VL2: A Scalable and Flexible
Data Center Network



Data Center Requirements

Agility
Performance

Isolation



Traditional Hierarchical Topology
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Tree-like layered design

Limited bandwidth, high
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Measurements
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Measurements: Flow Distribution CDF: Cumulative Distribution Function
. %03 Flow Size PDF —— 7
Majority of flows are small Uha \TOEBYIcETDR ~aw
é 025 r : :5,
% )|
g r \ o
. . 00023 [ /X\N—\‘ P éOQ'
Almost all bytes carried in large flows "0 Gessssssedocccsccsbibitediteestilismm 40

1 100 10000 1e+06 1e+08 1e+10 1e+12
Flow Size (Bytes)

j
Flows over a few GB are rare M
= 8
04
2 O'S : y
. . , 1 100 10000 1e+06 1e+08 1e+10 1e+12
Simpler & more uniform than Internet traffic Flow Size (Bytes)

Figure 2: Mice are numerous; 99% of flows are smaller than
100 MB. However, more than 9o0% of bytes are in flows between
100 MB and 1 GB.



Measurements: Concurrent Flows
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Implies: VLB works well at flow level
Figure 3: Number of concurrent connections has two modes: (1)

10 flows per node more than 50% of the time and (2) 8o flows per
node for at least 5% of the time.



Measurements: Traffic Matrix

Tried clustering traffic matrices (ToR-to-ToR) over time
Large number of clusters — poor summarization
Traffic patterns change rapidly, no periodicity

Traffic Engineering infeasible — need VLB
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Figure 4: Lack of short-term predictability: The cluster to which
a traffic matrix belongs, i.e., the type of traffic mix in the TM,
changes quickly and randomly.

Figure 4(a): Traffic matrix shifts almost constantly
Figure 4(b): Run length short

Figure 4(c): No clear repeat pattern



Link-state network Internet
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Figure 5: An example Clos network between Aggregation and In-
termediate switches provides a richly-connected backbone well-

_ . - . suited for VLB. The network is built with two separate address
Core bottleneck eliminated; resilient to failures families — topologically significant Locator Addresses (LAs) and

flat Application Addresses (AAs).

Supports VLB with LA (Locator Addresses) & AA (Application Addresses)



Valiant Load Balancing (VLB)

Traffic unpredictable

Two-phase routing:

1. Send packet to a random intermediate switch

2. Forward to destination ToR

Realized with Anycast + ECMP

Ensures balanced load across all paths
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Figure 6: VLB in an example VL2 network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(f t) denotes a hash of the five tuple.



Address Resolution & Packet Forwarding

Two IP families:
Locator Address (LA) : used by switches for routing
Application Address (AA) : stable ID for servers/services

Each AA mapped to a ToR’s LA via Directory System
Packet forwarding:

VL2 agent encapsulates packet with LA (destination ToR)
Intermediate switch decapsulates and forwards to AA

Address resolution: ARP intercepted => resolved by Directory
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Figure 6: VLB in an example VL2 network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(f t) denotes a hash of the five tuple.



VL2 Directory System

Directory Servers maintain AA — LA mappings

Agents on each host:
Intercept ARP, send queries to Directory
Cache mappings locally

RSM (Replication State Machines): ensure consistency

Provides access control & service isolation
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Figure 7: VL2 Directory System Architecture



VL2 Design

Clos Topology: scale-out, high bandwidth, fault tolerant
Valiant Load Balancing (VLB): traffic spreading, robust to unpredictable workloads

Addressing Separation:
Locator Addresses (LAs) for routing
Application Addresses (AAs) for stable service IDs

Directory System: AA—LA mapping, access control, service isolation



Evaluation — Prototype

VL2 prototype built and tested

Aggregation

Scale: 100 servers, commodity switches

!
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Components:

VL2 Agents on each host
Directory System implementation Figure 8: VL2 testbed comprising 8o servers and 10 switches.

Clos topology with Aggr + Intermediate switches

Goal: validate performance, agility, isolation in practice



Evaluation — Goodput

Prototype built with 100 servers
Shuffle test: 2.7 TB data exchange among 75 servers

Aggregate goodput sustained = 60 Gbps
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Figure 9: Aggregate goodput during a 2.7TB shuffle among 75

SE€rvers.
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VL2 uses Anycast + ECMP to spread flows Figure 10: Fairness measures how evenly flows are split to inter-

mediate switches from aggregation switches.

Concern: ECMP does flow-level splitting, may be uneven

Experiment: 75-node testbed, traffic from real DC workload

Result: Jain’s fairness index = 0.98 across all Agg switches
VLB effectively balances load, prevents hotspots



Evaluation — Performance Isolation

Goal: Check if one service affects another

Experiment 1: Long-lived TCP flows

Service 1’s goodput remains stable despite Service 2 traffic

Experiment 2: Short TCP bursts (mice flows)
Only minor, brief fluctuations observed

Result: VLB + TCP ensures isolation between services

—
w

________

wn
T

o

Aggregate goodput (Gbps)
=]

' — Service 1
g - = = Service 2

-3
i

80 100 120 140
Time (s)

160

180 200 220

Figure 11: Aggregate goodput of two services with servers inter-
mingled on the ToRs. Service one’s goodput is unaffected as ser-
vice two ramps traffic up and down.
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Figure 12: Aggregate goodput of service one as service two cre-
ates bursts containing successively more short TCP connections.



Fraction of Lookups

Evaluation — Directory System Performance

Lookup latency: most queries <1 ms

Update latency: majority < 100 ms

Convergence latency: system

consistent within ~100 ms

Directory fast and reliable, not a
bottleneck
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Figure 14: The directory system provides high throughput and fast response time for lookups and updates



Conclusion

Traditional tree topology: bottlenecks, poor agility, weak isolation

VL2 key ideas:
Clos topology for scalability & high bandwidth
Valiant Load Balancing (VLB) for even traffic distribution
Address separation (AA & LA) for agility & transparency
Directory system for scalable lookup & isolation

Result: Meets data center needs of Agility, Performance, and Isolation
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