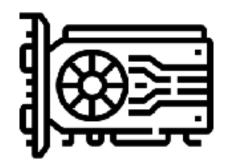
Failures are frequent

Software failures





Hardware failures



GPU failures

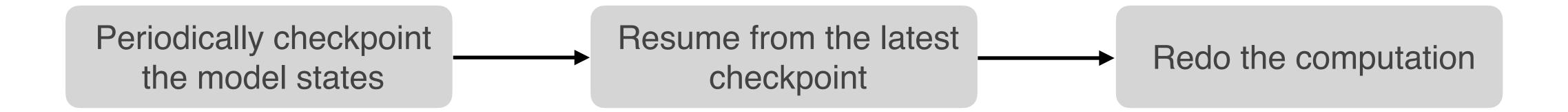
Link failures

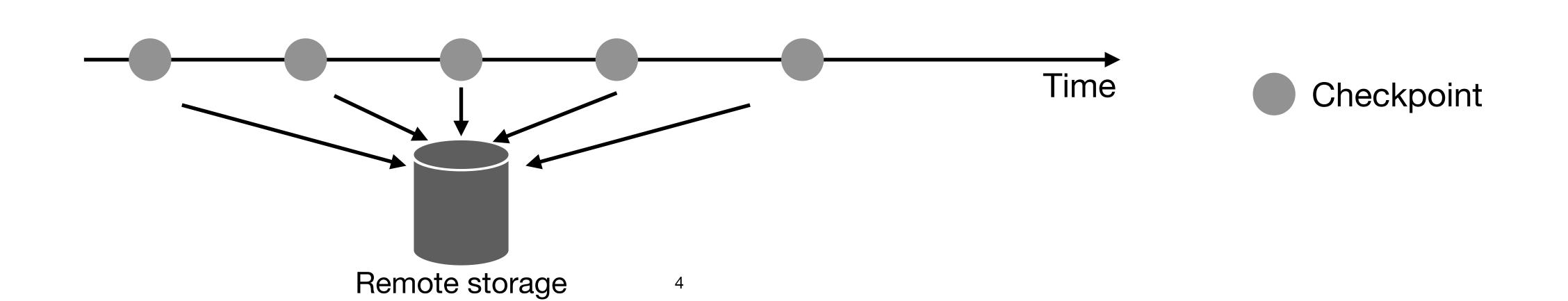
Switch failures

• OPT-175B: 100+ failures^[1] in two months

Checkpoint for failure recovery

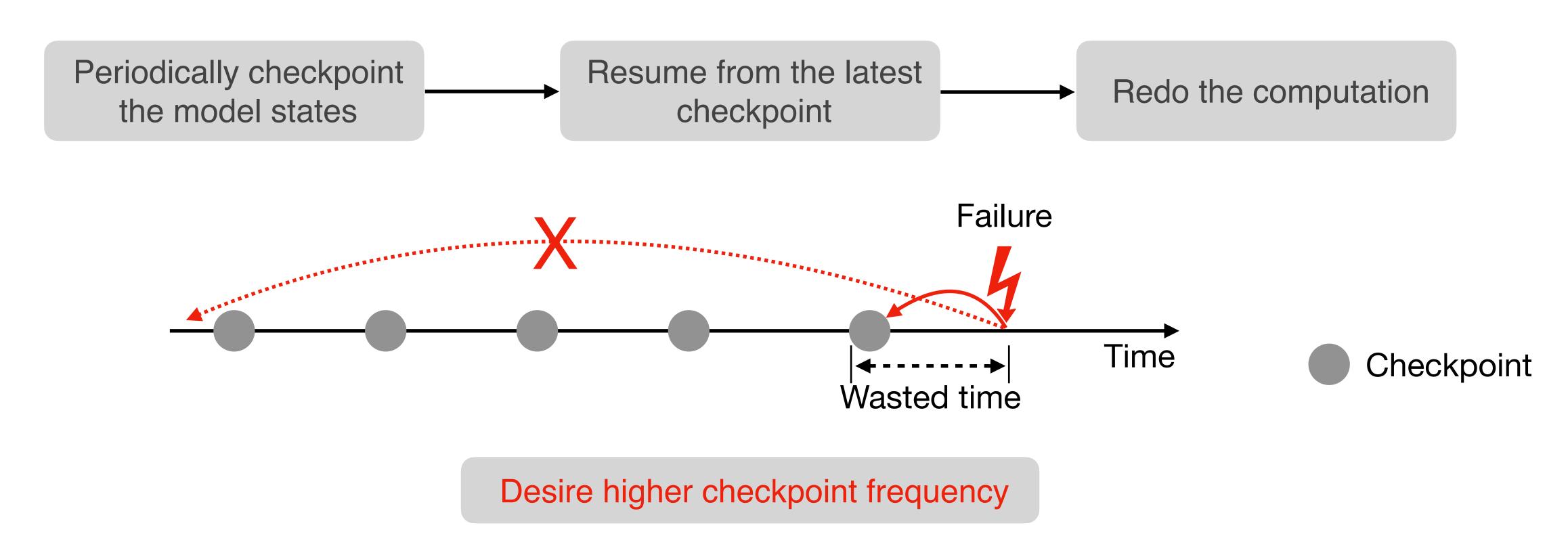
How checkpoint works?





Checkpoint for failure recovery

How checkpoint works?



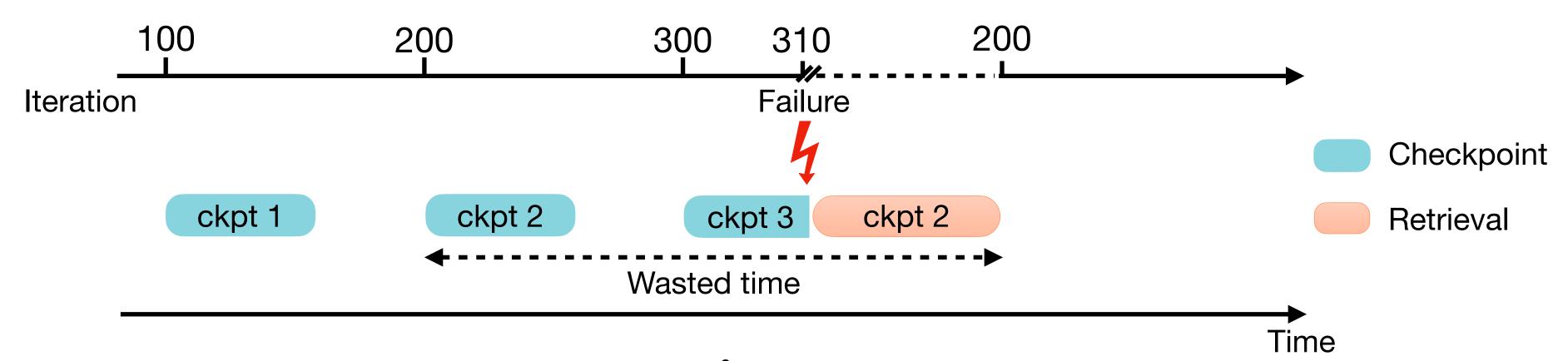
Checkpoint in LLM

Limited checkpoint frequency

Checkpoint to remote storage takes a long time

Model	Parameters	Checkpoint size	Checkpoint time (20Gbps)
Gopher [56]	280B	3.4 TB	23 min
MT-NLG [62]	530B	6.4 TB	43 min
PaLM [23]	540B	6.5 TB	44 min

Checkpoint frequency is limited by the checkpoint time



Checkpoint in LLM

Prohibitive failure recovery overhead

- Costly wasted time
 - Even with the highest checkpoint frequency

Model	Parameters	Checkpoint size	Checkpoint time (20Gbps)	Average wasted time
Gopher [56]	280B	3.4 TB	23 min	57 min
MT-NLG [62]	530B	6.4 TB	43 min	108 min
PaLM [23]	540B	6.5 TB	44 min	110 min

- Significant GPU resources are wasted due to failure recovery
 - Thousands of GPUs involved
 - Hundreds of failures during training

GeminiCheckpoint to CPU memory

CPU memory is much larger than GPU memory

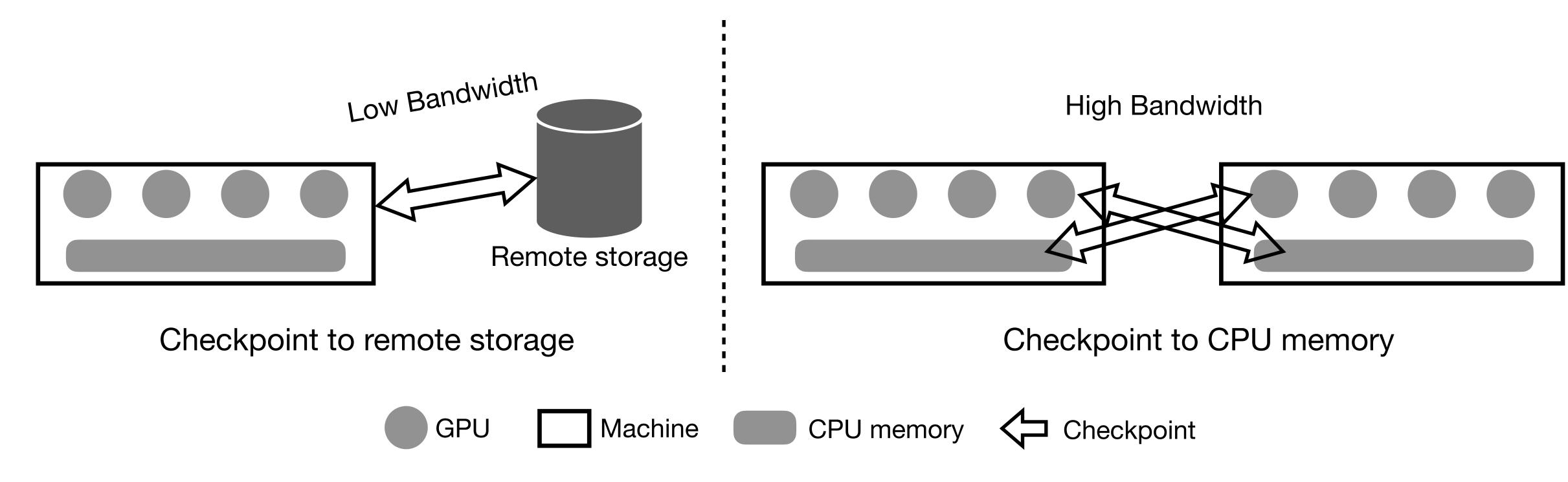
Instance type	Cloud	GPU	GPU memory	CPU memory
p3dn.24xlarge [14]	AWS	8 V100	8 × 32 GB	768 GB
p4d.24xlarge [15]	AWS	8 A100	$8 \times 40 \text{ GB}$	1152 GB
ND40rs_v2 [10]	Azure	8 V100	$8 \times 32 \text{ GB}$	672 GB
ND96asr_v4 [11]	Azure	8 A100	$8 \times 40 \text{ GB}$	900 GB
n1-8-v100 [9]	GCP	8 V100	$8 \times 32 \text{ GB}$	624 GB
a2-highgpu-8g [9]	GCP	8 A100	$8 \times 40 \text{ GB}$	640 GB
DGX A100 [12]	NVIDIA	8 A100	8 × 80 GB	2 TB

CPU memory size is sufficient to store checkpoints

Gemini

Checkpoint to CPU memory

- CPU memory is much larger than GPU memory
- Checkpoint to CPU memory enables a much higher frequency

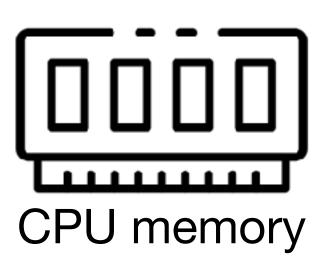


Gemini

Checkpoint to CPU memory

- CPU memory is much larger than GPU memory
- Checkpoint to CPU memory enables a much higher frequency
- CPU memory only stores checkpoints for failure recovery

Decouple the checkpoints for different purposes

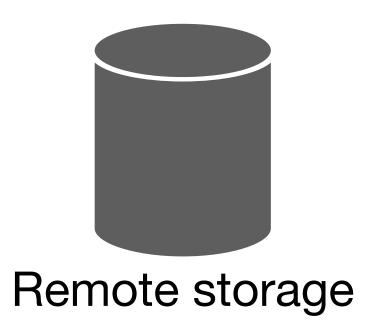


Failure recovery

- High-frequent checkpoints
- Only need the latest one

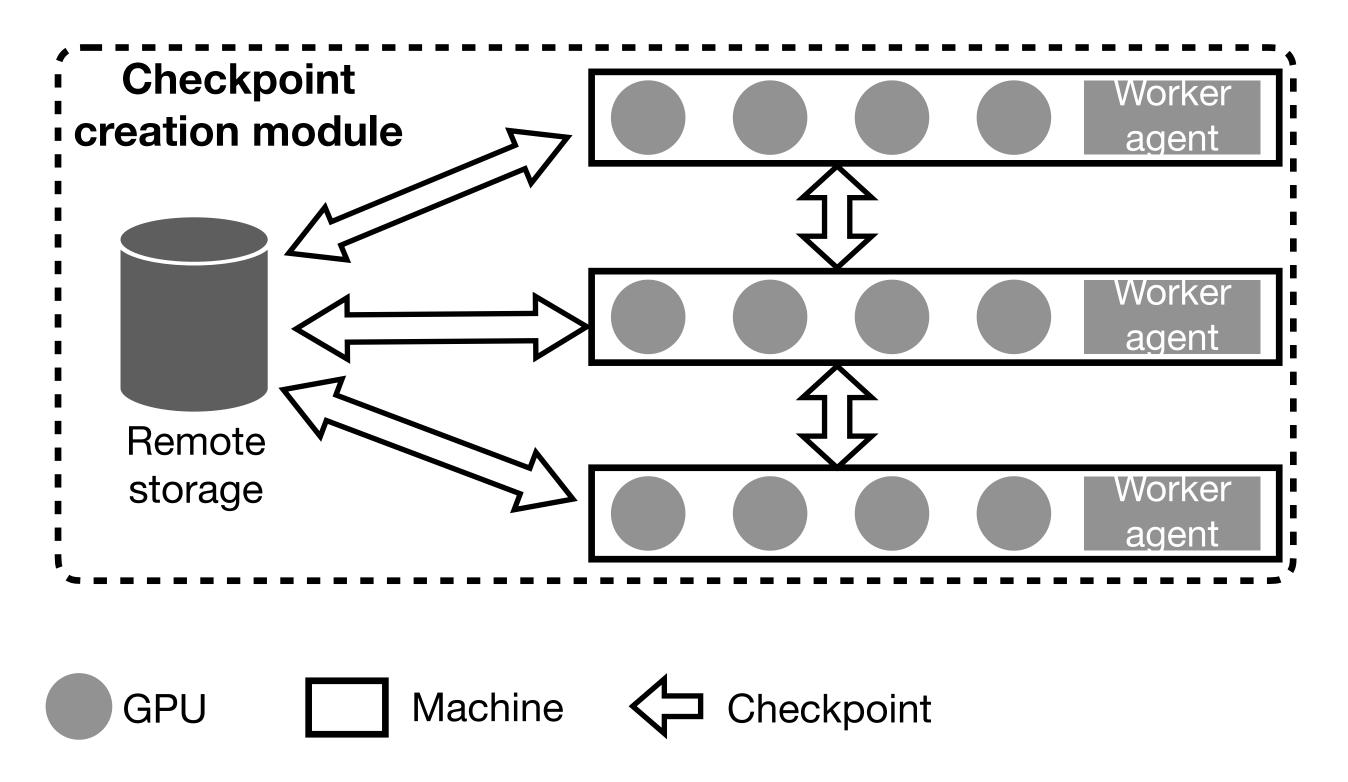
Debugging, accuracy evaluation

- Need checkpoint history
- Low-frequent checkpoints



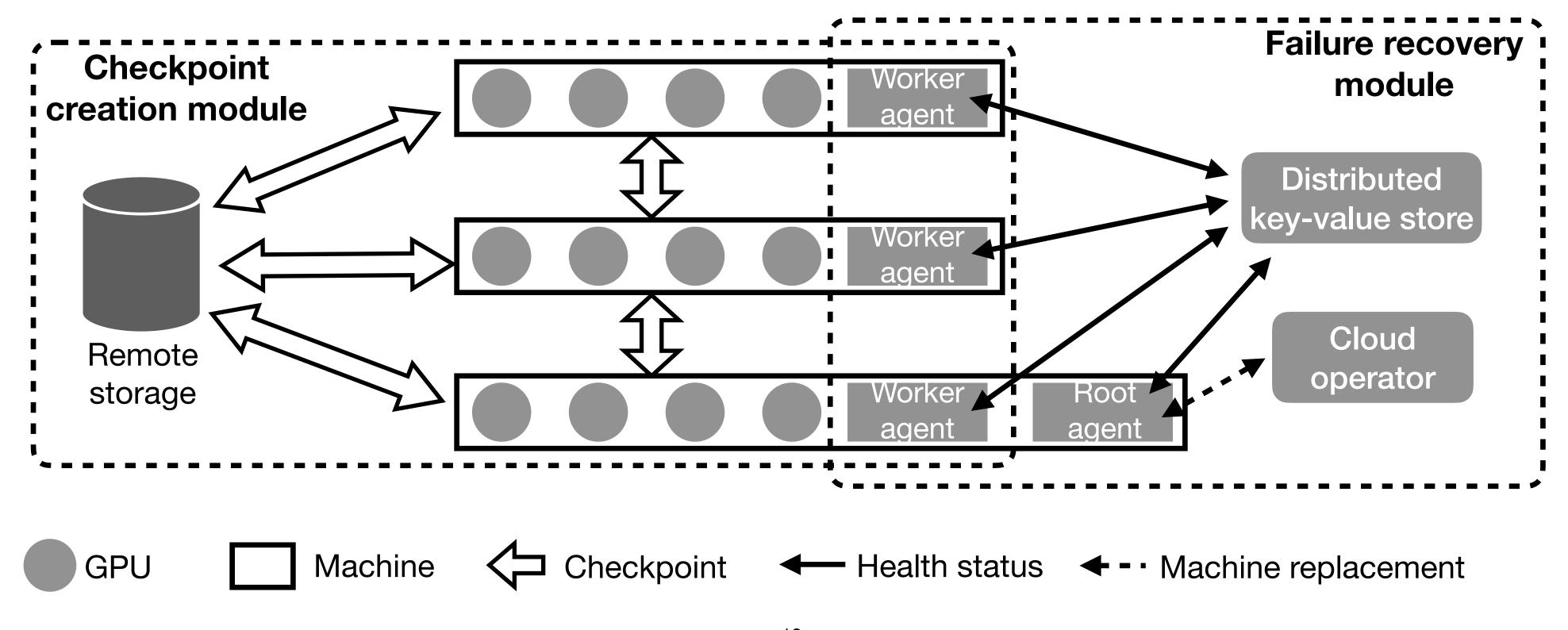
Gemini Architecture

Two modules



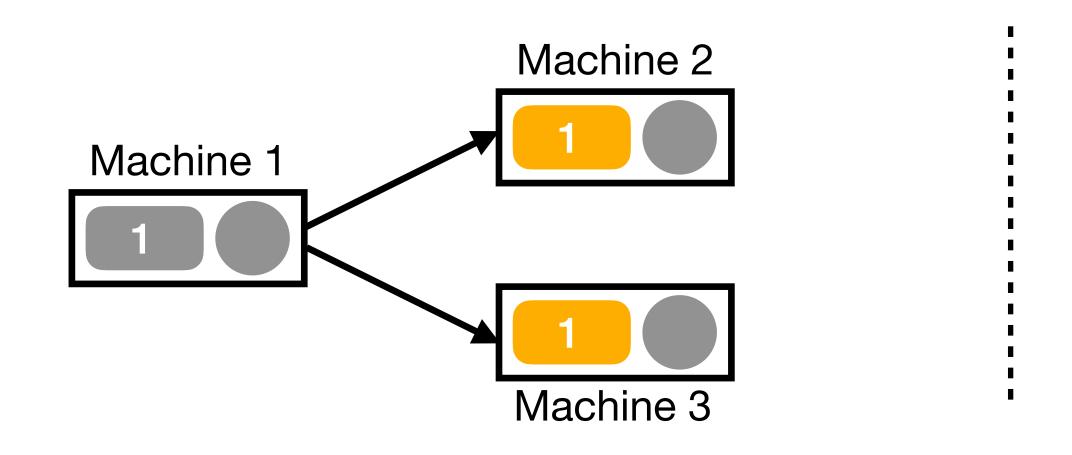
Gemini Architecture

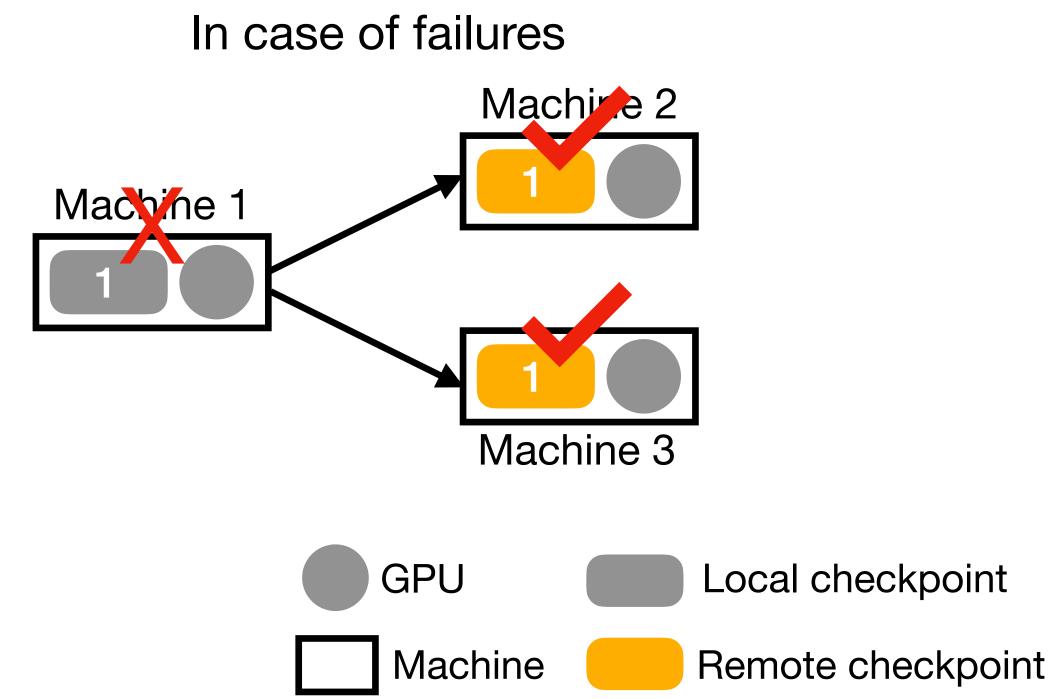
Two modules



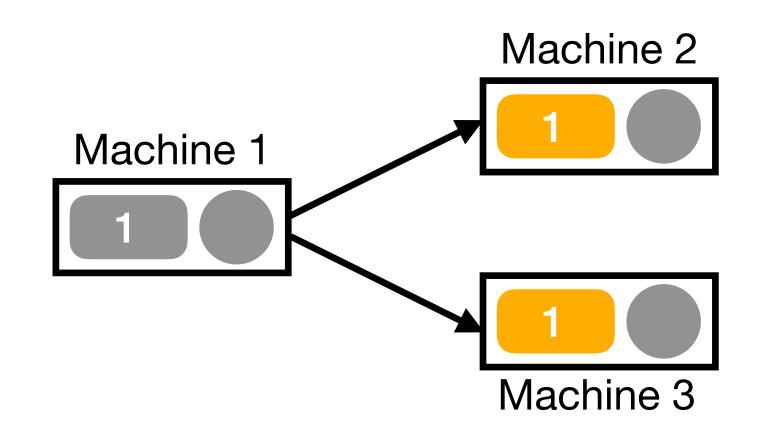
Data stored in CPU memory can get lost

- Data stored in CPU memory can get lost
- Checkpoint redundancy
 - Design choice: checkpoint replicas



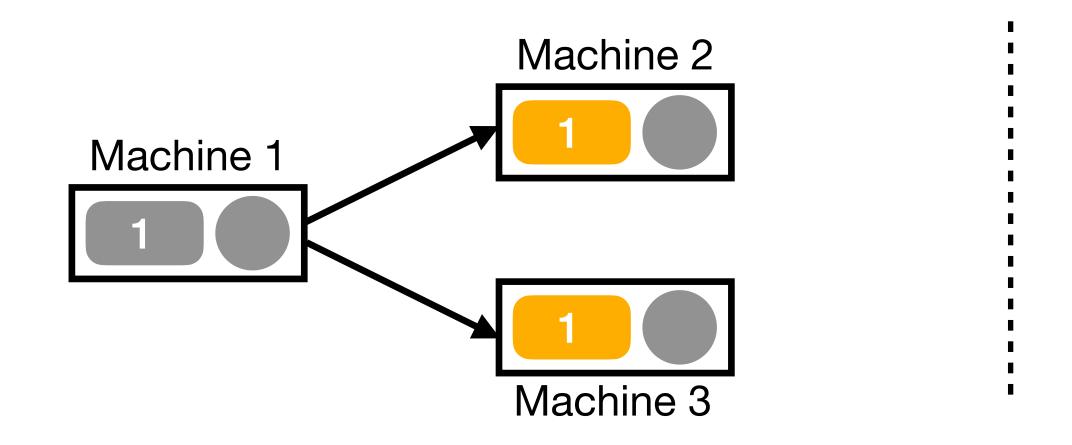


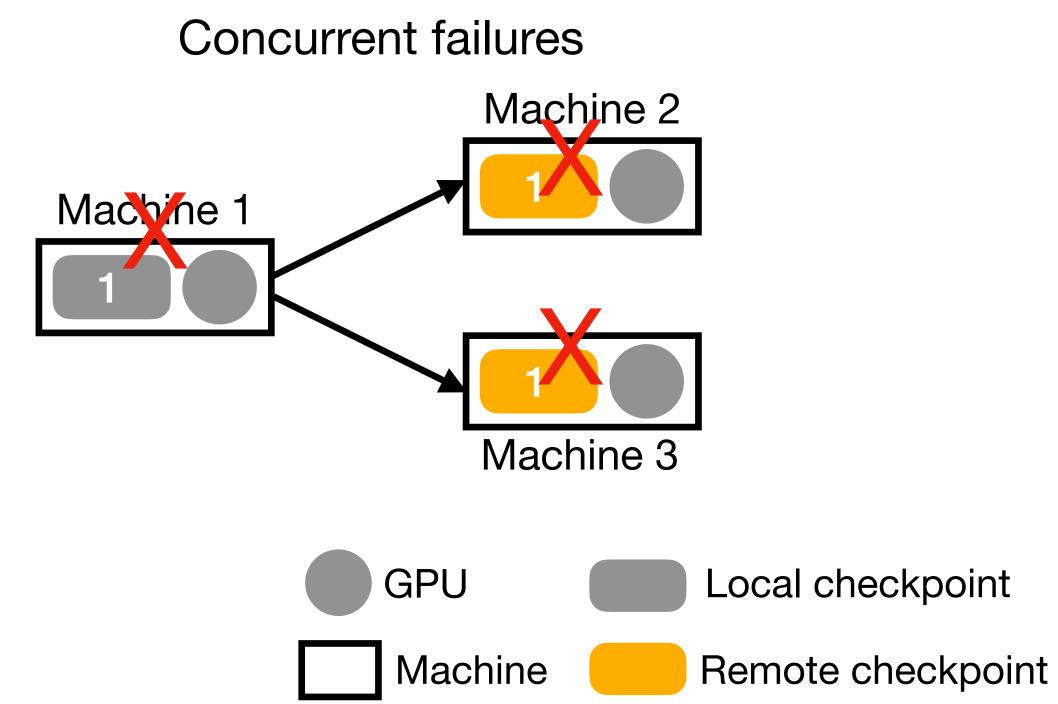
- Data stored in CPU memory can get lost
- Checkpoint redundancy
 - Design choice: checkpoint replicas



- Why not Erasure Coding?
 - Prohibitive computation cost
 - CPU memory is not a bottleneck

- Data stored in CPU memory can get lost
- Checkpoint redundancy
 - Design choice: checkpoint replicas

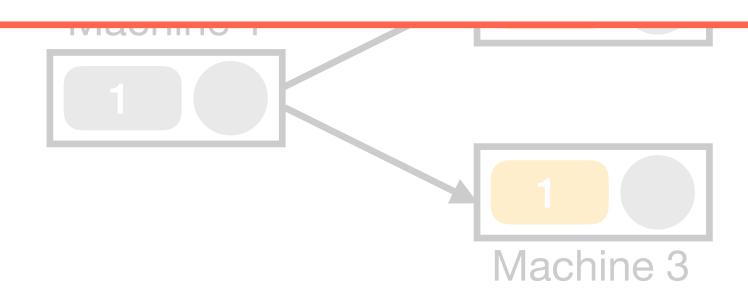


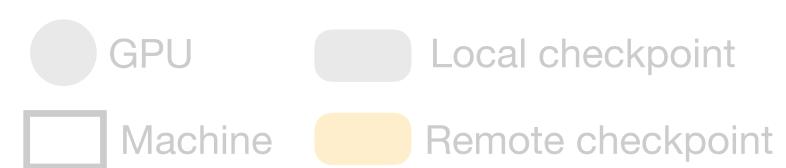


Optimal checkpoint placement

- Data stored in CPU memory can get lost
- Solution: checkpoint redundancy

Maximize the probability of failure recovery from checkpoints stored in CPU memory





SolutionGroup placement strategy

- Two steps
 - N machines, m checkpoint replicas

Step 1: All machines are divided into disjoint groups and each group has m machines

Step 2: Each machine backups a checkpoint replica for all machines within the same group

Solution

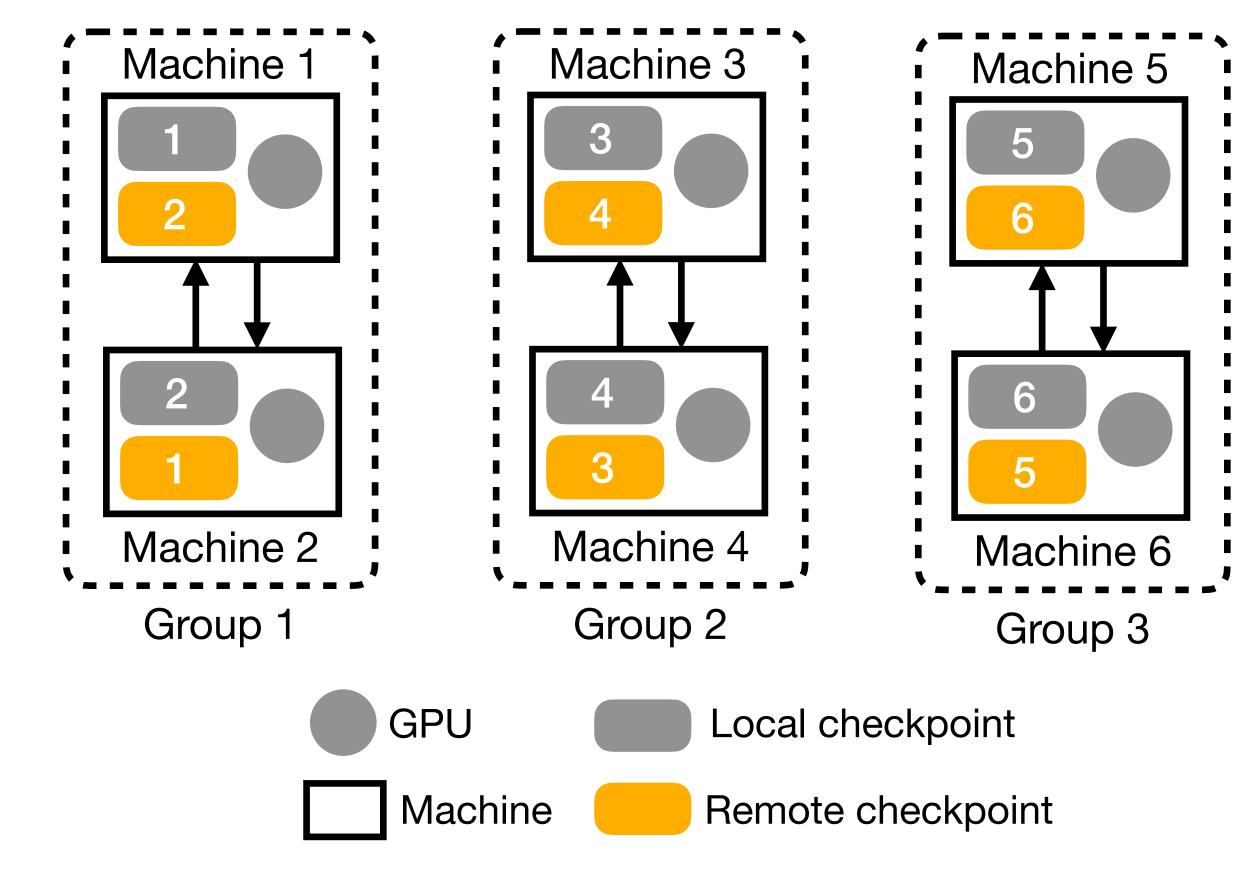
Group placement strategy

- Two steps
 - N machines, m checkpoint replicas

Step 1: All machines are divided into disjoint groups and each group has m machines

Step 2: Each machine backups a checkpoint replica for all machines within the same group

An example with two replicas



SolutionGroup placement strategy

- Two steps
 - N machines, m checkpoint replicas

Step 1: All machines are divided into disjoint groups and each group has m machines

Step 2: Each machine backups a checkpoint replica for all machines within the same group

Group placement strategy is provably optimal

Solution

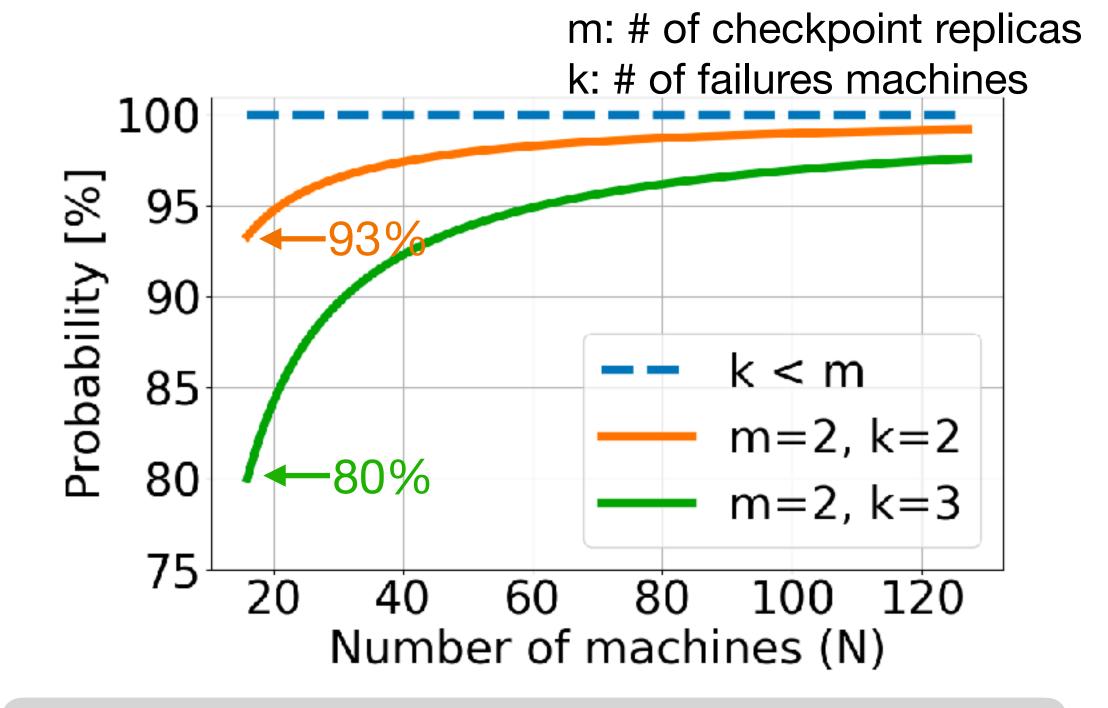
Group placement strategy

- Two steps
 - N machines, m checkpoint replicas

Step 1: All machines are divided into disjoint groups and each group has m machines

Step 2: Each machine backups a checkpoint replica for all machines within the same group

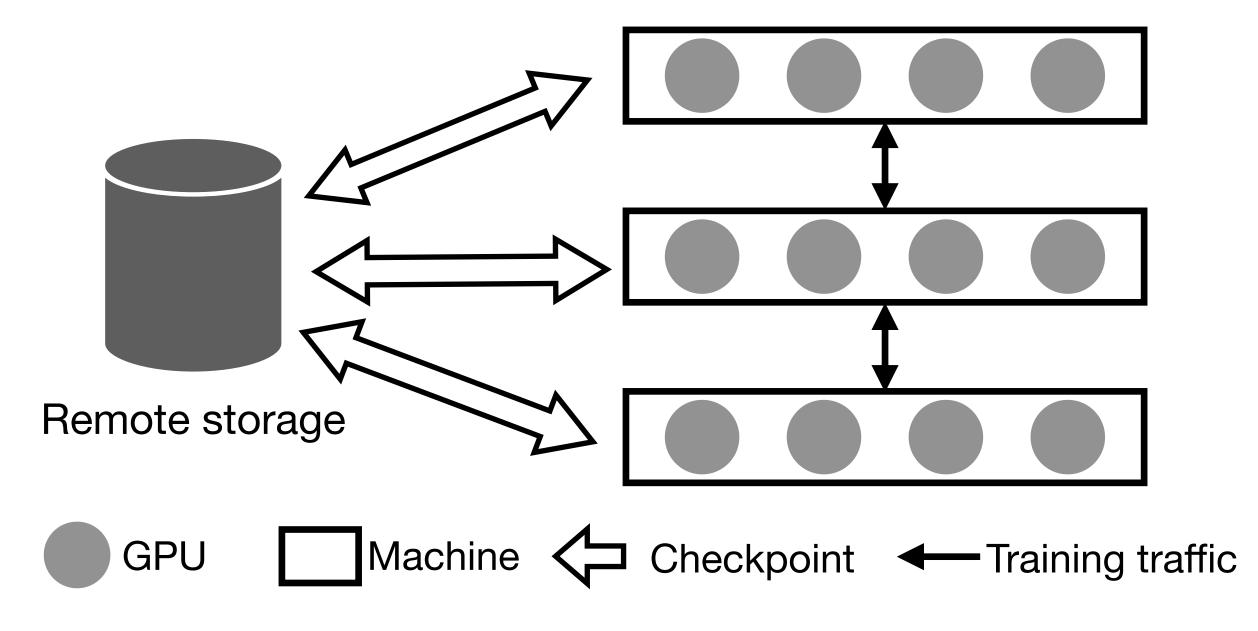
Group placement strategy is provably optimal



Two checkpoint replicas can already handle most failure cases!

Checkpoint traffic interferes with training traffic

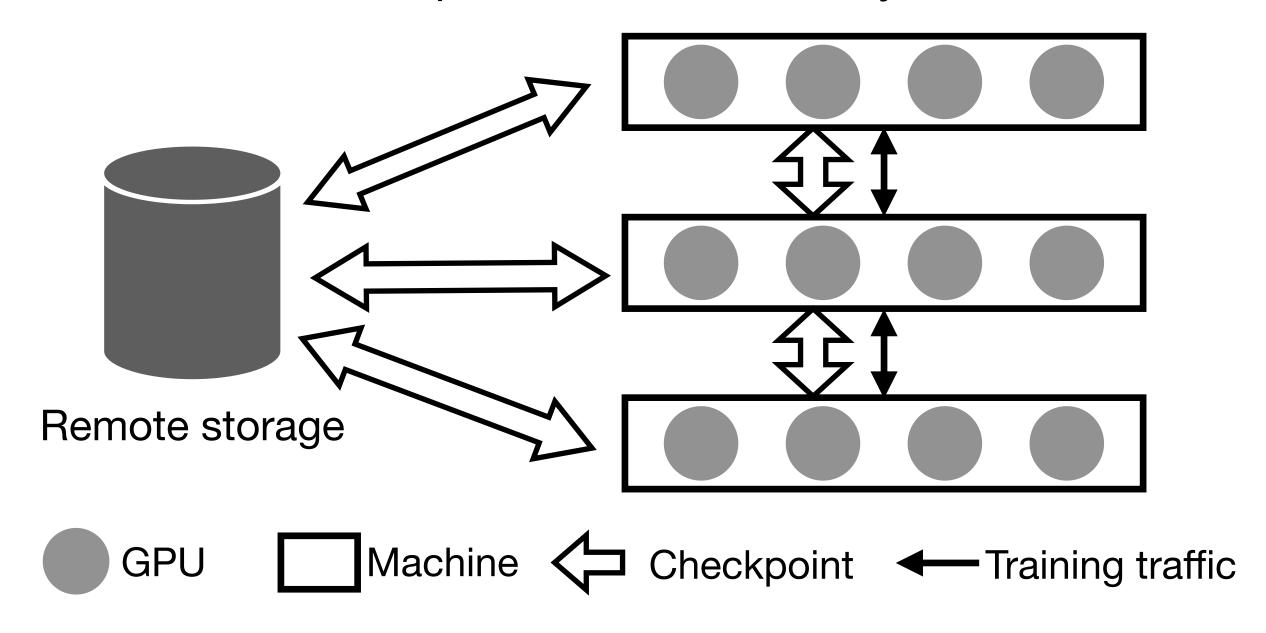
Checkpoint to remote storage



Checkpoint traffic and training traffic have different networks

Checkpoint traffic interferes with training traffic

Checkpoint to CPU memory



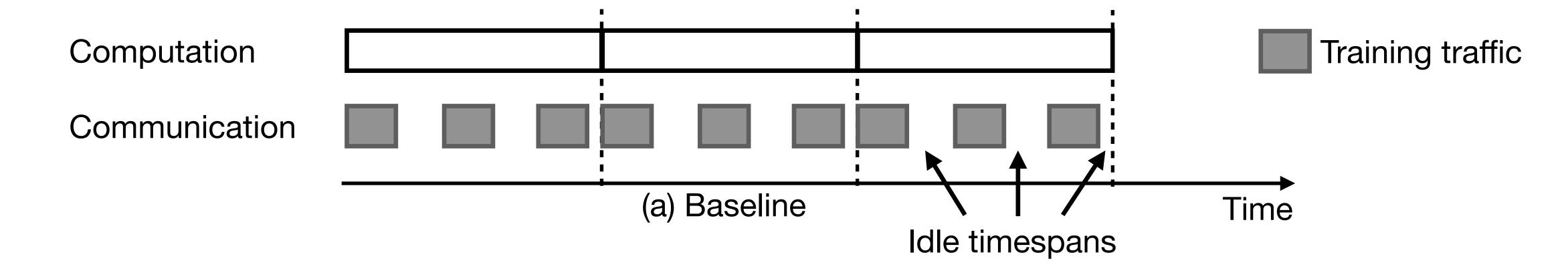
Checkpoint traffic and training traffic shares the same network

It can harm training throughput

Solution

Traffic interleaving

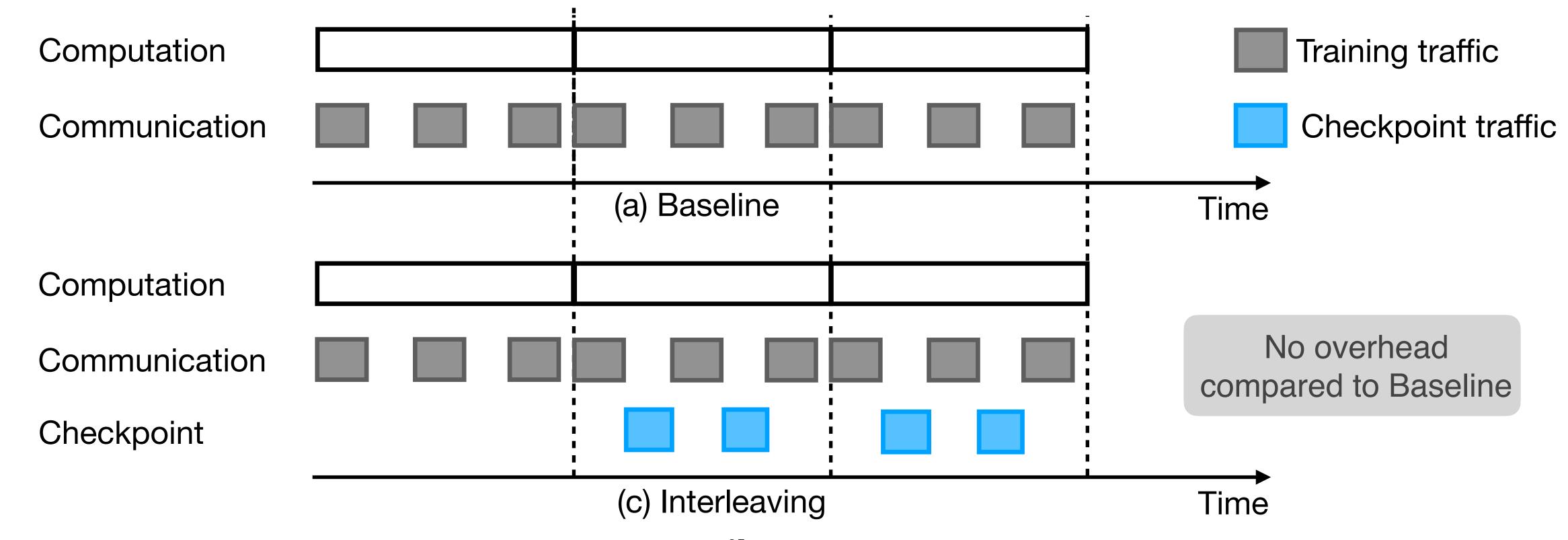
Observation: Idle timespans in the network



Solution

Traffic interleaving

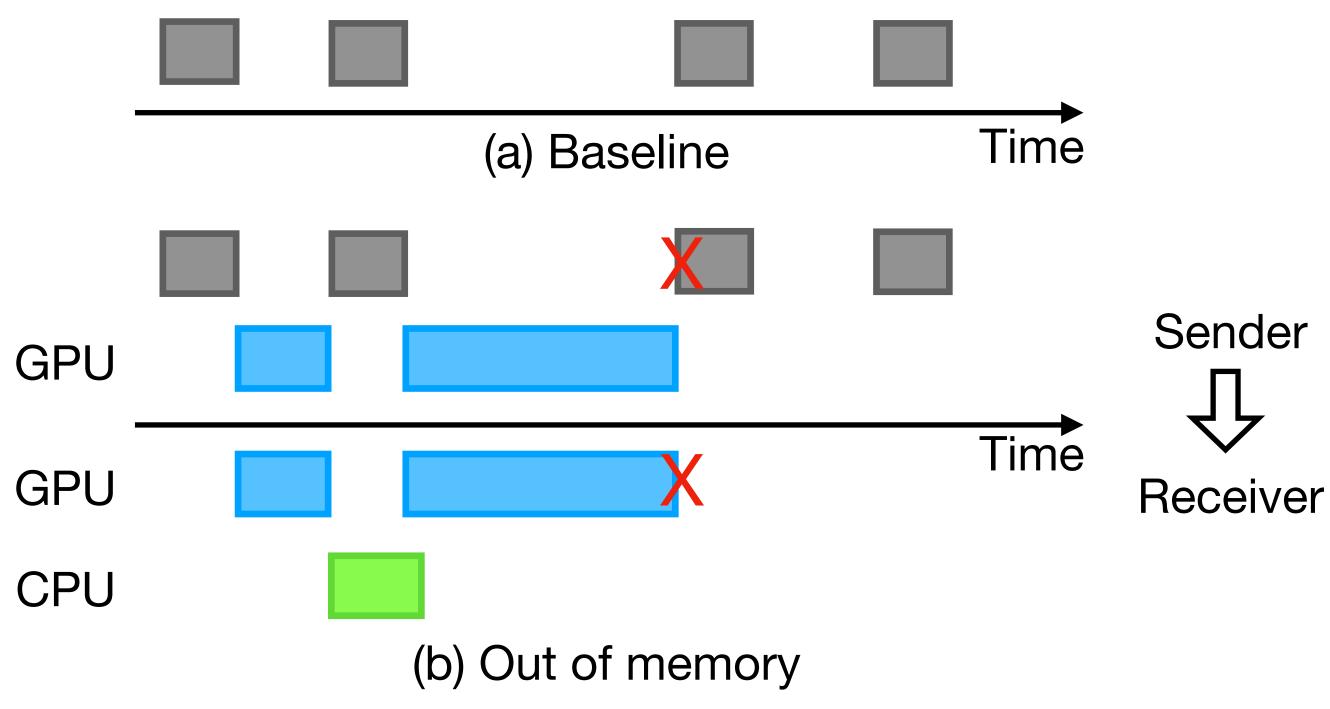
Insert checkpoint traffic in idle timespans



Out-of-memory issue

- GPU memory is mainly used for training
- Limited spare GPU memory for checkpoint traffic

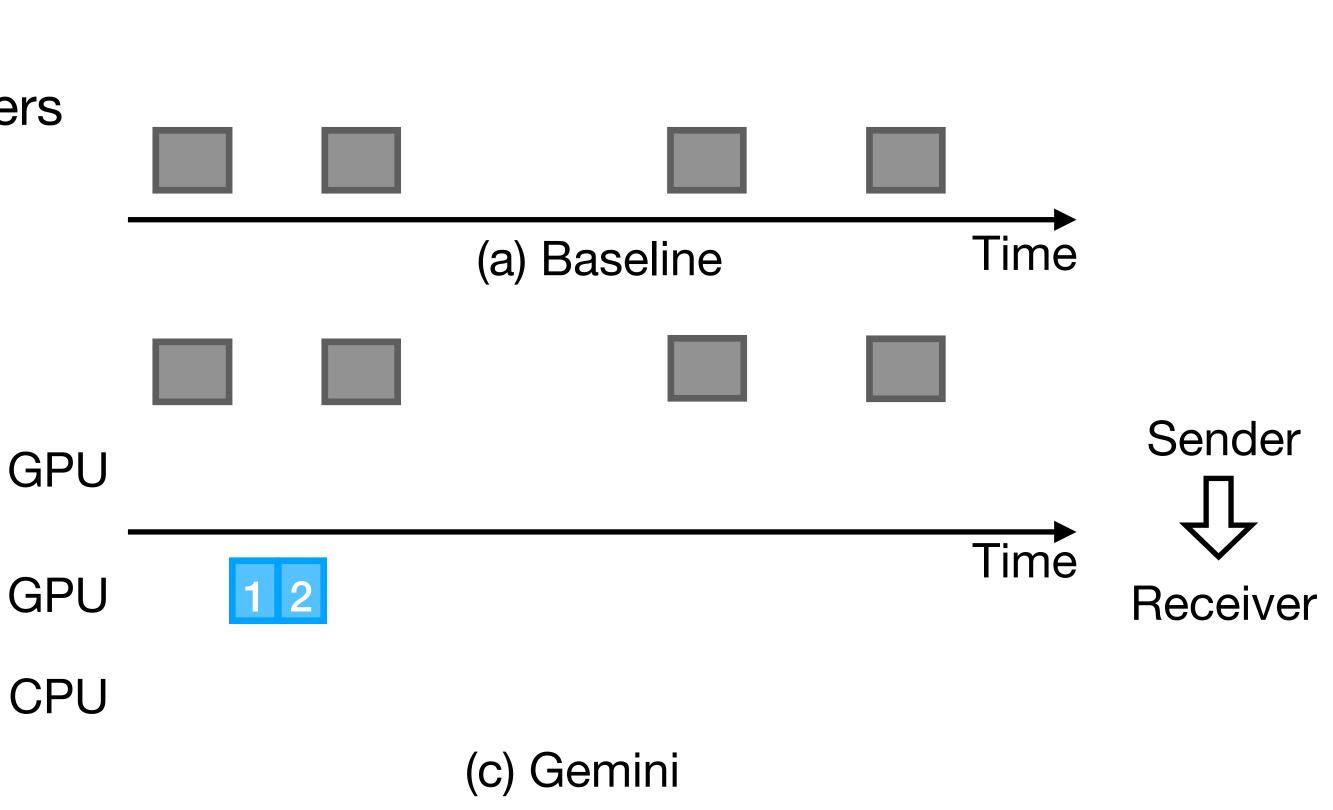
How to minimize the extra GPU memory consumption?



Our design

Checkpoint partition and pipelining

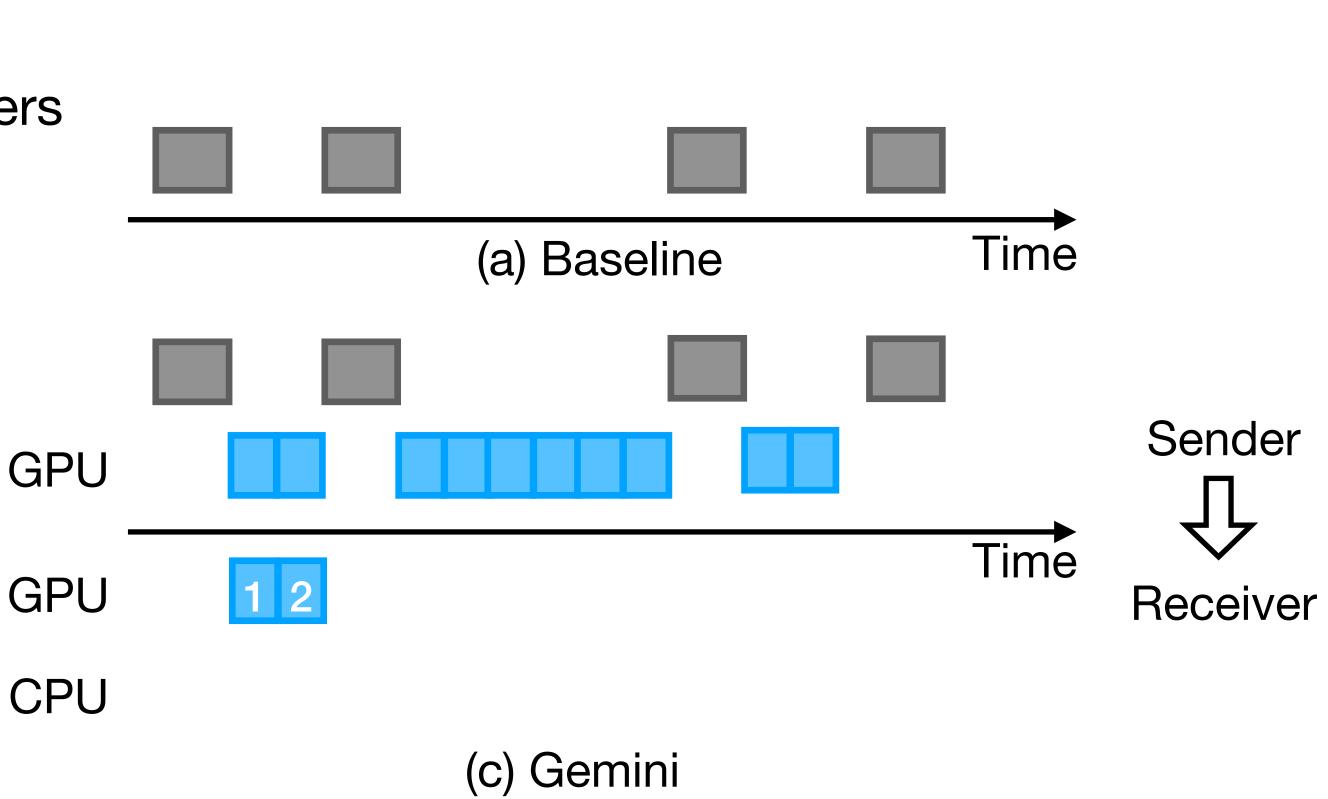
- Keys ideas
 - Reserve a GPU buffer at the receiver
 - Partition the buffer to multiple sub-buffers



Our design

Checkpoint partition and pipelining

- Keys ideas
 - Reserve a GPU buffer at the receiver
 - Partition the buffer to multiple sub-buffers
 - Pipeline checkpoint communications



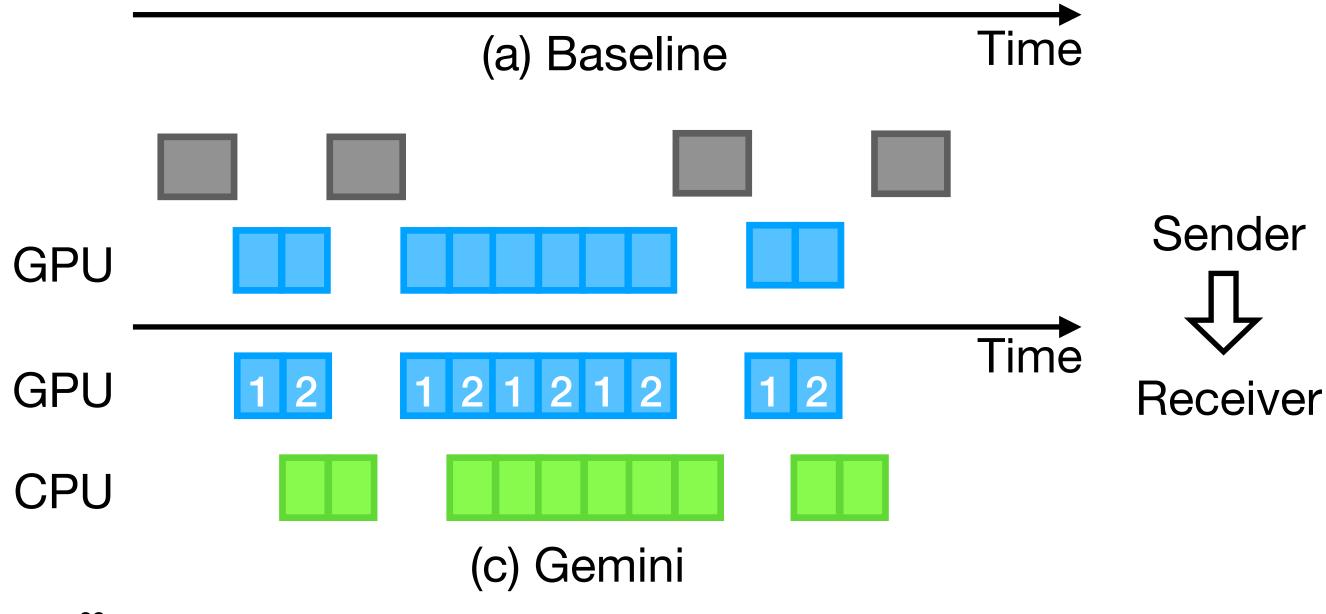
Our design

Checkpoint partition and pipelining

- Keys ideas
 - Reserve a GPU buffer at the receiver
 - Partition the buffer to multiple sub-buffers
 - Pipeline checkpoint communications

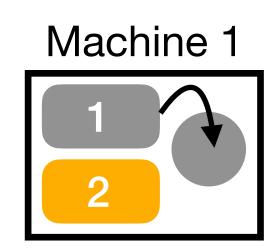
The GPU sub-buffers are reused

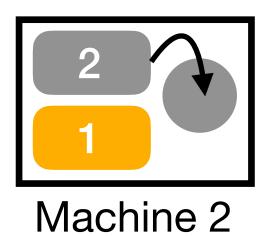
A small GPU buffer, e.g., 128MB, is sufficient

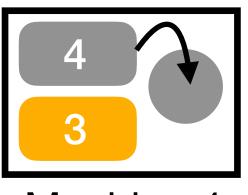


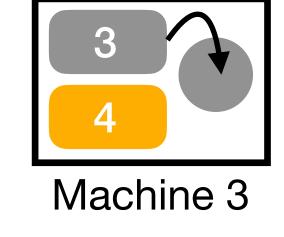
Resume training from failures Software failures

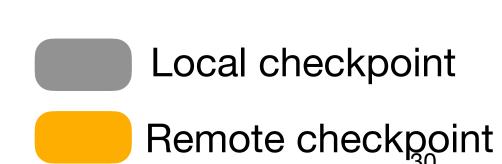
Checkpoints are available at local











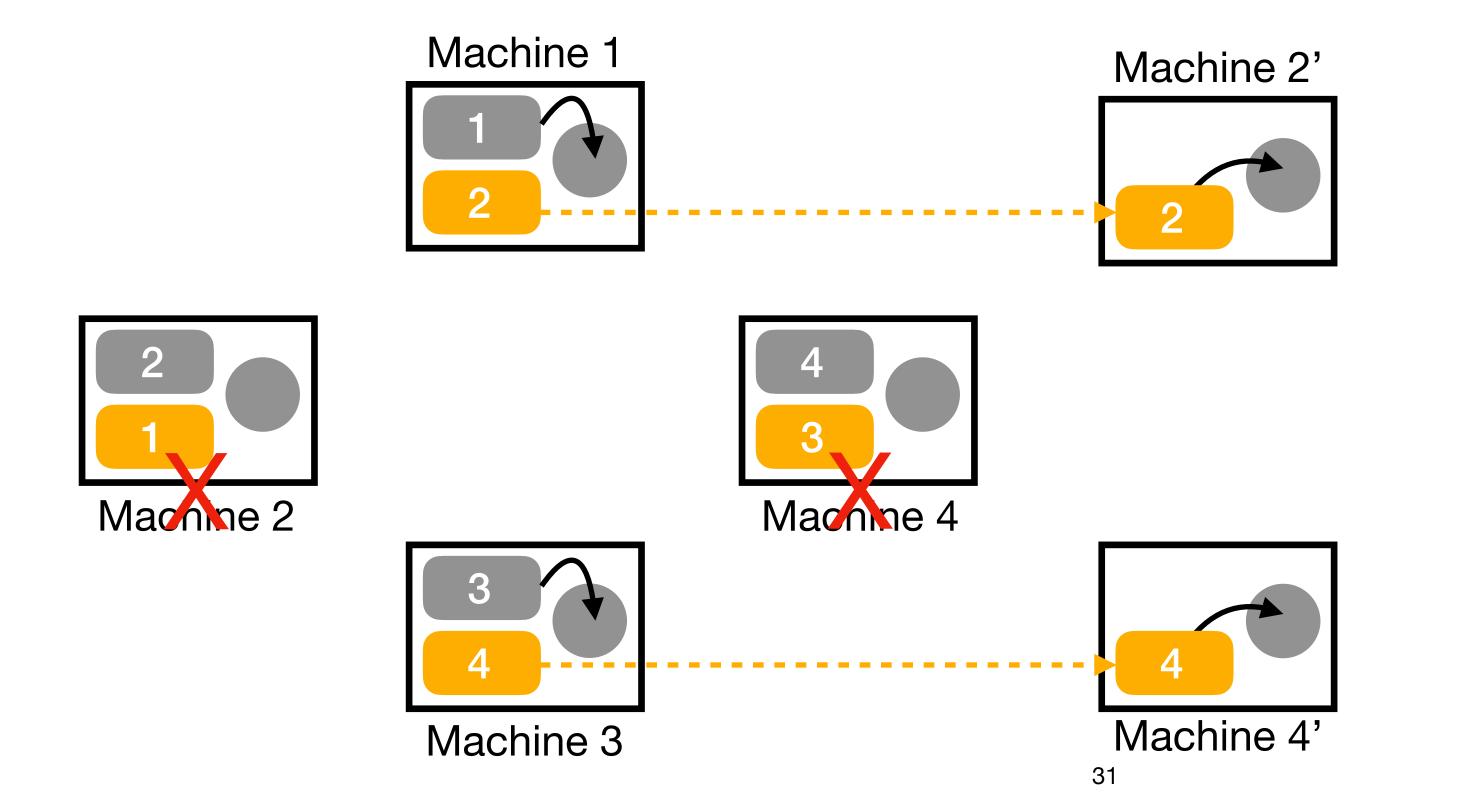
Negligible retrieval time

Just few iterations are lost

Resume training from failures

Hardware failures

Checkpoints are still available at other machines

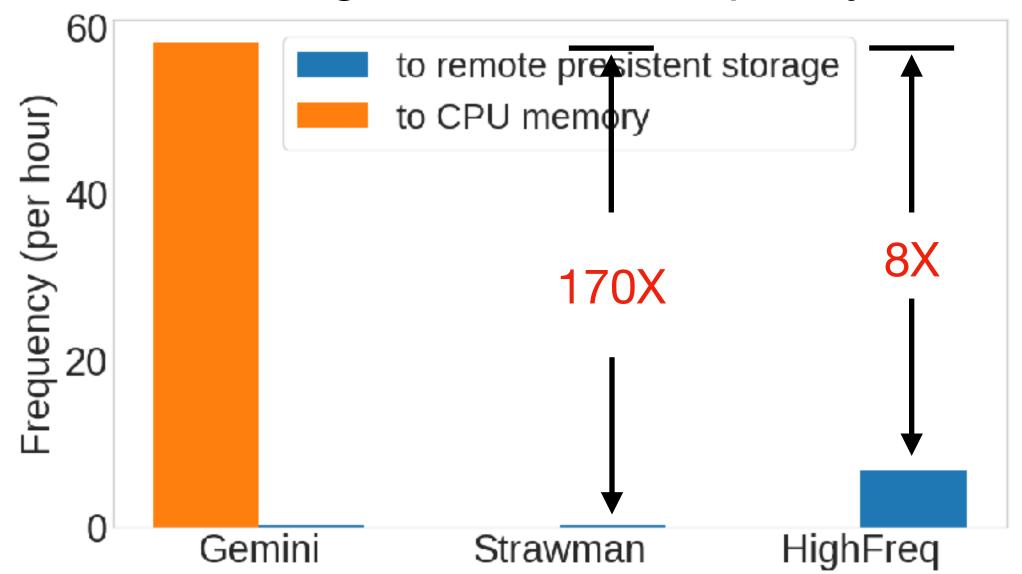


Evaluation

- Settings
 - Framework: DeepSpeed, ZeRO-3
 - 16 p4d instances (128 A100 GPUs), 400Gbps network bandwidth
 - The aggregated bandwidth of remote storage: 20Gbps
 - The size of LLM: 100 billion parameters
 - Reserved GPU buffer size: 128MB

Checkpoint frequency

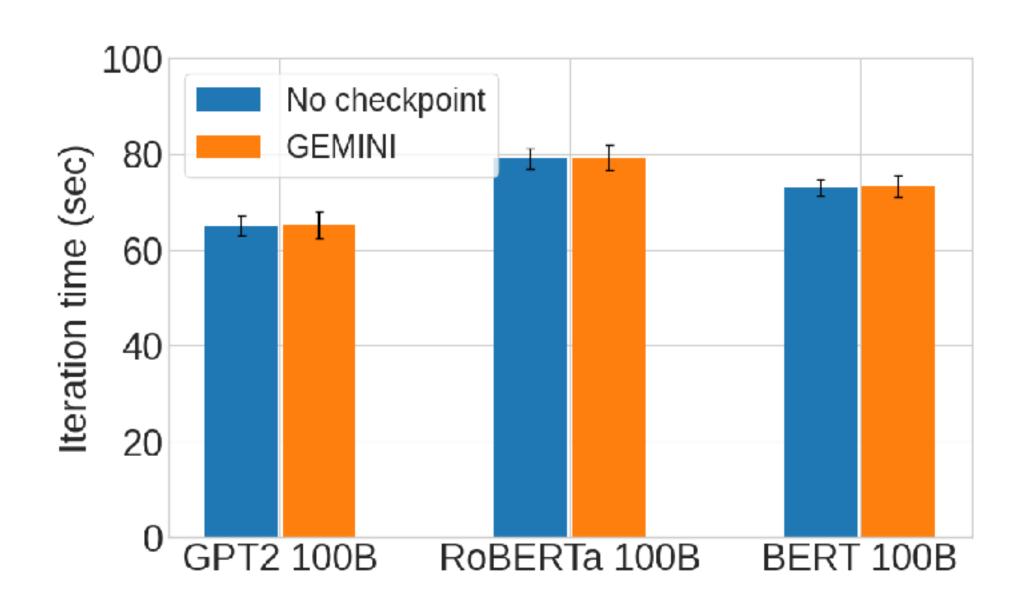
- Baselines
 - Strawman: every 3 hours (BLOOM's frequency [1])
 - HighFreq: saturate the remote storage bandwidth capacity

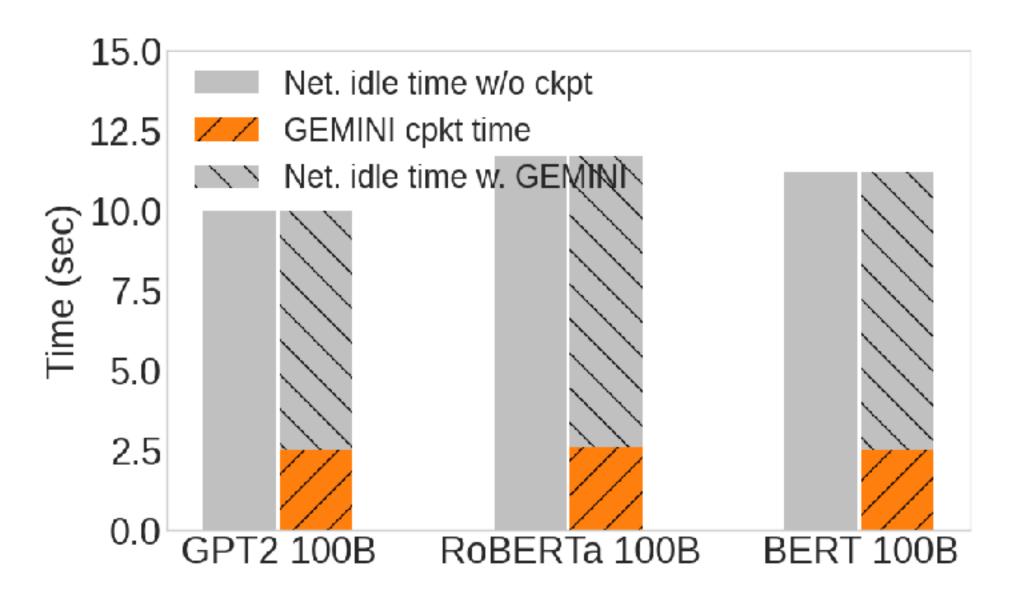


Gemini: Checkpoint model states every iteration

Training efficiency

- Training time
 - Gemini checkpoints model states to CPU memory every iteration





Negligible overhead on iteration time

Idle timespans can accommodate checkpoint traffic

Summary

- Large model training suffers from frequent failures
- Gemini checkpoints model states to CPU memory for failure recovery
 - Optimal checkpoint frequency, i.e., every iteration
 - Negligible overhead on training throughput
 - Applicable to different parallelism strategies of training