DEeco
Distri
Bette

nstructing RDMA-ena
outed Transactions: -

|
[]

nled

ybrid is

Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen

Shanghai Jiao Tong University

OSDI’18

* There are two RDMA styles for transactions: One-sided and Two-sided

* |t’s not obvious which one is “better”
* Address known vs. Lookup

* Message size can affect performance

 RNIC/CPU coupling

One-sided Primitive Two-sided Primitive

CPU

CPU RNIC RNIC

* One sided: READ, WRITE, ATOMIC | o I

post-send post-send

poll-comp

* Two sided: SEND, RECV

e Server polls requests from a receiver queue, calls local
poll-comp

RPC routine, and posts results back to the sender poll-comp le post-send

queue
Bl DRAM —> DMA --—-% Network Flow —3 MMIO

Fig. 2: An overview of different RDMA primitives.

e “Optimistic” - Assumes other requests won’t clash

* Runstransactions without locks, only checks at the end
* Why? Locks induce latency

e Most transactions don’t conflict

e Good for OLTP (online transaction processing)

Execution - Records a read-set (keys + versions) and a write-
set (keys + new values) EXECUTION | VALIDATION | LOGGING | COMMIT

Validation - Executes a commit protocol, which locks the
records in the write set and validates the records in the read
setis unchanged

Logging - If there is no conflicting transaction, the serialization—» write {1 nroct
point i i —~committed
coordinator sends transaction’s uDdateS to each backup and Fig. 1: A phase-by-phase overview of transaction processing
waits for the accomp[ishment with OCC. C P, and B stand for the coordinator, the primary
and the backup of replicas, respectively. P1 is read and Pa
Commit - Upon successful, the transaction will be is written. The dashed, solid, and dotted lines stand for read,

write, and hardware ack operations, and rectangles stand for

committed by writing and unlocking the records at the
primary node

record data.

» Read - Reads allrecords

 Validation — Validates all of them have not been changed

Execution Model

 Symmetric Model: Each machine is both client and server

* This removes asymmetry/skew as a confounder

* Register memory with huge pages (2 MB) for RNIC

* This reduces page-translation cache misses

* Asaresult, fewer PClereads on TLB misses

* A per-thread device context for QP creation rather than a shared context

e Why?
* Mellanox’s driver allocates a pre-mapped MMIO buffer per context

* A shared context forces QPs to share that buffer, causing synchronization on the MMIO buffer and up to
63% throughput drop as threads scale

* (mlx4 has 7 dedicated buffers + 1 shared buffer)

Use standard Verbs AP

One-sided:

* Each thread manages n Reliable Connected (RC) QPsto n peers
* Inline <= 64B; overlap outstanding ops

Iwo-sided:

« SEND/RECV verbs over Unreliable Datagram (UD) QPs

* Has better performance in symmetric settings
* One-sided based RPC unlikely to outperform UD based RPC especially for small messages

* ForRPC communications, two WRITES are required (one for send and one for reply)

Justify comparing RC to UD because RDMA network assumes a lossless link layer

Optimizations

Run a small set of coroutines per thread; each coroutine issues RDMA ops, then yields while

waiting, letting others run

Hides ps-scale RNIC/network latency by pipelining requests across transactions; boosts per-core

throughput
Small number is sufficient (e.g. 8)

Execution & Validation — multiple remote ops

Issue multiple requests from the same transaction in parallel instead of waiting for each to finish

(per-transaction pipelining)
Better RNIC utilization and lower end-to-end transaction latency; eliminates per-op serialization

Read/write set of many OLTP transactions can be known in advance. So it’s possible to issue
these reads and writes in parallel

Execution (multi-GET/multi-read)

Commit/Logging — writing multiple records

Use one doorbell MMIO to let the NIC DMA-fetch a batch of WQEs, instead of many MMIOs

MMIQOs are expensive (hundreds of cycles); batching cuts CPU MMIOs and PCle transactions
Better usage of PCle bandwidth
Easier for two-sided UD

Use w/ high request rates to same peer

* Take ACKs off the critical path

* One-sided: mark requests unsignaled; confirm their
completion later when polling the next signaled op

» Two-sided: piggyback the reply to message #1 on the
next request message (#2) in symmetric flows (“reply-
on-request”)

e Cuts RNIC bandwidth/completions; in symmetric
two-sided RPC, can halve reply messages

« Commit/Logging (ACK isn’t immediately required)

Message Piggybacking

N .
symmetric
model

—p Request
..... » Reply

-..3 Request
+Reply

Fig. 4: A sample of passive ACK for two-sided primitive.

Table 2: A summary of optimizations on RDMA primitives at
different phases (§3.2). OR, DB, CO and PA stand for outstanding
request, doorbell batching, coroutine, and passive ACK. RW and
RO stand for read-write and read-only transactions. I and IT
stand for one-sided and two-sided primitives.

OR DB Cco PA

H
H

WX [NN X%x|H
x| WX x| H
NNSNNAS

Thpt per machine
(M reqs/s)
O N A OO @ 5 K‘)

< >
N
(e0]

S
r
T}

One-sided

Two-sided

G
@
g
<

[}
£
B g
3}
©
=
v
@
Q.
a
b
—

One-sided

Two-sided

base
+coroutine
+outstanding
+doorbell

base
+coroutine
+outstanding
+doorbell
+passive-ACK

Fig. 6: A comparison of one-sided and two-sided primitives for

multiple-object (a) reads and (b) writes with 64-byte payloads.

* Workloads:
* TPC-C (CPU intensive)

* SmallBank (network-intenstive)
* Partitioned datastore: rows sharded across all machines

* High availability: 3-way logging/replication - each primary has two backups

Benchmark

Focus

Locality

Scale details

TPC-C/no

CPU-intensive

forced distributed (New-
Order only)

384 warehouses/ 16
machines

SmallBank

Network-intensive

all networked

100k accts/thread; 4% of
records accessed by 90%
txns

e Execution: One-sided/Cache

* Validation: One-sided

o
~

& Two-sided I & Two-sided
= One-sided g 2 One-sided
- One-sided/Cache -6~ One-sided/Cache

o
w

Median latency (ms)
o o
- [

0 04 08 12 18 6§ 12 18 24 30
Thpt per machine (M txns/s) Thpt per machine (M txns/s)

Fig. 7: The performance of (a) TPC-C/no and (b) SmallBank
with different implementations of Execution phase.

=4 = Two-sided
— 60 -« One-sided

: : : = 0 : : : : :
03 06 09 12 15 0 2 4 6 8 10 12

Thpt per machine (M txns/s) Thpt per machine (M txns/s)
Fig. 8: The performance of (a) TPC-C/no and (b) SmallBank
with different implementations of locking in Validation phase.

e Commit; Two-sided + PA

e | ogging: One-sided

B Two-sided 5 @ & Two-sided
< One-sided e T Il - One-sided
-4 Two-sided + PA 0 -4 Two-sided + PA
-© One-sided + PA - -6~ One-sided + PA

02 04 06 08 1.0

Thpt per machine (M txns/s) Thpt per machine (M txns/s)

Fig. 9: The performance of (a) TPC-C/no and (b) SmallBank
with different implementations of Commit phase.

o
o

8 Two-sided
06 2 One-sided

-8 Two-sided
90 2 One-sided

ms)

o
(]

(]
.
Median latency (us)
wW [22]
o o

Median latency

0 02 04 06 08 10 00 1 2 3 4 5 6 7
Thpt per machine (M txns/s) Thpt per machine (M txns/s)

Fig. 10: The performance of (a) TPC-C/no and (b) SmallBank
with different implementations of Logging phase.

0

One-sided/Cache for Read

One-sided for Validation

-B- Two-sided + Two-sided
=% One-sided + Two-sided
—¥- One-sided + One-sided
=¥ One-sided/Cache + One-sided

_k_k
o w

Median latency (mr
o
(3]

0 : :
0 005 01 015 0.2 025 03
Thpt per machine (M txns/s)

Fig. 11: The performance of customer-position in TPC-E
with different implementations of the read-only transaction
(Read and Validation phases).

Execution: Hybrid reads — if record address is cached » one-sided READ; on miss > two-sided
RPC (fetch record + address).

Validation: use one-sided ATOMIC to lock/check if RNIC atomics don’t conflict with local CPU
accesses; otherwise two-sided (RNIC atomics can slow local ops).

L ogging/Replication: one-sided WRITEs to push logs to all backups; two-sided later to reclaim log
space.

mmit/Install: if validation used one-sided atomics » one-sided WRITES; else two-sided RPC +
Passive-ACK.

Speculative exec + OR: even without knowing the full read/write set, speculatively continue and
fetch independent records in parallel to shrink per-txn lifespan.

| & DrTM+H o
| % DrTM+H/80 -

Scales well: With an emulated 80-node QP 6§ 8 10 12 14 16 34 6 8 10 12 14 16
Number of machines Number of machines

setting, throughput drops only 5% (TPC- Fig. 12: The performance of DrTM+H with the increase of ma-
C/nO) and 90/0 (SmallBaﬂk) pel’-thl’ead uses (.‘I"II'J'.'(?.S'ﬁ)!' (a) TPC-C/no and (b) SmallBank.
80 QPs in round-robin

& DITM+H rafé
| % DITM+H/80

H/E]/E/E

~J
(4]

e Throughput: ~7.3M tps (TPC-C/no) and
~90.4M tps (SmallBank) on 16 nodes

w
o

,.,
n
o

Throughput (M txns/s)

O MNDWPkEoo~N©

Throughput (M txns/s)

(o
=S

< FaSST-OCC
r -2 DrTM+R

= FaRM
r 8 DrTM+H

Beats pure two-sided: On SmallBank, E 2l & ?ﬁ%lfoci
5) _-e- a ®
DrTM+H delivers 1.3x higher throughput than g [& DTMH ot

a pure two-sided design and cuts tail N e
latency: P50 ~22%, P90 ~39%, P99 ~49% I B e il N

us)

{
n
o

[(s]
o

o]
Q

93]
Q

¢
s

0 1 2 3 4 5 7
Thpt per machine (M txns/s) Thpt per machine (M txns/s)

P

Median latency

0

Fig. 14: An end-to-end comparison of different designs for (a)
TPC-C/no and (b) SmallBank.

	Slide 1: Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better!
	Slide 2: Background
	Slide 3: One-sided vs. two-sided primitives (Verbs)
	Slide 4: OCC (Optimistic Concurrency Control)
	Slide 5: OCC: 4 Phases
	Slide 6: OCC: 2-Phase Read-only Transaction
	Slide 7: Execution Model
	Slide 8: Controls - Cluster and model
	Slide 9: Controls - QP creation
	Slide 10: Baselines
	Slide 11: Optimizations
	Slide 12: Coroutine (CO)
	Slide 13: Outstanding Requests (OR)
	Slide 14: Doorbell Batching (DB)
	Slide 15: Passive ACK (PA)
	Slide 16
	Slide 17: Benchmarks and Setup
	Slide 18
	Slide 19: Phase by Phase Analysis – Execution & Validation
	Slide 20: Phase by Phase Analysis – Commit & Logging
	Slide 21: Phase by Phase Analysis – 2 phase Read & Validate
	Slide 22: Hybrid Design – DrTM+H
	Slide 23: DrTM+H Performance

