UCDAVIS

Design Guidelines for High Performance
RDMA Systems

Anuj Kalia, Michael Kaminsky, David G. Andersen
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

Presenter

Harish Gokul Krishnakumar

INTRODUCTION

e RDMA Stands for Remote Direct Memory Access.

e Network Feature that allows direct access to the memory of a remote computer.
e Why RDMA?

e Zero Copy - Application Layer to Network Interface Card - OS Bypass

Applications

Server-Initiato D — — Server-Initiator

RDMA Library

MA (RoCE)

UCDAVIS

Userland

Linux kernel

Device Driver

NIC Hardware

BACKGROUND - RDMA

e RDMA - Read or Write data directly from remote device’s memory.
e Server making a request - Requester.
e Server receiving the request - Receiver.

e |t usesthe - Uses Verbs like READ, WRITE, SEND, RECV etc to interact with remote

sServers.
RDMA APP

- One Sided: Do not Involve receiver CPU. READ/WRITE <§>
-Two Sided: Involve receiver CPU. SEND / RECV. | |

UCDAVIS

e The application has to link with the Verbs API to use it.

e There are two ways for a servers to talk using RDMA:

e There are two types of Reliability Guarantees:
RCuwTCP|UD...UDP
- Connection Oriented: RC /UC ~ TCP |RCnTCPIUD..UDP

- Connectionless: UD ~ UDP Reliable

https://github.com/gpudirect/libibverbs

BACKGROUND - RDMA MECHANICS

e RDMA - Works in using Queues (FIFO) - Order Preserved

Send Queue 1 Receive Queue 1
e Work Queue consist of Work Queues Elements. n n

e RDMA works in Queue Pairs

e Send Queue enqueue SEND / WRITE Requests.
e Receive Queue enqueue RECV / READ Requests.

UCDAVIS

e Completion Queue enqueues Completed Send / Recv entries with status.

Software

Work Requests Work Completions

Hardware @

Send Queue

MEMORY

Completion Queue

QP[Receive Queue

BACKGROUND - Peripheral Component Interconnect - Express

e PCle: Data transfer between the CPU (and host memory) and the NIC.

e Two Models of Data Transfer:
- Push Based (CPU MMIO)

- Pull Based (DMA Read) SH -« [|
e -PCIe x8
e CPU MMIO stands for CPU Memory Mapped I/0: Here the CPU pushes ‘_ " QIEI

channels to talk to the NIC i
e im{f

e DMA Reads: Here the NIC is notified of a message to be read, the NIC then I1SsUEs @ LUMA read cail 1o~
get the data.

e ->WQ is established in host memory.

e > WAQ talks to the NIC and our application talks to the WQ.

e -> So data transfer from WQ to NIC is a potential bottleneck.

e Why ? There could be multiple WQ's , there could WQ'’s pinned to different CPU cores.

e If my CPU spends most of the time in sending data to the WQ then that is an area of
Improvement.

e Goalis always -> Use CPU for app logic , use it as less as possible for other stuff

RDMA Guidelines - Reduce CPU Initiated MMIO

e Use CPU as less as possible for WQ to NIC comn

e Instead of pushing data continuously through PCle
peeas o' p) Knock, knock.
e So lets accumulate ‘N’ requests, and once these a Who's ihere?
to the NIC - “Hey N Requests are ready to be read g)
>
e NIC then issues “N” DMA reads to read the data. (Alex. 5
data spans cache lines - lookout) s -
e We nowissue N + 1 calls , N DMA reads + 1 notifi Alex Who°
joke).

@
=
e So now problem solved right, CPU is not used so | Alex plaln Iaierl
. §
e DMAreads are better than MMIO generally so yay I“S'l‘ open up!

e What can we optimize next? Can | reduce N to lets

RDMA Guidelines - Reduce NIC Initiated DMA

e DMA adds one extra read but avoid many MMIO -> Acceptable tradeoff
e Reduce DMA reads by inlining data in a single cache line (64 bytes).

e Can we do HEADER only RDMA calls like HEADER only RECV and pack the data
payload in it.

e (Can we do away with a CQ event and not waste a DMA read there (common problem
with RECV)

e |n datacenters message payloads are often small, this is a good assumption and we can
apply these 2 optimisations.

Header-only RECV: CQE contains appiication data
from SEND header; saves a PCle transaction

CEUDDe'i muoNlc L n At e
g Mo Dggi MmO | Opet wmo‘
WQE DMA_ WQE DMA WQE DMA

l— :‘E " || iniine RECY: — {—t::ﬂ} A
|| ©E contains = T
ey R ||oo=ed| [l
—— CQt CQl L
;m,m.m_ CQE| e ==
a1 l |

Figure 6: Optimizations for RECVs with small SENDs.

UCDAVIS

RDMA Guidelines - Leverage NIC Parallelism

e So NIC’s showcase parallelism by having multiple PU’s (Parallel Processing Units).

e Let's say we have 4 PU cores, if we have 4 CPU cores then each CPU core can have 1 PU core.
e Each PU Core can have multiple ports.

e Now let's say my WQ is on CPU Core 1 using PU Core 1.

e CPU Core processing speed is fast, PU Core processing speed is slow. CPU is bottlenecked by
PU speed.

UCDAVIS

e Solution: Let each CPU core use multiple QPs, so it can distribute work across multiple PUs,
leveraging NIC parallelism and keeping all PUs busy efficiently.

e So what about using WQ’s across CPU cores, is shared memory worth the performance boost?

RDMA Guidelines - Avoid NIC Contention

e Simple Answer is No.

e |tisideato have WQ'’s belonging to a CPU core talk to memory allocated for it.

e Resource Contention at the NIC’s is not great, they use hardware locks and are not efficient.
e NIC SRAM is small, so number of available locks is small too.

e Let NIC’s do the talking and application level code do concurrency control.

UCDAVIS

e Atomic Operations on NIC is not efficient as a result of this.

e Solutions which involve CAS and atomic swaps on NIC suffer from internal hardware lock
mechanisms.

e Question - How do caching work on NIC’s?

10

RDMA Guidelines - NIC Cache Lines

e NIC’s can cache WQ'’s or WQ addresses for better performance.

e Since NIC’s talk to WQ’s directly using DMA reads.

e Now if we have many WQ’s from (Multi Queue Optimization) then we have more Cache misses.
e More Cache Misses correspond to not great performance.

e But more MQ’s mean better CPU utilisation.

UCDAVIS

e Solution: Classic Tradeoff -> Stay in Goldilocks zone.
e Right amount of WQ’s per core for CPU Utilisation while ensuring good NIC cache lines.

e The authors detect this very brilliantly using PCle Counters. (Yes just like perf counter, there are
PCle counters).

11

Implementing Guidelines - HERD KV Store

e PS: | Love Key Value Stores.

e HERD is a RPC protocol where a client can write a Key Value Pair to a server.

e Well you could use gRPC, TCP, Arrow RPC but we will use you guessed it - RDMA RPC.
e HERD RPC Overview:

RECV

UCDAVIS

Receive the Memory
Address to write to

WRITE

One side write to
memory address

12

Implementing Guidelines - HERD KV Store

UCDAVIS

SEND

Confirmation Message

13

HERD Optimizations

[
[
2
>
g
=)
[
 —s—a
° Baseline - -e -
+Batching —»— -
b READ-based key-value store —a—

6 e 10 12 14

N‘umber of workerl threads)
Improvement in HERD’s throughput with 5% PUTSs

14

Implementing Guidelines - Network Sequencer

e Problem Statement - Generate Unique Monotonically increasing 8 bytes numbers.

ar has tn resnnnd with RNDMA

140 - | [I | 2 DMA
Baseline -.e -.

_120 - +Batching - -e - tfora

S 100 L +3QP —e— a
10, | 2 Spec-S0 —a— a
§ No batching - .= -- 8 80 | Atomics —a— — A& .-----"""7" ts by +N =
§ 8L Batching —e— é 60 8
S & -~
L é 40 ache line
§ 4L S e RN o o B 5 v 5 o -9
g 5 0 ® S - ; = : n
. 0 2 4 6 8 10 ef
<, : Number of server CPU cores ‘esponse.

0 20 40

Thow Figure 7: Impact of optimizations on HERD RPC-based se-
quencer (blue lines with circular dots), and throughput of
Spec-S0 and the atomics-based sequencer

Figure 8: Impact of respons

15

16

Salient Low Level Observations

e PCle Bandwidth is the Ultimate Bottleneck - Once you optimize everything else, PCle
becomes the hard limit.

e Batching Only Works Well for Datagram (UD) - Larger batch size, more machines the better.
One to One might not benefit as much.

e Header-Only SEND/RECV = Game Changer - Throughput jumps from 82 Mops — 122 Mops
(49% gain)

UCDAVIS

e Multi-Queue Magic - Enough QPs to utilize all PUs, not so many that you thrash caches

e Atomics Are Terrible for Contention - 2.24 Mops vs 122 Mops — 54x slower than optimized
approach.

e The Bottom Line: Everything is a tradeoff, more queues means cache misses, less queues
means less CPU utilisation, measure -> implement -> use data to drive decision.

