Swift: Delay is Simple and Effective
for Congestion Control in the
Datacenter

Present by Kaiyue Li

UCDAVIS

Background

* The need for low-latency
operations continues to grow

To make use of the advantage of
next-gen storage, we need low
latency messaging

« DCTCP no longer works due to
its high tail latency at scale

UCDAVIS

We need micro-second level of tail
latency

Media Size Access time IOPS Bandwidth
HDD 10-20TiB >10ms <100 120MB/s
Flash <10TiB ~100us 500k+ 6GB/s
NVRAM <1TiB 400ns 1M+ 2GB/s per channel
DRAM <1TiB 100ns — 20GB/s per channel

Table 1: Single-device Storage characteristics

Issues of DCTCP

* Need to be deployed on each switch: hard to implement

« K (threshold) and g (gain) need to be fine-grained to
perform well.

* Do not address the congestion build on on the host end for
iIncast problem

* Network stack in kernel itself is a burden to latency

UCDAVIS

« Latency-based congestion control

____eemméins*_@___ﬁ A Application
completion .
 Use SNAP to avoid the kernel e kéﬂ op streams | [op scheduler |
____________________: ____________ H _________
network stack Delay computation

. CWRD CWND computation

Pacing Swift .
component :

« Utilize NIC timestamp to collect

Packet-level
Iatency oo Transportlayer
NIC
. . . . Figure 1: Swift as a packet-level congestion-control in the context of the Pony-
* Provide pacing functionality for Express architecture.

cases when CWND < 1

UCDAVIS

 Requirements
* Low latency with near zero loss and high throughput

« End to end congestion control for both fabric (between hosts) and
endpoint congestion

« CPU efficient

UCDAVIS

Separate delays

To separate fabric and endpoint congestion, we need to separate the
delays of a single RTT

(\ 2. Forward Fabric Delay Hit kont DAr,q

Switch Queue —> 3 \
1. Local NIC Tx Delay 3. Remote NIC Rx o ;
Rx De‘ay t2: t_remote_nic_rx Remote NIC

IXE= Rx Delay

:]:D:D] t3: t_remote_host_rx Remote
(LTI freffieRoundabout
D — Tx

Processing | Queuing
']
7. Local NlCRxDeIay S. Remote NIC Tx Delay siic t5: t_local_nic_rx
Py Local NI
SWItCh Oueue Rx Delay’ [tb: t_local_host_rx
6. Reverse Fabric Delay

Delay
(a) (b)
Figure 2: (a) Components of end-to-end RTT for a data packet and corresponding ACK packet. (b) Timestamps used to measure different delays (Hardware
and software timestamps are shown in blue and red, respectively).

Local Endpoint

t4: t_ack_sent

1U|odpu3 ajoway
Aejaq Buissaooid sjowey v

UCDAVIS

Swift delay

« Endpoint delay

« Remote-queuing (t4- t2) + Local NIC

RX delay (t6- t5 R
y () \ t2: t_remote_nic_rx Remote NIC
. Rx Delay
[Fab rIC delay t3: t_remote_host_rx processing gir;\&t:g
] X t4: t_ack_sent Delay
« RTT — endpoint delay = (t2 — t1) [15 ocalne o =

Local NI
Rx Delay |:t6: t_local_host_rx

(b)

UCDAVIS

Swift: algorithm

« AIMD style + react for every ACK + On Receiving ACK
5 retransmit_cnt < 0
. di t at { ¥ 6 target_delay « TargetDelay() > See S3.5
cwna increment at most a_I Tor 7 if delay < target_delay then > Additive Increase (Al)
: 8 if cwnd > 1 then
entire RTT 9 ‘ cwnd «— cwnd + % - num_acked
10 else
« cwnd decrease at most by half n | | cwnd — cwnd +ai - num_acked
_ 12 else > Multiplicative Decrease (MD)
* Beta marks the reaction strengthto s | if can_decrease then
delay 14 cwnd «— max(1 - f - (dEIay_iiae;i;t_dday),
1—max_mdf) - cwnd

UCDAVIS

Swift: Two window design

« fcwnd: tracks fabric congestion 1 On Receiving ACK
5 retransmit_cnt < 0
. . : : 6 target_delay « TargetDelay() > See S3.5
ecwnd: tracks ena pOInt CongeStlon 7 if delay < target_delay then > Additive Increase (Al)
_ . . 8 if cwnd > 1 then
* Effective window min (fcwnd, ecwnd) | | cwnd — cwnd + —% . num_acked
10 else
e Tail |atency improves by 2X 11 L cwnd < cwnd + ai - num_acked
12 else > Multiplicative Decrease (MD)
13 if can_decrease then
14 cwnd <« max(1—f - (delay—z;iaer}%zt_delay),
1—max_mdf) - cwnd

UCDAVIS

Swift: fine-grained pacing

« Use a timing wheel to implement a
timing based sending where cwnd <
1 (more flows then BDP : maximum
packet in flight) if cwnd <1 then

| pacing_delay « Lt

cwnd

« Cwnd =0.5->1packetevery 2RTT
using pacing_delay as the period of
time waiting before sending a
packet

UCDAVIS

Calculate fabric target delay

* The target delay increases with the
number of hops and the number of
flows

t = base_target + #hopsxXh + max(0, min(m +p, fs_range)),
 Number of hops could be known where

through TTL, (TTL — 1for every hop) o = _fsrange g a

\/fs_min_cwnd B \/fs_max_cwnd \/fs_ma.X'_C‘Wnd

* Number of flows is not known but
cwnd is inversely proportional to

number of flows N, so we use
\/cwnd

to indicate N

UCDAVIS

Ensure coexistence between protocols

o Swift utilizes QoS to coexist with other protocols in data
center scenario

« Assign dedicated QoS queues for swift protocol

UCDAVIS

Production result

« Compare Swift with GCN, Google’s
own version of DCTCP that reacts
faster to congestion.

« Swift achieves low loss even at line-

rate

UCDAVIS

Average

—
=
=3

T =0— GCN
. —O— Swift

o
~3
o

Loss Rate (normalized)
.O (=1
n o
v =}

e

=)

=
\

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

Average
f== [
3 10
nl
S107t -
£
51072 -
<
£1073 -
S —0— GCN
1074 -
a == Swift
.—llo—S [i : 1 ' 1 1 ' i '

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

99.9th percentile

—-
=3
=3

T =0O— GCN
. —O— Swift

=
]
@

Loss Rate (normalized)
S = e

n o

wv (=]

o
=]
S

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

99.9th percentile

= (.

= 10

N

=101 -

£

1072 -

<

2107 -

8 —0— GCN
107 -

g == Swift

- =5 v i 1 i i 1 1 i 1 il
10

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

Figure 6: Edge (ToR to host) links: Average and 99.9p Swift/GCN loss rate (lin-
ear and log scale) vs. combined utilization, bucketed at 10% intervals. Loss rate
is normalized to highest GCN loss rate. The near-vertical line in the log-scale
plot is due to extremely small relative loss-rate.

Average

—
o
=

- —0— GCN
—O— Swift

=)
<
o

0.25 -

Loss Rate (normalized)
S
n
>

=)
=)
=3

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

Average
= 100 -
&
=
Ep -
=}
£
2 10-6
S0 - —0— GCN
§ == Swift
_Ilo—g Lo i 1 1 1 i ' '

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

99.9th percentile

—
1=}
S

- —0— GCN
~O— Swift

e

9

&
:

Loss Rate (normalized)
P =]
3 w
o =

e
1=}
S

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)
99.9th percentile

[
=] =
1 =)

w >

Loss Rate (normalized)
-
(=}
1

107°
0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

Figure 7: Fabric links: Average and 99.9p Swift/GCN loss rate Swift/GCN loss
rate (linear and log scale) vs. combined utilization, bucketed at 10% intervals.

Production result

« Swift achieves low latency near the

target

* Thus, the design requirements has

been fulfilled

UCDAVIS

Average

=) L

g100 = —o— GeN
50‘75 _ == Swift
—

[=]

L0.50 -

L

[

£0.25 -

a

So.00 - ; ; <O

0 10 20 30 40 50 60 70 80 90 100
Queue Utilization (%)

Ox 2x 4x 6x 8x 10x
Cluster Throughput (normalized)

99.9th percentile

—_
(=1
(=]

T =0=— GCN
| == Swift

o
~3
(5]

Loss Rate (normalized)
e 2
(v w
w [=]

o

(=1

(=]
1

0 10 20 30 40 50 60 70 80 90 100
Queue Utilization (%)

Figure 8: Average and 99.9th percentile loss rate vs. queue utilization.

Average
-l L
‘E 1.00 O
E 075 -| & Swift
E o
£ 0.50 - o
&
3]
& 025 ~ gt Q. iy
@ 60 C OOOO 8 o
S o0.00 - m,m,ﬂé’ N

99.9th percentile

1.00 1 5 GeN ©
. | A Swift

o° o

(=]
=~
w

[=]

25 - 85
WL

0.00 7 o8 BARA L. | AR a1

0x 2x 4x 6x 8x 10x

Cluster Throughput (normalized)

Loss Rate (normalized)
[=]
wn
[=]

Figure 9: Edge (ToR to host) average and 99.9p loss rate vs. total Swift/GCN

throughput in the cluster.

Average
= 1.00
g 1.00 - mmm GCN
F g75 - HEE Swift
£ 0.
Qo
< 050 -
8 0.38
I3
& 0.25 -
2 0.10
S o0 - EN2e-3 EENC.02 Te-7
40G 50G 100G

Port speed (bps)

99.9th percentile

= I 1.00

g 100 - mmm GCN

= .

g 075 - I Swift

.

(=]

c

= 0.50 -

£ 0.36 0.33

& 0.25 -

wv

g Te-4 0.01 2e-9

= .00 - HEEEE ‘ &
40G 50G 100G

Port speed (bps)

Figure 10: Average and 99.9p loss rate of highly-utilized (>90%) links in each

switch group.

Production result —o o
0.75 -
é 0.50 -
« Swift achieves low loss rate in QoS 0.25 i<— Base target delay o oo
. . 0.00 | i i i i |
when coexists with other protocols o o o o o r
. . . Fabric RTT (normalized)
even Wlth Iower prlorlty queues Figure 11: Fabric RTT: Swift controls fabric delay more tightly than GCN.
< 100 -
I =0 GCN strict priority
TEU ~{O= Swift lowest priority
:::310‘2 -
5
%10t -

0 10 20 30 40 50 60 70 80 90 100
ToR-to-Host Link Utilization (%)

Figure 13: Average loss rate vs. port utilization for GCN traffic at strict sched-
uling priority and Swift at lower scheduling weight for ToR-to-host links. The
highest GCN loss rate is normalized to 1.0.

UCDAVIS

Production result

1.00 - 1.00 -
0.75 - 0.75 -
« The separation of congestion is key & o.x - 5 0.50 -
i 0.25 - —O— RTT 0.25 - —O— RTT
its success and a great source of o NG i o NIC diy
. 0.00 - EECLTI IETTRT-PTTPY PUTTRESULPE 0.00 - R L et S St
debugglng Ox 1x 2x 3x 4x b5x 6x O0x 1x 2x 3x 4x 5x 6x
Time (normalized) Time (normalized)

Figure 14: CDF of end-to-end packet RTT and NIC-Rx-queuing delay for the
throughput-intensive cluster (left) and IOPS-intensive cluster (right).

UCDAVIS

Evaluate mechanism in swift: Effect of Target Delay

« Disabled dynamic target delay

=O— Throughput

)

—
w
o

 Only base target delay is used 2120 et 0§
'E 90 -—— = . Target.delay 30%‘
* RTT closely tracked the base target L R e A T e 20%
S 30 - 10§
delay < S F

0 10 20 30 40 50 60 70 80

Target Delay (us)
Figure 17: T;: Achieved RTT and throughput vs. target delay, 100-flow incast.

« Throughput saturated at 25
microseconds (easy to find a
recommended base)

UCDAVIS

Evaluate mechanism in swift: Low tail latency

40

- 100

== 50th-p RTT
- == 99.9th-p RTT
=/x= Throughput

W
o
~J
o

* Only after 85% of offered load when
the 99.9" latency begins to spike,
but also within at most 3X higher
than the unloaded RTT

)
o
1

—
o

Achieved RTT (us)
3
Throughput (Gbps)

o

o

0 25 50 75 100
Offered Load (Gbps)

UCDAVIS

Evaluate mechanism in swift: Effect of cwnd <1 support

Metric Swift w/o cwnd < 1 Swift

Throughput 8.7Gbps 49.5Gbps
Loss rate 28.7% 0.0003%
Average RTT 2027.4us 110.2us

Table 3: T;: Throughput, loss rate and average RTT for 5000-to-1 incast with
and without cwnd < 1 support.

UCDAVIS

Evaluate mechanism in swift: Congestion separation

« Swift-v0: a modified version that

Configuration Throughput Average RTT 99th-p RTT
only uses one single target latency Swift 48.7Gbps 129.25 175.1us
Swift-v0, 100us target ~ 41.6Gbps 118.3us 154.4ps
e Performance downgrade when the Swift-v0, 150us target 44.9Gbps 157.6 us 203.8us
Swift-v0, 200us target ~ 49.5Gbps 184.9us 252.7us

S€ pa ration Is rem Oved) Table 4: T;: Throughput, average and tail RTT for Swift and Swift-v0 that uses

different target delays without decomposing fabric and endpoint congestion.

UCDAVIS

Evaluate mechanism in swift: scaling and fairness

40 - . I . . 1.0 -

a Swift w/o FBS Swift with FBS .

o

0

2

+—

=

o

-

[=Ts]

3 —= with FBS
!__C_ -O0—w/o FBS

15 20 25 30
Time (s) Time (s) Throughput (Mbps)
Figure 21: T1: Throughput with and without flow-based scaling (FBS) for

a 5000-to-1 incast. Jain’s fairness index (J) shown is measured amongst
all 5000 flows using a snapshot of flow rates.

UCDAVIS

50 -
—_ BN Flow 1 FE Flow 2
(73]
a 40 -
L
2 28.89

30 - -
§_ 24.88 24.66

20.63
o 20 -
-
o
< 10 -
l_.
0 e

Without TBS With TBS

Figure 22: T1: Throughput of two flows
with different path lengths, with and
without topology-base scaling (TBS).

Review of related work

Congestion Control Category Simplicity/Deployability NIC/Endhost Support in Switches ~ Robust to Traffic Congestion
Support Patterns Handled
ECN based: DCTCP, D?TCP, Complex ECN Not Required ECN, Incast Issues Fabric Only
HULL Tuning/Deployment HULL Phantom-Q
Explicit Feedback: XCP,RCP, = Complex Scheme/Deployment Required for HPCC, Required for XCP, Incast Issues Fabric Only
DCQCN, HPCC, D3 DCQCN RCP, D3, HPCC (not HPCC)
Receiver/Credit Based: Homa, Not Universally Deployable Not Required Needed for Work Well ToR Downlink
NDP, pHost, ExpressPass NDP, ExpressPass not ExpressPass,
NDP
Packet Scheduling: pFabric, Not Deployable As Is Not Required Needed for PDQ, Incast Issues, Fabric Only
QJump, PDQ, Karuna, FastPass pFabric Specificity
Swift Simple, Wide Deployment at NIC TimeStamps None Works Well Fabric and Endhost
Scale

Table 5: The focal point of Swift is simplicity and ease of deployment while providing excellent end-to-end performance.

UCDAVIS

Conclusion

« Swift work well in data centers and provide tail latency of
around 20 microseconds.

 Its success mainly rooted from its support for cwnd < 1, its
separation of fabric and end-host latency, and its
calculation of target latency that scales with fabric distance
and flow numbers.

 To do better than 20 microseconds, we need new
technologies.

UCDAVIS

Ask me questions orz

UCDAVIS

Thanks for listening

UCDAVIS

	Slide 1
	Slide 2: Background
	Slide 3: Issues of DCTCP
	Slide 4: Swift
	Slide 5: Design
	Slide 6: Separate delays
	Slide 7: Swift delay
	Slide 8: Swift: algorithm
	Slide 9: Swift: Two window design
	Slide 10: Swift: fine-grained pacing
	Slide 11: Calculate fabric target delay
	Slide 12: Ensure coexistence between protocols
	Slide 13: Production result
	Slide 14: Production result
	Slide 15: Production result
	Slide 16: Production result
	Slide 17: Evaluate mechanism in swift: Effect of Target Delay
	Slide 18: Evaluate mechanism in swift: Low tail latency
	Slide 19: Evaluate mechanism in swift: Effect of cwnd < 1 support
	Slide 20: Evaluate mechanism in swift: Congestion separation
	Slide 21: Evaluate mechanism in swift: scaling and fairness
	Slide 22: Review of related work
	Slide 23: Conclusion
	Slide 24: Q&A
	Slide 25

