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Trend: ML workloads are going distributed

- |
Larger and larger training scale e NVL72 NVL144

More disaggregated serving e 800Gbps NIC, 102.4Tbps switch

Massive expert parallelism in MoE * Co-packaged optics (CPO)

... as aresult;
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Slowly Evolving Networking

Host transport on RDMA NICs is hard to adapt to better suit ML workloads

* Hardware changes are time-consuming
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Agenda

Overview of Our Solution
Hardware and Network Topology
Routing Evolution

Transport

Operations and Experiences

Conclusion and Future Considerations



Meta Al Training Evolution

DISTRIBUTED MODEL VARIED MODEL HIGH
TRAINING TO COMPLEXITY AND AND BANDWIDTH &

GPU FULL SYNC SCALE DATA LOW
TRAINING EXPLOSION PARALLELISMS PREDICTABLE

LATENCY



Our Production RDMA network...

PURPOSE ROCEV2 i O(10K) SIZE
BUILTFORAI  TRANSPORT wiTH (O(100K)), MULTI- CLUSTERS
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01 INTRODUCTION AND BACKGROUND

PCle Gen5x16

CPU Tray

RDMA NIC PCle Gen5
400G Switch
RDMA NIC

| Switch Tray

GPU Tray NVSwitch

Dedicated Backend NIC per

GPU
+ Grand Teton Open Compute Chassis
+ Single Port 400G Backend NICs

*+ 1 NIC to 1 GPU mapping
+ PCle speed matches between GPU/ NIC
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Separate RDMA Backend
and Frontend Network

Helps us account for varied growth rates for GPU to GPU
synchronization traffic vs Data Ingestion and supporting
traffic.
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INTRODUCTION AND BACKGROUND

Network
Topology

» Dedicated Backend .

Network isolated from

Frontend Network .

+ 3 LayerClos

» ToR switches: Shallow
Buffers

= Spine Switches: Deep
Buffer switches with

static carving buffers -

Routing
Solution

Originally Static
Routing

Evolved to Enhanced
ECMP hashing on
Destination QP ID +
Collectives
Implementing flow
multiplexing

Traffic Engineering on
First hop switches
Future exploration:
Flowlet load balancing

Congestion
Control

« DCQCN along with
PFC 200G Networks

» Pivotaway from
DCQCN for 400G

» Use Collective library
to limit Congestion

Operations and
Perf Tuning

» Network and
Communication
library (NCCL) tuning

+ Performance
consistency

+ Operational learnings
to Scale



Learning #1: Scale and traffic patterns in Al Training
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Al Zone: Built for Ranking Workloads

CLUSTER
SW #01

Al Zone

RACK

SW #192

G &

GPUS GPUS
1-8, 9-16 1-8, 9-16

CLUSTER
SW #18

Rack
16 GPUs per rack
Connected by RTSW Shallow Buffer
Switches
Al Zone
Upto 18 CTSWSs connect 256 racks
forming ~4000 GPUs
CTSW: Deep buffer switches with
Virtual output queuing architecture
Full Bisection Bandwidth
Needed for Ranking workloads with
Full Mesh Network patterns



DC Scale Cluster for GenAl

CLUSTER ; ; CLUSTER . Al Zone ] CLUSTER
SW #01 ) ' A SW #18

GPUS GPUS GPUS GPUS
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02 TOPOLOGY

ToR based 3 stage Clos Topology for Extensibility and Reliability

+ ToR Architecture
- RTSW: Shallow buffer Switch running FBOSS
- 2 Servers per rack limits the switch failure domain
- Facilitates Usage of DACs for NIC to RTSW
connector
+ Spine Switches:
- Deep buffer switches with Virtual output queuing
architecture

+ Al Zone
- Upto 18 CTSWs connect 256 racks forming ~4000
GPUs
- Full bisection bandwidth
+ DCScale

- ATSW switches connect up to 8 Al Zones

- Provides Oversubscribed bandwidth

- Large jobs with collectives suitable are placed

- Scheduler spreads job with Network topo awareness
to support collective algorithm graph




Learning #2: Low Flow Entropy with Hierarchical Collectives

: Avg. # of QPs
Collectives per GPU
AlltoAll(v) 15
AllReduce 4
AllGather 4
ReduceScatter 4

Number of Flows / active QPs per NIC
128 GPU Collective
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ROUTING

TE Rollout Signal from Production:
Ranking Cluster, Al Zone

Bandwidth observed by All Reduce Kernel extracted
based on Trace Duration observed over the years.

Stage1: Static Routing

Stage2: Under-Subscription 1:2

Stage3: TE Rollout

Stage4: Reduce under-subscription to 1:1.125

Normalized BusBw (%)
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Improving ECMP with Flow Multiplexing

Example of Flow multiplexing of Factor 4 on Elephant flow worth 4 messages 4 pkts each

DEFAULT
BEHAVIOR

By default messages that

originate from a given NIC

to another NIC are posted
over single queue / flow

SPLIT EACH
MESSAGE AND SEND IT
ON 4X QUEUES

Has performance
regressions at Flow
multiplexing factor higher
than 4 due to message size
growing lower

SEND EACH MESSAGE
ON DIFFERENT QUEUE
ROUND ROBIN

No Performance Regression
upto QP scaling of 64,
Enough messa needs to
be pipeli for this
technigue to be effective

D

PACKET SEQ. NO.
PER FLOW

DISTINCT
MESSAGE
POSTED BY NIC

: DISTINCT NIC
, SEND QUEUE

DISTINCT
b FLOW AS PER
NW HASHING

RECV
ToR



01 ROUTING
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ECMP hashing with QP ID: Perf

QP=16 helped achieve roofline performance for hierarchal
collectives

QP Scaling Impact

Applying QP Scaling = 4 for Ranking workloads
Applying QP Scaling = 16 for GenAl workloads



Learning #3: Variable Congestion Per Collective

. Buffer occupancy
feEsisOshee per leaf switch (MB)
AlltoAll(v) 65.6
AllReduce 13
AllGather 22.1
ReduceScatter 19.6

Cumulative Buffer Watermarks per RTSW
128 GPU Collective



04 TRANSPORT

Tuning DCQCN did not
provide a net benefit

- Momentary congestion.
- Original Approach: With DCQCN with 200G
Networks

- 2 not net-positive outcomes:
Low buffer utilization with perf regression
in corner cases
Marginal perf benefits (if any) with higher
buffer thresholds.

Baseline (SMB ECN)
40 Reduced ECN (300KB, 600KB)

Completion Time (ms)

16 32 64 128 256 512 1024 2048 6
Collective Size (MB)

Figure 12: ECN impact on performance: Allreduce comple-
tion time(ms) on 32 GPUs comparison with CTSW ECN
threshold changes. Baseline uses 5MB as both low and high
thresholds. A tighter threshold of 300KB low and 600KB high
leads to lower performance.

120
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rppi_rate=25, rp_hai_rate=250, rp_threshold=10 1
rp_rate_reduce_monitor_period=8 ¢
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Baseline defauk DCQCN Settings
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)
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Figure 13: Tuning DCQCN for A11toAll collective



04 TRANSPORT

Receiver based Congestion Control with Comms
Library

SENDER CPU proxy CPU proxy RECEIVER
Free RDMA write \ CTS) Complete Flush
Copy| Channel | pMAl ROMA T~ —RDMA [DMA[ Channel |°PY
Buffer NIC RDMA NIC Buffer
Compute Channel network Channel Compute
Buffer | =1 5. frer Buffer | | Buffer
—p s o® e o0 —
GPU HBM GPU HBM
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CONCLUSION

ToR topology with 3
Layer Clos helps
support large scale
with extensibility
and reliability

Enhanced ECMP and
TE deal with
persistent
congestion caused
by inefficient load
balancing

Collective Library
and Static carving of
buffers to deal with
momentary
congestion

Roofline
performance can be
achieved by Comms
Library and Network
Co-tuning



FUTURE QUESTIONS TO BE ANSWERED

Buffers:

Can we scale Al
Training with shallow
buffers switches
without sacrificing
on performance and
reliability ?

Meta’s current deployments
are with deep buffer switches
scaled deployments

operational ease without
sacrificing performance.

Routing evolution:
Can we come-up
with a generalized
load balancing
solution that is

operationally simple
?

If so will this approach with
Network / Switch Centric or
End-point custom transport
centric or will need both ?

High RTT:

Can large clusters to
scale gen Al models
involving large
network latencies
support efficient
training ?

Is a lossless approach still
feasible at this cable lengths ?

Fungibility:

Can we build
common networks
to support Ranking,
GenAl and Dist.

Inference Use-cases
2

These apps and technologies
have shared infrastructure for
years and the teams behind
them frequently work
together.
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