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Data Center Cluster Computing

- Rapid scaling of data center compute 
with commodity PCs

Background

Existing Network Topology

- Three-tier network architecture
- Expensive specialized switches at top 



Oversubscription 

Three-tiered tree topologies (Core -> Aggregate -> Edge -> Host) 

- Hosts connect directly to edges (Top-of-Rack, ToR switch)
- ToR uplinks to larger switches (Aggregation Layer)
- Aggregate switches link to very high-capacity routers/switches at ‘top’ (Core)

Oversubscription

- Cost of larger capacity switches does not scale linearly (Very expensive!)
- Example: Base host to ToR connection (e.g., 1Gbps) x 40 hosts (= 40 Gbps)
- But ToR uplink bandwidth only 10 Gbps 
- Leads to oversubscription ratio of 4:1



Three-Tier Topology Example



Primary Motivation

Bandwidth and Scalability

- Current network topologies for data centers are cost-ineffective 
at supporting all available bandwidth at edges

- Cluster computing bottlenecked by inter-node communication

Economies of Scale 

- Leverage commodity switches which provide cost and 
compatibility benefits compared to specialized hardware  

- Existing tree topologies struggle with networks being 
oversubscribed 

- Non-uniform bandwidth results in congestion at root nodes 

VS

Commodity Hardware

Speciality Hardware



Bandwidth Bottlenecks 

Multi-Path Routing
- Single-root tree: Each edge switch only has one uplink to the core. All traffic must share 

that single link, which becomes a bottleneck.
- In a multi‑root tree: Each edge switch has multiple uplinks to different core switches, 

creating several equal‑cost uplinks.

ECMP Load Balancing
- ECMP (Equal-Cost Multi-Path): Traffic spread using a hash of each flow’s IP addresses, 

ports, etc. to pick one uplink. All packets in that flow stick to the same path
- Static: ECMP doesn’t look at how big flows are. Two huge flows might land on the same 

link, overloading it, while other links stay empty.
- Limited paths: Switches usually only support 8–16 paths, even if the network has more 

available.



Fat-Tree Topology

Scalable: k-ary fat-tree supports 
(k³/4) servers.

Full bisection bandwidth: Any 
server can communicate with any 
other at line rate.

Commodity switches: Uses 
multiple cheap switches instead 
of expensive routers.

Multipath routing: Equal-cost 
paths spread traffic, improving 
throughput & fault tolerance.



Fat-Tree Architecture

● Goal of optimizing bisection bandwidth in the network, taking advantage of 
Fat-tree’s large fanout 

● Fat-tree layout not optimized for traditional routing (i.e OSPF, OSPF-ECMP)
● Need to create a simple, fine-grained traffic diffusion method:

○ Utilize two-level routing tables to distribute traffic based on low-order 
bits of destination IP

○ IP address follows quad-dotted form:
■ Pods: 10.pod.switch.1  |  Core switches: 10.k.j.i  |  Hosts: 10.pod.switch.ID



Bisection Bandwidth

Image source

https://randomnetworkramblings.blogspot.com/2012/06/bisection-bandwidth-in-data-center.html


Routing Table

● Two-level lookup design ensures even 
traffic distribution across multiple 
equal-cost paths

● Structure of two-level lookup:

○ Primary table: matches prefixes 
(left-handed, e.g., 10.2.0.X)

○ Secondary table: matches suffixes (right-handed, e.g., X.X.X.3), each prefix may 
point to a suffix table for more fine-grained routing.

● Crucially allows for efficient routing with commodity switch table size limitations 



Two-level TCAM Lookup 
Engine

● Hardware based Ternary Content Addressable Memory (TCAM):
○ Matches variable-length prefixes/suffixes in 1 clock cycle and supporters ‘don’t 

care’ (X) bits -useful for IP routing 



Routing Algorithm

● Intra-pod traffic: Upper and lower pod switches hold terminating prefixes 
to subnets in the pod
○ Uses a default /0 prefix with secondary suffix-based lookup.
○ Host IDs (last byte of IP) are used to deterministically spread traffic to core 

switches.
○ Prevents packet reordering by maintaining consistent paths for flows.

● Each core switch holds terminating /16 prefixes (e.g., 10.2.0.0/16) for 
destination pods
○ Once in the destination pod, upper switches forward based on a /24 subnet 

prefix.

● Central controller computes and installs small static routing tables of size 
≤ k first-level prefixes and ≤ k/2 second-level suffixes



Flow Control

● Flow = sequence of packets sharing key header fields (e.g., 
src/dst IP, transport port).
○ Important to optimize to avoid local congestion and balance load across 

upward ports in pod switches and preserve packet ordering while 
improving throughput.

● Dynamic Port Reassignment:
○ Recognize and maintain consistent path for each flow (prevents 

reordering).
○ Periodically reassign ports to minimize flow imbalance across available 

paths
○ Can revert to standard two-level routing if switch state is lost: stateless 

fallback



Fault-Tolerance/Power & 
Heat
● Nature of Fat-tree enables fault resilience with multiple redundant paths
● Switches use BFD sessions to detect neighbor failures.
● Upon link or switch failure, broadcast tags inform peers to avoid the 

affected path:
○ Lower→Upper failure: reroute outgoing flows locally, notify peers in the pod and 

core switches.
○ Upper→Core failure: reroute inter-pod flows locally; core notifies all connected 

upper-layer switches.

● Fat-tree architecture uses many low-power switches, results in 
significant power and heat reductions (~56.55% total power and heat)



Implementation 

NetFPGA Prototype
- NetFPGA board running an open‑source IPv4 router with TCAM lookup
- Added two-level routing lookup table into the TCAM pipeline 
- Results: no measurable increase in latency, showed that this process could be done 

with existing commodities with no downside (not just theoretical but can be 
implemented today)

Click‑Based Prototype
- The authors built every switch (core, aggregation, edge) as a user-level Click Router on 

Linux VMs, where Click is designed as a graph of processing modules to perform tasks 
like router lookup

- Connected the VMs via a real 48‑port GigE switch (HP ProCurve), but capped each 
virtual link to 96 Mbps so that packet‐processing CPU cost, not line‐rate, dominates.



Evaluation and Results

● Paper evaluated bisection bandwidths using 4-port Fat-tree, 16 
hosts, 20 switches. 
○ Tested Two-Level Table, Flow Classification, and Flow Scheduling 

methods

Flow Scheduler with 
the Fat-tree 
architecture yielded 
near-optimal 
bandwidths, scales 
well, and is efficient.



Packaging

● Fat-tree topology requires large number of 
connections between many switches 
○ 10 GigE can provide some cable reduction but at 

minimal benefit 
● Devised Pod-based packaging to minimize 

external cabling and maintain scalability
○ Combine first two levels of switches into a rack (pod switch)
○ 1152 external ports divided and connected to host and core 

layer switches (576 each)
○ 576 core switches distributed evenly (12 per pod across 48 

pods). Cables between pods/core grouped in sets of 12, 
enabling organized bundling and simplified routing.

○ Racks are organized around pod switch



Thank You!



● What kind of advantages could high-bandwidth networking offer in failure 
recovery or replication-heavy workloads (i.e file system data 
management)?

● With larger bandwidth data can be moved faster which might reduce the 
need for complex data locality strategies, how might this improve 
performance or free up space for larger data applications?

Discussion


