
Deconstructing RDMA-enabled 
Distributed Transactions: Hybrid is 
Better!
Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen

Shanghai Jiao Tong University

OSDI’18



Background

• There are two RDMA styles for transactions: One-sided and Two-sided

• It’s not obvious which one is “better”

• Address known vs. Lookup

• Message size can affect performance

• RNIC/CPU coupling



One-sided vs. two-sided primitives (Verbs)

• One sided: READ, WRITE, ATOMIC

• Two sided: SEND, RECV

• Server polls requests from a receiver queue, calls local 
RPC routine, and posts results back to the sender 
queue



OCC (Optimistic Concurrency Control)

• “Optimistic” - Assumes other requests won’t clash

• Runs transactions without locks, only checks at the end

• Why? Locks induce latency

• Most transactions don’t conflict

• Good for OLTP (online transaction processing)



OCC: 4 Phases

• Execution - Records a read-set (keys + versions) and a write-
set (keys + new values)

• Validation - Executes a commit protocol, which locks the 
records in the write set and validates the records in the read 
set is unchanged

• Logging - If there is no conflicting transaction, the 
coordinator sends transaction’s updates to each backup and 
waits for the accomplishment

• Commit - Upon successful, the transaction will be 
committed by writing and unlocking the records at the 
primary node



OCC: 2-Phase Read-only Transaction

• Read - Reads all records

• Validation – Validates all of them have not been changed



Execution Model



Controls - Cluster and model

• Symmetric Model: Each machine is both client and server

• This removes asymmetry/skew as a confounder

• Register memory with huge pages (2 MB) for RNIC

• This reduces page-translation cache misses

• As a result, fewer PCIe reads on TLB misses



Controls - QP creation

• A per-thread device context for QP creation rather than a shared context

• Why?

• Mellanox’s driver allocates a pre-mapped MMIO buffer per context

• A shared context forces QPs to share that buffer, causing synchronization on the MMIO buffer and up to 
63% throughput drop as threads scale

• (mlx4 has 7 dedicated buffers + 1 shared buffer)



Baselines

• Use standard Verbs API

• One-sided:

• Each thread manages n Reliable Connected (RC) QPs to n peers

• Inline <= 64B; overlap outstanding ops

• Two-sided:

• SEND/RECV verbs over Unreliable Datagram (UD) QPs

• Has better performance in symmetric settings

• One-sided based RPC unlikely to outperform UD based RPC especially for small messages

• For RPC communications, two WRITES are required (one for send and one for reply)

• Justify comparing RC to UD because RDMA network assumes a lossless link layer



Optimizations



Coroutine (CO)

• Run a small set of coroutines per thread; each coroutine issues RDMA ops, then yields while 
waiting, letting others run

• Hides µs-scale RNIC/network latency by pipelining requests across transactions; boosts per-core 
throughput

• Small number is sufficient (e.g. 8)

• Execution & Validation – multiple remote ops



Outstanding Requests (OR)

• Issue multiple requests from the same transaction in parallel instead of waiting for each to finish 
(per-transaction pipelining)

• Better RNIC utilization and lower end-to-end transaction latency; eliminates per-op serialization

• Read/write set of many OLTP transactions can be known in advance. So it’s possible to issue 
these reads and writes in parallel

• Execution (multi-GET/multi-read)

• Commit/Logging – writing multiple records



Doorbell Batching (DB)

• Use one doorbell MMIO to let the NIC DMA-fetch a batch of WQEs, instead of many MMIOs

• MMIOs are expensive (hundreds of cycles); batching cuts CPU MMIOs and PCIe transactions

• Better usage of PCIe bandwidth

• Easier for two-sided UD

• Use w/ high request rates to same peer



Passive ACK (PA)

• Take ACKs off the critical path

• One-sided: mark requests unsignaled; confirm their 
completion later when polling the next signaled op

• Two-sided: piggyback the reply to message #1 on the 
next request message (#2) in symmetric flows (“reply-
on-request”)

• Cuts RNIC bandwidth/completions; in symmetric 
two-sided RPC, can halve reply messages

• Commit/Logging (ACK isn’t immediately required)





Benchmarks and Setup

• Workloads:

• TPC-C (CPU intensive)

• SmallBank (network-intenstive)

• Partitioned datastore: rows sharded across all machines

• High availability: 3-way logging/replication - each primary has two backups



Benchmark Focus Locality Scale details

TPC-C/no CPU-intensive forced distributed (New-
Order only)

384 warehouses / 16 
machines 

SmallBank Network-intensive all networked
100k accts/thread; 4% of 
records accessed by 90% 
txns 



Phase by Phase Analysis – Execution & Validation

• Execution: One-sided/Cache

• Validation: One-sided



Phase by Phase Analysis – Commit & Logging

• Commit: Two-sided + PA

• Logging: One-sided



Phase by Phase Analysis – 2 phase Read & Validate

• One-sided/Cache for Read

• One-sided for Validation



Hybrid Design – DrTM+H

• Execution: Hybrid reads — if record address is cached → one-sided READ; on miss → two-sided 
RPC (fetch record + address).

• Validation: use one-sided ATOMIC to lock/check if RNIC atomics don’t conflict with local CPU 
accesses; otherwise two-sided (RNIC atomics can slow local ops).

• Logging/Replication: one-sided WRITEs to push logs to all backups; two-sided later to reclaim log 
space.

• Commit/Install: if validation used one-sided atomics → one-sided WRITEs; else two-sided RPC + 
Passive-ACK.

• Speculative exec + OR: even without knowing the full read/write set, speculatively continue and 
fetch independent records in parallel to shrink per-txn lifespan.



DrTM+H Performance

• Throughput: ~7.3M tps (TPC-C/no) and 
~90.4M tps (SmallBank) on 16 nodes

• Scales well: With an emulated 80-node QP 
setting, throughput drops only 5% (TPC-
C/no) and 9% (SmallBank); per-thread uses 
80 QPs in round-robin

• Beats pure two-sided: On SmallBank, 
DrTM+H delivers 1.3× higher throughput than 
a pure two-sided design and cuts tail 
latency: P50 −22%, P90 −39%, P99 −49%


	Slide 1: Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better!
	Slide 2: Background
	Slide 3: One-sided vs. two-sided primitives (Verbs)
	Slide 4: OCC (Optimistic Concurrency Control)
	Slide 5: OCC: 4 Phases
	Slide 6: OCC: 2-Phase Read-only Transaction
	Slide 7: Execution Model
	Slide 8: Controls - Cluster and model
	Slide 9: Controls - QP creation
	Slide 10: Baselines
	Slide 11: Optimizations
	Slide 12: Coroutine (CO)
	Slide 13: Outstanding Requests (OR)
	Slide 14: Doorbell Batching (DB)
	Slide 15: Passive ACK (PA)
	Slide 16
	Slide 17: Benchmarks and Setup
	Slide 18
	Slide 19: Phase by Phase Analysis – Execution & Validation
	Slide 20: Phase by Phase Analysis – Commit & Logging
	Slide 21: Phase by Phase Analysis – 2 phase Read & Validate
	Slide 22: Hybrid Design – DrTM+H
	Slide 23: DrTM+H Performance

