A Scalable, Commodity
Data Center Network
Architecture

By John Drab
10/02/2025

UCDAVIS

Background

Data Center Cluster Computing Existing Network Topology
- Rapid scaling of data center compute - Three-tier network architecture
with commodity PCs - EXpensive specialized switches at top

INPUT DATA

COMPUTER
(ROOT NODE)

Tree Topology
RESULTS COMPUTER COMPUTER COMPUTER
(SLAVE NODE 1) (SLAVE NODE 2) (SLAVE NODE n)

UCDAVIS

Oversubscription

Three-tiered tree topologies (Core -> Aggregate -> Edge -> Host)

- Hosts connect directly to edges (Top-of-Rack, ToR switch)
- ToR uplinks to larger switches (Aggregation Layer)
- Aggregate switches link to very high-capacity routers/switches at ‘top’ (Core)

Oversubscription

- Cost of larger capacity switches does not scale linearly (Very expensive!)

- Example: Base host to ToR connection (e.g., 1Gbps) x 40 hosts (= 40 Gbps)
- But ToR uplink bandwidth only 10 Gbps

- Leads to oversubscription ratio of 4:1

UCDAVIS

Three-Tier Topology Example

Core

Aggregation

2555 2050 25D 525D

Figure 1: Common data center interconnect topology. Host to switch links are GigE and links between switches are 10 GigE.

UCDAVIS

Commodity Hardware

Primary Motivation

Bandwidth and Scalability

- Current network topologies for data centers are cost-ineffective
at supporting all available bandwidth at edges
- Cluster computing bottlenecked by inter-node communication VS

Economies of Scale Speciality Hardware

- Leverage commodity switches which provide cost and
compatibility benefits compared to specialized hardware
- Existing tree topologies struggle with networks being

oversubscribed
- Non-uniform bandwidth results in congestion at root nodes

UCDAVIS

Bandwidth Bottlenecks

Multi-Path Routing

- Single-root tree: Each edge switch only has one uplink to the core. All traffic must share
that single link, which becomes a bottleneck.

- Inamulti+oot tree: Each edge switch has multiple uplinks to different core switches,
creating several equal-cost uplinks.

ECMP Load Balancing
- ECMP (Equal-Cost Multi-Path): Traffic spread using a hash of each flow’s IP addresses,
ports, etc. to pick one uplink. All packets in that flow stick to the same path
- Static: ECMP doesn’t look at how big flows are. Two huge flows might land on the same
link, overloading it, while other links stay empty.
- Limited paths: Switches usually only support 8-16 paths, even if the network has more
available.

UCDAVIS

Fat-Tree Topology

Scalable: k-ary fat-tree Supports e o s o,

(k3/4) servers. Core
Full bisection bandwidth: Any

server can communicate with any

other at line rate. Aggregation
Commodity switches: Uses Edge

multiple cheap switches instead
of expensive routers.

SLYNLSNPRN

. . Pod 3
Multipath routing: Equal-cost

paths Spread traﬁlca ImprOVIng Figure 3: Simple fat-tree topology. Using the two-level routing tables described in Section 3.3, packets from source 10.0.1.2 to
th roughput & fault tOlerance. destination 10.2.0.3 would take the dashed path.

UCDAVIS

Fat-Tree Architecture

e (Goal of optimizing bisection bandwidth in the network, taking advantage of
Fat-tree’s large fanout

e Fat-tree layout not optimized for traditional routing (i.e OSPF, OSPF-ECMP)

e Need to create a simple, fine-grained traffic diffusion method:

o Utilize two-level routing tables to distribute traffic based on low-order
bits of destination IP

o |P address follows quad-dotted form:
m Pods: 10.pod.switch.1 | Core switches: 10.k.j.i | Hosts: 10.pod.switch.ID

UCDAVIS

Bisection Bandwidth

Oversubscription

35T PP 88 BIBS -

Pod 0 Pod 1 Pod 2 Pod 3

UCDAVIS

https://randomnetworkramblings.blogspot.com/2012/06/bisection-bandwidth-in-data-center.html

B Prefi Output port
Routing Table 0 0

10.2.1.0/24 1
0.0.0.0/0

\ 4

e Two-level lookup design ensures even
traffic distribution across multiple
equal-cost paths

Suffix Output port
0.0.0.2/8 2
0.0.0.3/8 5

Figure 4: Two-level table example. This is the table at switch

e Structure of two-level lookup: 10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
o Primary table: matches prefixes nation IP address 10.3.0.3 is forwarded on port 3.

(left-handed, e.g., 10.2.0.X)

o Secondary table: matches suffixes (right-handed, e.g., X.X.X.3), each prefix may
point to a suffix table for more fine-grained routing.

e Crucially allows for efficient routing with commodity switch table size limitations

UCDAVIS

Two-level TCAM Lookup
Engine

e Hardware based Ternary Content Addressable Memory (TCAM):
o Matches variable-length prefixes/suffixes in 1 clock cycle and supporters ‘don’t

care’ (X) bits -useful for IP routing

RAM
TCAM Address | Next hop | Output port
18%0§ 00 10.2.0.1 0
;'{E'}l{"? » Encoder —» 01 10.2.1.1 L
gt 10 104.1.1 2
XXX3 11 10412 3

Figure 5: TCAM two-level routing table implementation.

UCDAVIS

Routing Algorithm

e Intra-pod traffic: Upper and lower pod switches hold terminating prefixes

to subnets in the pod
o Uses a default /0 prefix with secondary suffix-based lookup.
o Host IDs (last byte of IP) are used to deterministically spread traffic to core
switches.
o Prevents packet reordering by maintaining consistent paths for flows.
e Each core switch holds terminating /16 prefixes (e.g., 10.2.0.0/16) for
destination pods
o Once in the destination pod, upper switches forward based on a /24 subnet
prefix.
e (Central controller computes and installs small static routing tables of size

< k first-level prefixes and < k/2 second-level suffixes

UCDAVIS

Flow Control

e Flow = sequence of packets sharing key header fields (e.g.,

src/dst IP, transport port).

o Important to optimize to avoid local congestion and balance load across
upward ports in pod switches and preserve packet ordering while
improving throughput.

e Dynamic Port Reassignment:
o Recognize and maintain consistent path for each flow (prevents

reordering).

o Periodically reassign ports to minimize flow imbalance across available
paths

o Can revert to standard two-level routing if switch state is lost: stateless
fallback

UCDAVIS

Fault-Tolerance/Power &
Heat

e Nature of Fat-tree enables fault resilience with multiple redundant paths
e Switches use BFD sessions to detect neighbor failures.
e Upon link or switch failure, broadcast tags inform peers to avoid the

affected path:
o Lower—Upper failure: reroute outgoing flows locally, notify peers in the pod and
core switches.
o Upper—Core failure: reroute inter-pod flows locally; core notifies all connected
upper-layer switches.

e Fat-tree architecture uses many low-power switches, results in
significant power and heat reductions (~56.55% total power and heat)

UCDAVIS

Implementation

NetFPGA Prototype

- NetFPGA board running an open-source IPv4 router with TCAM lookup
- Added two-level routing lookup table into the TCAM pipeline
- Results: no measurable increase in latency, showed that this process could be done

with existing commodities with no downside (not just theoretical but can be
implemented today)

Click-Based Prototype

- The authors built every switch (core, aggregation, edge) as a user-level Click Router on

Linux VMs, where Click is designed as a graph of processing modules to perform tasks
like router lookup

- Connected the VMs via a real 48-port GigE switch (HP ProCurve), but capped each
virtual link to 96 Mbps so that packet-processing CPU cost, not line-rate, dominates.

UCDAVIS

Evaluation and Results

. Paper evaluated bisection bandwidths using 4-port Fat-tree, 16

hosts, 20 switches.
o Tested Two-Level Table, Flow Classification, and Flow Scheduling

methods

Flow Scheduler with
the Fat-tree
architecture yielded
near-optimal
bandwidths, scales
well, and is efficient.

UCDAVIS

Test Tree | Two-Level Table | Flow Classification | Flow Scheduling
Random 53.4% 75.0% 76.3% 93.5%
Stride (1) 100.0% 100.0% 100.0% 100.0%
Stride (2) 78.1% 100.0% 100.0% 99.5%
Stride (4) 27.9% 100.0% 100.0% 100.0%
Stride (8) 28.0% 100.0% 100.0% 99.9%
Staggered Prob (1.0, 0.0) | 100.0% 100.0% 100.0% 100.0%
Staggered Prob (0.5,0.3) [83.6% 82.0% 86.2% 93.4%
Staggered Prob (0.2,0.3) | 64.9% 75.6% 80.2% 88.5%
Worst cases:

Inter-pod Incoming 28.0% 50.6% 75.1% 99.9%
Same-1ID Outgoing 27.8% 38.5% 75.4% 87.4%

Packaging

48 machines 48 machines 48 machines

o Fat-tree topology requires large number of g% g% § Tosuswait
connections between many switches == == E=6

o 10 GigE can provide some cable reduction but at — \ =

minimal benefit g\ /%

« Devised Pod-based packaging to minimize — *’pi;‘;ﬁlh% e

E
— &8

external cabling and maintain scalability == = ==

E)" §=' 12 swatch core rack
o Combine first two levels of switches into a rack (pod switch) = ==
o 1152 external ports divided and connected to host and core st / \\

Rl L

layer switches (576 each) Egi

o 576 core switches distributed evenly (12 per pod across 48 ==t 4 == '\ S——
pods). Cables between pods/core grouped in sets of 12, = § § To core switch
enabling organized bundling and simplified routing. Ginaime ' dSmativs ' 4fmasives

o Racks are organized around pod switch : .)
Figure 8: Proposed packaging solution. The only external ca-

bles are between the pods and the core nodes.

UCDAVIS

Thank You!

UCDAVIS

o What kind of advantages could high-bandwidth networking offer in failure
recovery or replication-heavy workloads (i.e file system data
management)?

o With larger bandwidth data can be moved faster which might reduce the
need for complex data locality strategies, how might this improve
performance or free up space for larger data applications?

UCDAVIS

