
Present by Kaiyue Li

Swift: Delay is Simple and Effective

for Congestion Control in the

Datacenter

Background

• The need for low-latency

operations continues to grow

• To make use of the advantage of

next-gen storage, we need low

latency messaging

• DCTCP no longer works due to

its high tail latency at scale

• We need micro-second level of tail

latency

Issues of DCTCP

• Need to be deployed on each switch: hard to implement

• K (threshold) and g (gain) need to be fine-grained to

perform well.

• Do not address the congestion build on on the host end for

incast problem

• Network stack in kernel itself is a burden to latency

Swift

• Latency-based congestion control

• Use SNAP to avoid the kernel

network stack

• Utilize NIC timestamp to collect

latency

• Provide pacing functionality for

cases when CWND < 1

Design

• Requirements

• Low latency with near zero loss and high throughput

• End to end congestion control for both fabric (between hosts) and

endpoint congestion

• CPU efficient

Separate delays

To separate fabric and endpoint congestion, we need to separate the

delays of a single RTT

Swift delay

• Endpoint delay

• Remote-queuing (t4- t2) + Local NIC

RX delay (t6- t5)

• Fabric delay

• RTT – endpoint delay = (t2 – t1)

Swift: algorithm

• AIMD style + react for every ACK

• cwnd increment at most a_i for

entire RTT

• cwnd decrease at most by half

• Beta marks the reaction strength to

delay

Swift: Two window design

• fcwnd: tracks fabric congestion

• ecwnd: tracks end point congestion

• Effective window min (fcwnd, ecwnd)

• Tail latency improves by 2X

Swift: fine-grained pacing

• Use a timing wheel to implement a

timing based sending where cwnd <

1 (more flows then BDP : maximum

packet in flight)

• Cwnd = 0.5 -> 1 packet every 2 RTT

using pacing_delay as the period of

time waiting before sending a

packet

Calculate fabric target delay

• The target delay increases with the

number of hops and the number of

flows

• Number of hops could be known

through TTL, (TTL – 1for every hop)

• Number of flows is not known but

cwnd is inversely proportional to

number of flows N, so we use
1

√𝑐𝑤𝑛𝑑

to indicate N

Ensure coexistence between protocols

• Swift utilizes QoS to coexist with other protocols in data

center scenario

• Assign dedicated QoS queues for swift protocol

Production result

• Compare Swift with GCN, Google’s

own version of DCTCP that reacts

faster to congestion.

• Swift achieves low loss even at line-

rate

Production result

• Swift achieves low latency near the

target

• Thus, the design requirements has

been fulfilled

Production result

• Swift achieves low loss rate in QoS

when coexists with other protocols

even with lower priority queues

Production result

• The separation of congestion is key

its success and a great source of

debugging

Evaluate mechanism in swift: Effect of Target Delay

• Disabled dynamic target delay

• Only base target delay is used

• RTT closely tracked the base target

delay

• Throughput saturated at 25

microseconds (easy to find a

recommended base)

Evaluate mechanism in swift: Low tail latency

• Only after 85% of offered load when

the 99.9th latency begins to spike,

but also within at most 3X higher

than the unloaded RTT

Evaluate mechanism in swift: Effect of cwnd < 1 support

Evaluate mechanism in swift: Congestion separation

• Swift-v0: a modified version that

only uses one single target latency

• Performance downgrade when the

separation is removed.

Evaluate mechanism in swift: scaling and fairness

Review of related work

Conclusion

• Swift work well in data centers and provide tail latency of

around 20 microseconds.

• Its success mainly rooted from its support for cwnd < 1, its

separation of fabric and end-host latency, and its

calculation of target latency that scales with fabric distance

and flow numbers.

• To do better than 20 microseconds, we need new

technologies.

Q&A

Ask me questions orz

	Slide 1
	Slide 2: Background
	Slide 3: Issues of DCTCP
	Slide 4: Swift
	Slide 5: Design
	Slide 6: Separate delays
	Slide 7: Swift delay
	Slide 8: Swift: algorithm
	Slide 9: Swift: Two window design
	Slide 10: Swift: fine-grained pacing
	Slide 11: Calculate fabric target delay
	Slide 12: Ensure coexistence between protocols
	Slide 13: Production result
	Slide 14: Production result
	Slide 15: Production result
	Slide 16: Production result
	Slide 17: Evaluate mechanism in swift: Effect of Target Delay
	Slide 18: Evaluate mechanism in swift: Low tail latency
	Slide 19: Evaluate mechanism in swift: Effect of cwnd < 1 support
	Slide 20: Evaluate mechanism in swift: Congestion separation
	Slide 21: Evaluate mechanism in swift: scaling and fairness
	Slide 22: Review of related work
	Slide 23: Conclusion
	Slide 24: Q&A
	Slide 25

