
By John Drab

10/02/2025

A Scalable, Commodity
Data Center Network

Architecture

Data Center Cluster Computing

- Rapid scaling of data center compute
with commodity PCs

Background

Existing Network Topology

- Three-tier network architecture
- Expensive specialized switches at top

Oversubscription

Three-tiered tree topologies (Core -> Aggregate -> Edge -> Host)

- Hosts connect directly to edges (Top-of-Rack, ToR switch)
- ToR uplinks to larger switches (Aggregation Layer)
- Aggregate switches link to very high-capacity routers/switches at ‘top’ (Core)

Oversubscription

- Cost of larger capacity switches does not scale linearly (Very expensive!)
- Example: Base host to ToR connection (e.g., 1Gbps) x 40 hosts (= 40 Gbps)
- But ToR uplink bandwidth only 10 Gbps
- Leads to oversubscription ratio of 4:1

Three-Tier Topology Example

Primary Motivation

Bandwidth and Scalability

- Current network topologies for data centers are cost-ineffective
at supporting all available bandwidth at edges

- Cluster computing bottlenecked by inter-node communication

Economies of Scale

- Leverage commodity switches which provide cost and
compatibility benefits compared to specialized hardware

- Existing tree topologies struggle with networks being
oversubscribed

- Non-uniform bandwidth results in congestion at root nodes

VS

Commodity Hardware

Speciality Hardware

Bandwidth Bottlenecks

Multi-Path Routing
- Single-root tree: Each edge switch only has one uplink to the core. All traffic must share

that single link, which becomes a bottleneck.
- In a multi‑root tree: Each edge switch has multiple uplinks to different core switches,

creating several equal‑cost uplinks.

ECMP Load Balancing
- ECMP (Equal-Cost Multi-Path): Traffic spread using a hash of each flow’s IP addresses,

ports, etc. to pick one uplink. All packets in that flow stick to the same path
- Static: ECMP doesn’t look at how big flows are. Two huge flows might land on the same

link, overloading it, while other links stay empty.
- Limited paths: Switches usually only support 8–16 paths, even if the network has more

available.

Fat-Tree Topology

Scalable: k-ary fat-tree supports
(k³/4) servers.

Full bisection bandwidth: Any
server can communicate with any
other at line rate.

Commodity switches: Uses
multiple cheap switches instead
of expensive routers.

Multipath routing: Equal-cost
paths spread traffic, improving
throughput & fault tolerance.

Fat-Tree Architecture

● Goal of optimizing bisection bandwidth in the network, taking advantage of
Fat-tree’s large fanout

● Fat-tree layout not optimized for traditional routing (i.e OSPF, OSPF-ECMP)
● Need to create a simple, fine-grained traffic diffusion method:

○ Utilize two-level routing tables to distribute traffic based on low-order
bits of destination IP

○ IP address follows quad-dotted form:
■ Pods: 10.pod.switch.1 | Core switches: 10.k.j.i | Hosts: 10.pod.switch.ID

Bisection Bandwidth

Image source

https://randomnetworkramblings.blogspot.com/2012/06/bisection-bandwidth-in-data-center.html

Routing Table

● Two-level lookup design ensures even
traffic distribution across multiple
equal-cost paths

● Structure of two-level lookup:

○ Primary table: matches prefixes
(left-handed, e.g., 10.2.0.X)

○ Secondary table: matches suffixes (right-handed, e.g., X.X.X.3), each prefix may
point to a suffix table for more fine-grained routing.

● Crucially allows for efficient routing with commodity switch table size limitations

Two-level TCAM Lookup
Engine

● Hardware based Ternary Content Addressable Memory (TCAM):
○ Matches variable-length prefixes/suffixes in 1 clock cycle and supporters ‘don’t

care’ (X) bits -useful for IP routing

Routing Algorithm

● Intra-pod traffic: Upper and lower pod switches hold terminating prefixes
to subnets in the pod
○ Uses a default /0 prefix with secondary suffix-based lookup.
○ Host IDs (last byte of IP) are used to deterministically spread traffic to core

switches.
○ Prevents packet reordering by maintaining consistent paths for flows.

● Each core switch holds terminating /16 prefixes (e.g., 10.2.0.0/16) for
destination pods
○ Once in the destination pod, upper switches forward based on a /24 subnet

prefix.

● Central controller computes and installs small static routing tables of size
≤ k first-level prefixes and ≤ k/2 second-level suffixes

Flow Control

● Flow = sequence of packets sharing key header fields (e.g.,
src/dst IP, transport port).
○ Important to optimize to avoid local congestion and balance load across

upward ports in pod switches and preserve packet ordering while
improving throughput.

● Dynamic Port Reassignment:
○ Recognize and maintain consistent path for each flow (prevents

reordering).
○ Periodically reassign ports to minimize flow imbalance across available

paths
○ Can revert to standard two-level routing if switch state is lost: stateless

fallback

Fault-Tolerance/Power &
Heat
● Nature of Fat-tree enables fault resilience with multiple redundant paths
● Switches use BFD sessions to detect neighbor failures.
● Upon link or switch failure, broadcast tags inform peers to avoid the

affected path:
○ Lower→Upper failure: reroute outgoing flows locally, notify peers in the pod and

core switches.
○ Upper→Core failure: reroute inter-pod flows locally; core notifies all connected

upper-layer switches.

● Fat-tree architecture uses many low-power switches, results in
significant power and heat reductions (~56.55% total power and heat)

Implementation

NetFPGA Prototype
- NetFPGA board running an open‑source IPv4 router with TCAM lookup
- Added two-level routing lookup table into the TCAM pipeline
- Results: no measurable increase in latency, showed that this process could be done

with existing commodities with no downside (not just theoretical but can be
implemented today)

Click‑Based Prototype
- The authors built every switch (core, aggregation, edge) as a user-level Click Router on

Linux VMs, where Click is designed as a graph of processing modules to perform tasks
like router lookup

- Connected the VMs via a real 48‑port GigE switch (HP ProCurve), but capped each
virtual link to 96 Mbps so that packet‐processing CPU cost, not line‐rate, dominates.

Evaluation and Results

● Paper evaluated bisection bandwidths using 4-port Fat-tree, 16
hosts, 20 switches.
○ Tested Two-Level Table, Flow Classification, and Flow Scheduling

methods

Flow Scheduler with
the Fat-tree
architecture yielded
near-optimal
bandwidths, scales
well, and is efficient.

Packaging

● Fat-tree topology requires large number of
connections between many switches
○ 10 GigE can provide some cable reduction but at

minimal benefit
● Devised Pod-based packaging to minimize

external cabling and maintain scalability
○ Combine first two levels of switches into a rack (pod switch)
○ 1152 external ports divided and connected to host and core

layer switches (576 each)
○ 576 core switches distributed evenly (12 per pod across 48

pods). Cables between pods/core grouped in sets of 12,
enabling organized bundling and simplified routing.

○ Racks are organized around pod switch

Thank You!

● What kind of advantages could high-bandwidth networking offer in failure
recovery or replication-heavy workloads (i.e file system data
management)?

● With larger bandwidth data can be moved faster which might reduce the
need for complex data locality strategies, how might this improve
performance or free up space for larger data applications?

Discussion

