Data Center TCP

Presented by Shreyas Shah (slshah@ucdavis.edu, 922938069)
Authors: M. Alizadeh et al.

mailto:slshah@ucdavis.edu

The Problem

Problem:

e Data centers run apps with different needs: low latency vs. high throughput
e Standard TCP struggles in this environment
e Background traffic fills switch buffers — delays foreground traffic

Proposed Solution:

DCTCP: a TCP-like protocol designed for data centers
Uses ECN for better feedback on congestion

Works well with shallow-buffered switches

Improves latency and handles traffic bursts effectively

UCDAVIS

Background & Challenges

e Data centers use cheap, commodity switches

e Apps have mixed needs: short (low latency) & long (high throughput) flows
e Short flows miss deadlines if delayed

e Long flows fill buffers — slow down short traffic

e Need: low latency, burst tolerance, high throughput UCDAVIS

DCTCP Solution

Real data: 99.9% traffic is TCP, diverse sizes

DCTCP keeps buffers low + throughput high

Uses ECN for early congestion feedback

Simple: ~30 lines of code change

Designed for data center environment

UCDAVIS

Partition/Aggregate & Latency Challenges

e Partition/Aggregate = common design in large apps
e Requests split — many workers — results combined
e Tight latency budget: ~230-300 ms total

e Workers must respond in 10-100 ms

e Delays hurt result quality and user experience

e TCP struggles — custom fixes needed

Partition/Aggregate

request Aggregator deadline=250ms

deadline=50ms

<AggregatD Aggregator

deadline=10ms

Workload in Data Centers

e Study: 6000+ servers, 150TB data collected

e Three traffic types:

o Query traffic: tiny, latency-critical flows (~1.6KB)
o Background traffic: large updates (1-50MB) + small control messages
o Concurrent flows: often 30+ active; some servers 1000+

e All types coexist — hard for TCP to perform well

UCDAVIS

Performance Problems in Data Centers

Because switches have small shared buffers, data centers face three recurring
problems:

e Incast: many small responses at once overflow buffers.

e Queue buildup: long flows slow down short ones.

e Buffer pressure: heavy traffic on one port affects all others.

UCDAVIS

DCTCP: Goal & Key Idea

e Goal: high throughput, low latency, burst tolerance

e \Works with shallow-buffered switches

e Reacts proportionally to congestion

e Uses ECN marking to signal congestion early

UCDAVIS

How the DCTCP Algorithm Works

e Marking (Switch): mark packets when queue > K

e Feedback (Receiver): reports exactly which packets were marked

e Control (Sender): estimates congestion (a) and adjusts sending rate

Formula: cwnd = cwnd x (1 - a/2)

UCDAVIS

Benefits of DCTCP

e Queue buildup: reacts early — keeps delays low

e Buffer pressure: prevents one port from hogging memory

e Incast: early marking reduces burst size — fewer drops/timeouts

UCDAVIS

Steady-State Behavior of DCTCP

e Flows stabilize into a sawtooth pattern: queue grows, gets marked, then
shrinks

e DCTCP reacts proportionally to congestion, not suddenly like TCP
e Keeps queue small and stable — low latency & fewer drops

e \Works well with small buffers and few flows

UCDAVIS

Sawtooth Pattern

Packets sent in
_ . this period (1 RTT))
Window Size are marked. Queue Size
'y
Wl e m o=

We meme

(W*+1)(1-0/2) |= = = =

UCDAVIS

Choosing DCTCP Parameters

Marking Threshold (K):

e Point where switches start marking packets
e Must be high enough to avoid empty queues
e Must be low enough to keep latency low

Estimation Gain (Q):

e Controls how quickly sender reacts to congestion
e Must be small for smooth, stable adjustments
e Prevents overreacting or reacting too slowly

UCDAVIS

Discussion & Practical Insights

AQM (Active Queue Management) alone isn’t enough:

e Struggles with bursty traffic and few flows
e Tradeoff: high delay or low throughput

Convergence:

e DCTCP adjusts slowly but delay is small in data centers
e Microbursts don’t need convergence, big flows can tolerate it

Practical notes:

e Real networks are bursty — use higher marking thresholds

UCDAVIS

DCTCP vs RED

250 — -
----- TCP-RED}

| i [—ocrep |

N
o
2

T
IIIIIEEERRER e

-
(&)
o

==DCTCP
*+ TCP-RED

N
o
o

()]
o O

Cumulative Fraction
Inst. Queue Len(KB)

0 100 200 300

Queue Length (KB) % s 20
seconds

(a) CDF of queue length (b) Time series of queue length
Figure 15: DCTCP versus RED at 10Gbps

DCTCP — Results Summary

Performance

e Matches TCP throughput (~100%)
e Keeps queues small and stable (~20 packets)

Fairness & Stability

e Quickly shares bandwidth fairly
e Works well even in multi-hop networks

Impairments Fixed

e Incast: Fewer timeouts, even with 40+ senders
e Queue buildup: Short flows complete much faster
e Buffer pressure: Less packet loss, better isolation

Real Traffic & Scale

e Eliminates query timeouts (0% vs 1.15%)
e Handles 10x more traffic with low latency
e Outperforms RED and deep buffers

UCDAVIS

Possible Questions

e |[s it acceptable to sacrifice convergence speed for lower latency and stable
queues?

e How could DCTCP’s approach impact multi-tenant environments where
fairness between applications matters?

e Could DCTCP principles apply to non-data center scenarios like loT networks
or edge computing?

e If deep-buffered switches solve some of TCP’s issues, why not just use them
everywhere instead of DCTCP? UCDAVIS

