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INTRODUCTION

● RDMA Stands for Remote Direct Memory Access.

● Network Feature that allows direct access to the memory of a remote computer.

● Why RDMA? 

● Zero Copy - Application Layer to Network Interface Card - OS Bypass
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BACKGROUND 
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BACKGROUND - RDMA

● RDMA - Read or Write data directly from remote device’s memory.

● Server making a request - Requester.

● Server receiving the request - Receiver.

● It uses the Verbs API - Uses Verbs like READ, WRITE, SEND, RECV etc to interact with remote 
servers.

● The application has to link with the Verbs API to use it.

● There are two ways for a servers to talk using RDMA:

- One Sided:  Do not Involve receiver CPU. READ/WRITE
 -Two Sided: Involve receiver CPU. SEND / RECV.

● There are two types of Reliability Guarantees:

- Connection Oriented: RC / UC ~ TCP
- Connectionless: UD ~ UDP

https://github.com/gpudirect/libibverbs
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BACKGROUND - RDMA MECHANICS

● RDMA - Works in using Queues (FIFO) - Order Preserved

● Work Queue consist of Work Queues Elements.

● RDMA works in Queue Pairs

● Send Queue enqueue SEND / WRITE Requests.

● Receive Queue enqueue RECV / READ Requests.

● Completion Queue enqueues Completed Send / Recv entries with status.



6

BACKGROUND - Peripheral Component Interconnect - Express

● PCIe: Data transfer between the CPU (and host memory) and the NIC.

● Two Models of Data Transfer:
- Push Based (CPU MMIO)

         - Pull Based (DMA Read)

● CPU MMIO stands for CPU Memory Mapped I/O: Here the CPU pushes message down the PCIe 
channels to talk to the NIC

● DMA Reads: Here the NIC is notified of a message to be read, the NIC then issues a DMA read call to 
get the data.

● -> WQ is established in host memory.

● -> WQ talks to the NIC and our application talks to the WQ.

● -> So data transfer from WQ to NIC is a potential bottleneck.

● Why ? There could be multiple WQ’s , there could WQ’s pinned to different CPU cores.

● If my CPU spends most of the time in sending data to the WQ then that is an area of 
Improvement.

● Goal is always -> Use CPU for app logic , use it as less as possible for other stuff



7

RDMA Guidelines - Reduce CPU Initiated MMIO

● Use CPU as less as possible for WQ to NIC communication.

● Instead of pushing data continuously through PCIe using individual MMIO calls, what if we 
batch them?

● So lets accumulate ‘N’ requests, and once these are ready the CPU issues a notification 
to the NIC - “Hey N Requests are ready to be read”.

● NIC then issues “N” DMA reads to read the data. (Now these could more than N if the 
data spans cache lines - lookout)

● We now issue N + 1 calls , N DMA reads + 1 notification or doorbell (insert knock knock 
joke).

● So now problem solved right, CPU is not used so CPU is utilized by the application.

● DMA reads are better than MMIO generally so yay performance.

● What can we optimize next? Can I reduce N to lets say something less than N.
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RDMA Guidelines - Reduce NIC Initiated DMA

● DMA adds one extra read but avoid many MMIO -> Acceptable tradeoff

● Reduce DMA reads by inlining data in a single cache line (64 bytes).

● Can we do HEADER only RDMA calls like HEADER only RECV and pack the data 
payload in it.

● Can we do away with a CQ event and not waste a DMA read there ( common problem 
with RECV)

● In datacenters message payloads are often small, this is a good assumption and we can 
apply these 2 optimisations.
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RDMA Guidelines - Leverage NIC Parallelism

● So NIC’s showcase parallelism by having multiple PU’s (Parallel Processing Units).

● Let’s say we have 4 PU cores, if we have 4 CPU cores then each CPU core can have 1 PU core.

● Each PU Core can have multiple ports.

● Now let’s say my WQ is on CPU Core 1 using PU Core 1. 

● CPU Core processing speed is fast, PU Core processing speed is slow. CPU is bottlenecked by 
PU speed.

● Solution: Let each CPU core use multiple QPs, so it can distribute work across multiple PUs, 
leveraging NIC parallelism and keeping all PUs busy efficiently.

● So what about using WQ’s across CPU cores, is shared memory worth the performance boost?
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RDMA Guidelines - Avoid NIC Contention

● Simple Answer is No.

● It is idea to have WQ’s belonging to a CPU core talk to memory allocated for it.

● Resource Contention at the NIC’s is not great, they use hardware locks and are not efficient.

● NIC SRAM is small, so number of available locks is small too.

● Let NIC’s do the talking and application level code do concurrency control.

● Atomic Operations on NIC is not efficient as a result of this.

● Solutions which involve CAS and atomic swaps on NIC suffer from internal hardware lock 
mechanisms.

● Question - How do caching work on NIC’s? 
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RDMA Guidelines - NIC Cache Lines

● NIC’s can cache WQ’s or WQ addresses for better performance.

● Since NIC’s talk to WQ’s directly using DMA reads.

● Now if we have many WQ’s from (Multi Queue Optimization) then we have more Cache misses.

● More Cache Misses correspond to not great performance.

● But more MQ’s mean better CPU utilisation.

● Solution: Classic Tradeoff -> Stay in Goldilocks zone.

● Right amount of WQ’s per core for CPU Utilisation while ensuring good NIC cache lines.

● The authors detect this very brilliantly using PCIe Counters. (Yes just like perf counter, there are 
PCIe counters).
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Implementing Guidelines - HERD KV Store

● PS: I Love Key Value Stores.

● HERD is a RPC protocol where a client can write a Key Value Pair to a server. 

● Well you could use gRPC, TCP, Arrow RPC …. but we will use you guessed it - RDMA RPC.

● HERD RPC Overview:

Client Server
RECV

Receive the Memory 
Address to write to

Client Server
WRITE

One side write to 
memory address

Client
  Server

Server Polls the memory location for the request
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Implementing Guidelines - HERD KV Store

Client
  Server

Server does the app logic, write KV pair to memory

Client
  Server

Server does the app logic, write KV pair to memory

SEND

Confirmation Message
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HERD Optimizations

● Batching: Workers collect multiple requests (N ≤ client count) and send all responses with a 
single batched doorbell, reducing MMIOs.

● Multi-Queue: Each server core uses multiple UD QPs (not just one) to utilize more NIC 
Processing Units and avoid PU bottlenecks.

● Opportunistic Collection: Batches are formed from immediately available requests without 
waiting, minimizing added latency.

● DMA Bandwidth Saturation: These changes improved throughput by 35% (to 98.3 Mrps) and 
CPU efficiency by 83%, pushing performance to the PCIe limit.
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Implementing Guidelines - Network Sequencer

● Problem Statement - Generate Unique Monotonically increasing 8 bytes numbers.

● Multiple Clients can request a sequence and server has to respond with RDMA.

● Challenges: Atomic Increase, Resource Contention, Small Message Size but we need 2 DMA 
reads, for SEND + CQ (Payload). This CQ takes up a lot of PCI bandwidth (~25%) just for a 
confirmation message.

● Solution1: Lets batch client requests to N. So application level batches an increments by +N 
instead of +1. Yay better lock contention prevention.

● Solution2: Lets batch RDMA SEND requests, so 1 MMIO + N DMA reads -> better cache line 
efficiency / CPU utilisation

● Solution3: Header-only SENDs that embed the sequence number in the packet header, 
eliminating the separate payload DMA and reducing transfers to just 1 DMA read per response. 
Header only sends can house 4 bytes of payload data.

● Results: They are really good! Btw how do they fit 8 Byte data in 4 Bytes?
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Salient Low Level Observations

● PCIe Bandwidth is the Ultimate Bottleneck - Once you optimize everything else, PCIe 
becomes the hard limit. 

● Batching Only Works Well for Datagram (UD) - Larger batch size, more machines the better. 
One to One might not benefit as much.

● Header-Only SEND/RECV = Game Changer - Throughput jumps from 82 Mops → 122 Mops 
(49% gain)

● Multi-Queue Magic - Enough QPs to utilize all PUs, not so many that you thrash caches

● Atomics Are Terrible for Contention - 2.24 Mops vs 122 Mops → 54x slower than optimized 
approach.

● The Bottom Line: Everything is a tradeoff, more queues means cache misses, less queues 
means less CPU utilisation, measure -> implement -> use data to drive decision.
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THANK YOU


