
Data Center TCP

Presented by Shreyas Shah (slshah@ucdavis.edu, 922938069)

Authors: M. Alizadeh et al.

mailto:slshah@ucdavis.edu


The Problem

Problem:

● Data centers run apps with different needs: low latency vs. high throughput
● Standard TCP struggles in this environment
● Background traffic fills switch buffers → delays foreground traffic

Proposed Solution:

● DCTCP: a TCP-like protocol designed for data centers
● Uses ECN for better feedback on congestion
● Works well with shallow-buffered switches
● Improves latency and handles traffic bursts effectively



Background & Challenges

● Data centers use cheap, commodity switches

● Apps have mixed needs: short (low latency) & long (high throughput) flows

● Short flows miss deadlines if delayed

● Long flows fill buffers → slow down short traffic

● Need: low latency, burst tolerance, high throughput



DCTCP Solution

● Real data: 99.9% traffic is TCP, diverse sizes

● DCTCP keeps buffers low + throughput high

● Uses ECN for early congestion feedback

● Simple: ~30 lines of code change

● Designed for data center environment



Partition/Aggregate & Latency Challenges

● Partition/Aggregate = common design in large apps

● Requests split → many workers → results combined

● Tight latency budget: ~230–300 ms total

● Workers must respond in 10–100 ms

● Delays hurt result quality and user experience

● TCP struggles → custom fixes needed



Partition/Aggregate



Workload in Data Centers

● Study: 6000+ servers, 150TB data collected

● Three traffic types:
○ Query traffic: tiny, latency-critical flows (~1.6KB)
○ Background traffic: large updates (1–50MB) + small control messages
○ Concurrent flows: often 30+ active; some servers 1000+

● All types coexist → hard for TCP to perform well



Performance Problems in Data Centers

Because switches have small shared buffers, data centers face three recurring 
problems:

● Incast: many small responses at once overflow buffers.

● Queue buildup: long flows slow down short ones.

● Buffer pressure: heavy traffic on one port affects all others.



DCTCP: Goal & Key Idea

● Goal: high throughput, low latency, burst tolerance

● Works with shallow-buffered switches

● Reacts proportionally to congestion

● Uses ECN marking to signal congestion early



How the DCTCP Algorithm Works

● Marking (Switch): mark packets when queue > K

● Feedback (Receiver): reports exactly which packets were marked

● Control (Sender): estimates congestion (α) and adjusts sending rate

Formula: cwnd = cwnd × (1 - α/2)



Benefits of DCTCP

● Queue buildup: reacts early → keeps delays low

● Buffer pressure: prevents one port from hogging memory

● Incast: early marking reduces burst size → fewer drops/timeouts



Steady-State Behavior of DCTCP

● Flows stabilize into a sawtooth pattern: queue grows, gets marked, then 
shrinks

● DCTCP reacts proportionally to congestion, not suddenly like TCP

● Keeps queue small and stable → low latency & fewer drops

● Works well with small buffers and few flows



Sawtooth Pattern



Choosing DCTCP Parameters

Marking Threshold (K):

● Point where switches start marking packets
● Must be high enough to avoid empty queues
● Must be low enough to keep latency low

Estimation Gain (g):

● Controls how quickly sender reacts to congestion
● Must be small for smooth, stable adjustments
● Prevents overreacting or reacting too slowly



Discussion & Practical Insights

AQM (Active Queue Management) alone isn’t enough:

● Struggles with bursty traffic and few flows
● Tradeoff: high delay or low throughput

Convergence:

● DCTCP adjusts slowly but delay is small in data centers
● Microbursts don’t need convergence, big flows can tolerate it

Practical notes:

● Real networks are bursty → use higher marking thresholds



DCTCP vs RED



DCTCP – Results Summary

Performance

● Matches TCP throughput (~100%)
● Keeps queues small and stable (~20 packets)

Fairness & Stability

● Quickly shares bandwidth fairly
● Works well even in multi-hop networks

Impairments Fixed

● Incast: Fewer timeouts, even with 40+ senders
● Queue buildup: Short flows complete much faster
● Buffer pressure: Less packet loss, better isolation

Real Traffic & Scale

● Eliminates query timeouts (0% vs 1.15%)
● Handles 10× more traffic with low latency
● Outperforms RED and deep buffers



Possible Questions

● Is it acceptable to sacrifice convergence speed for lower latency and stable 
queues?

● How could DCTCP’s approach impact multi-tenant environments where 
fairness between applications matters?

● Could DCTCP principles apply to non-data center scenarios like IoT networks 
or edge computing?

● If deep-buffered switches solve some of TCP’s issues, why not just use them 
everywhere instead of DCTCP?


