RDMA over Ethernet for Distributed Training at Meta Scale

Presented by Yang Zhou
Tue 10/14

Trend: ML workloads are going distributed

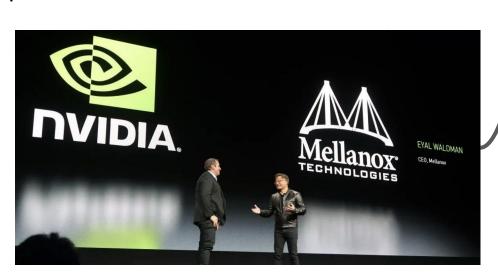
Larger and larger training scale

More disaggregated serving

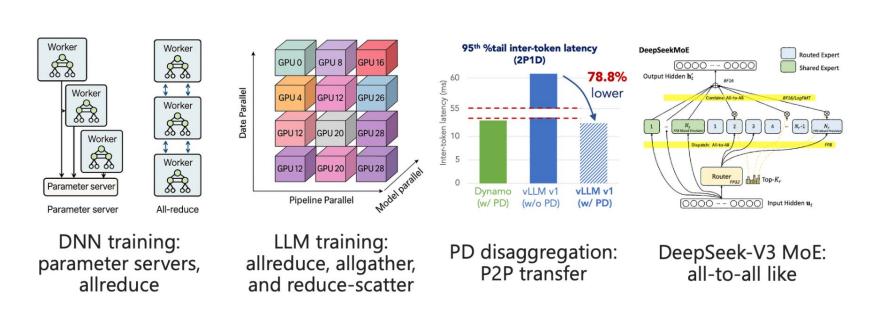
Massive expert parallelism in MoE

... as a result:

- NVL72, NVL144
- 800Gbps NIC, 102.4Tbps switch
- Co-packaged optics (CPO)



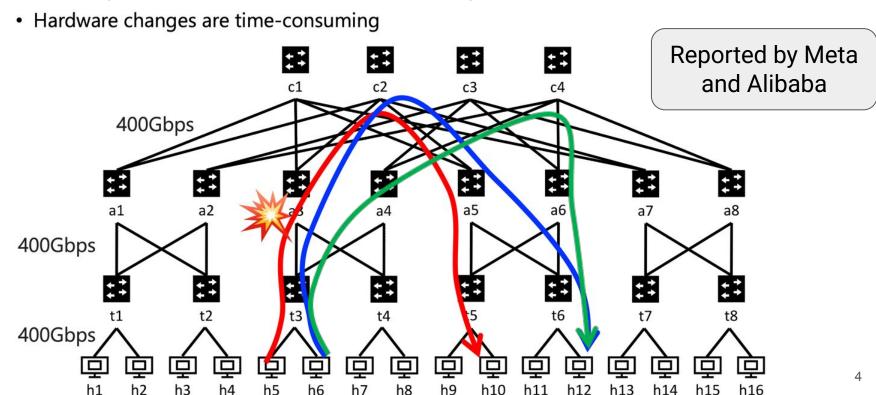
Fast Evolving ML Workloads



~2015 ~2020 2024 2025 Time

Slowly Evolving Networking

Host transport on RDMA NICs is hard to adapt to better suit ML workloads



Agenda

Overview of Our Solution

Hardware and Network Topology

Routing Evolution

Transport

Operations and Experiences

Conclusion and Future Considerations

Meta Al Training Evolution

DISTRIBUTED
TRAINING TO
GPU FULL SYNC
TRAINING

MODEL
COMPLEXITY AND
SCALE
EXPLOSION

AND
DATA
PARALLELISMS

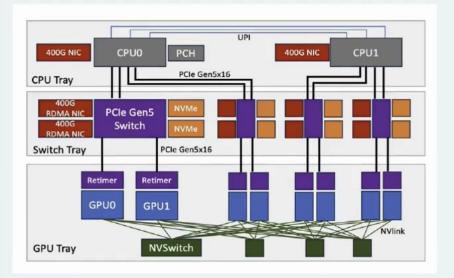
HIGH
BANDWIDTH &
LOW
PREDICTABLE
LATENCY

Our Production RDMA network...

PURPOSE BUILT FOR AI WORKLOADS ROCEV2
TRANSPORT WITH
PFC

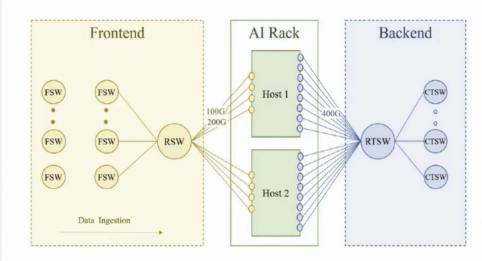
LARGE SCALE (O(100K)), MULTI-VENDOR DEPLOYMENT

O(10K) SIZE CLUSTERS



Dedicated Backend NIC per GPU

- · Grand Teton Open Compute Chassis
- Single Port 400G Backend NICs
- · 1 NIC to 1 GPU mapping
- · PCIe speed matches between GPU/ NIC



Separate RDMA Backend and Frontend Network

Helps us account for varied growth rates for GPU to GPU synchronization traffic vs Data Ingestion and supporting traffic.

Network Topology

- Dedicated Backend Network isolated from Frontend Network
- 3 Layer Clos
- ToR switches: Shallow Buffers
- Spine Switches: Deep Buffer switches with static carving buffers

Routing Solution

- Originally Static Routing
- Evolved to Enhanced ECMP hashing on Destination QP ID + Collectives Implementing flow multiplexing
- Traffic Engineering on First hop switches
- Future exploration:
 Flowlet load balancing

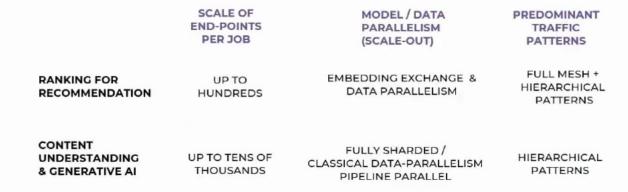
Congestion Control

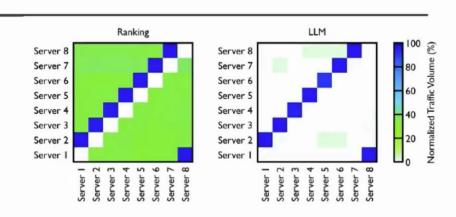
- DCQCN along with PFC 200G Networks
- Pivot away from DCQCN for 400G
- Use Collective library to limit Congestion

Operations and Perf Tuning

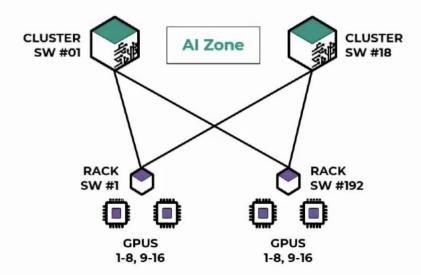
- Network and Communication library (NCCL) tuning
- Performance consistency
- Operational learnings to Scale

Learning #1: Scale and traffic patterns in Al Training





Al Zone: Built for Ranking Workloads



Rack

- 16 GPUs per rack
- Connected by RTSW Shallow Buffer Switches

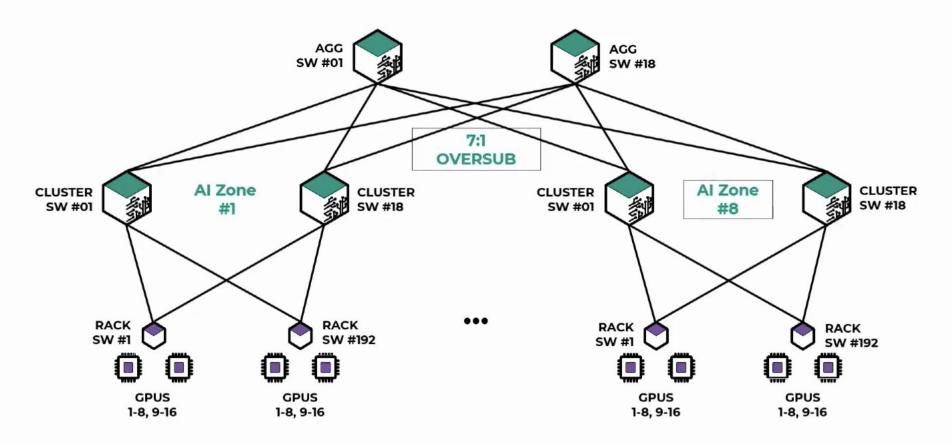
Al Zone

- Upto 18 CTSWs connect 256 racks forming ~4000 GPUs
- CTSW: Deep buffer switches with Virtual output queuing architecture

Full Bisection Bandwidth

 Needed for Ranking workloads with Full Mesh Network patterns

DC Scale Cluster for GenAl



ToR based 3 stage Clos Topology for Extensibility and Reliability

· ToR Architecture

- RTSW: Shallow buffer Switch running FBOSS
- 2 Servers per rack limits the switch failure domain
- Facilitates Usage of DACs for NIC to RTSW connector

Spine Switches:

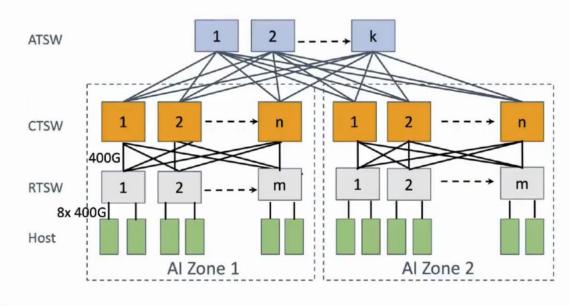
 Deep buffer switches with Virtual output queuing architecture

Al Zone

- Upto 18 CTSWs connect 256 racks forming ~4000
 GPUs
- Full bisection bandwidth

DC Scale

- ATSW switches connect up to 8 Al Zones
- Provides Oversubscribed bandwidth
- Large jobs with collectives suitable are placed
- Scheduler spreads job with Network topo awareness to support collective algorithm graph



Learning #2: Low Flow Entropy with Hierarchical Collectives

Avg. # of QPs per GPU
15
4
4
4

Number of Flows / active QPs per NIC 128 GPU Collective

TE Rollout Signal from Production: Ranking Cluster, AI Zone

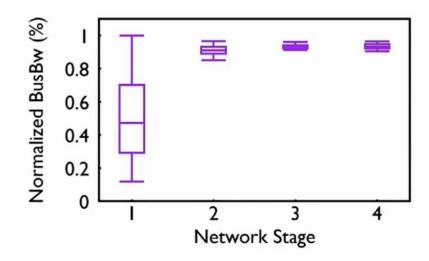
Bandwidth observed by All Reduce Kernel extracted based on Trace Duration observed over the years.

Stage1: Static Routing

Stage2: Under-Subscription 1:2

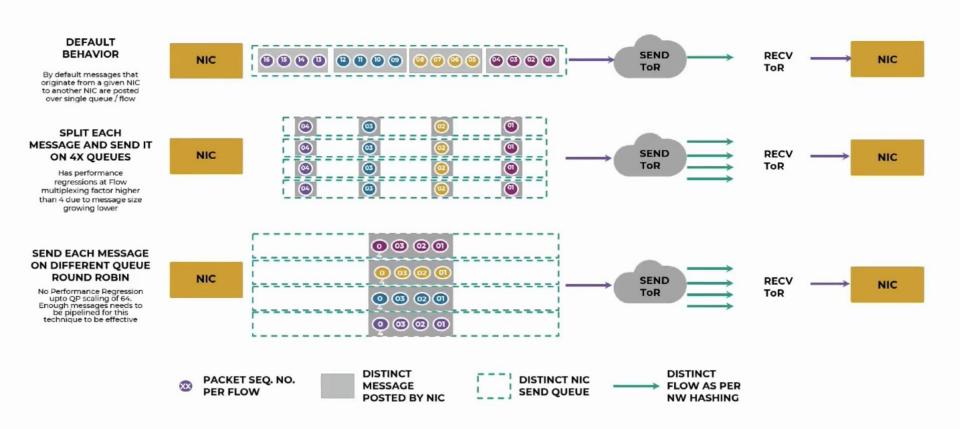
Stage3: TE Rollout

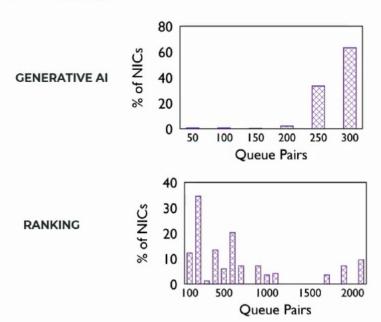
Stage4: Reduce under-subscription to 1:1.125



Improving ECMP with Flow Multiplexing

Example of Flow multiplexing of Factor 4 on Elephant flow worth 4 messages 4 pkts each

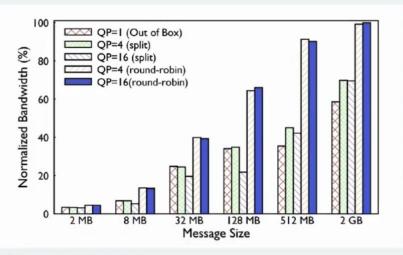




QP Scaling Impact

Applying QP Scaling = 4 for Ranking workloads

Applying QP Scaling = 16 for GenAl workloads



PERFORMANCE IMPACT

ECMP hashing with QP ID: Perf

QP=16 helped achieve roofline performance for hierarchal collectives

Learning #3: Variable Congestion Per Collective

Collectives	Buffer occupancy per leaf switch (MB)
AlltoAll(v)	65.6
AllReduce	13
AllGather	22.1
ReduceScatter	19.6

Cumulative Buffer Watermarks per RTSW 128 GPU Collective

Tuning DCQCN did not provide a net benefit

- Momentary congestion.
 - Original Approach: With DCQCN with 200G
 Networks
 - 2 not net-positive outcomes:
 - Low buffer utilization with perf regression in corner cases
 - Marginal perf benefits (if any) with higher buffer thresholds.

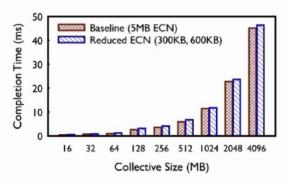


Figure 12: ECN impact on performance: Allreduce completion time(ms) on 32 GPUs comparison with CTSW ECN threshold changes. Baseline uses 5MB as both low and high thresholds. A tighter threshold of 300KB low and 600KB high leads to lower performance.

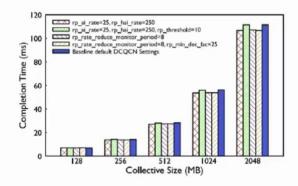
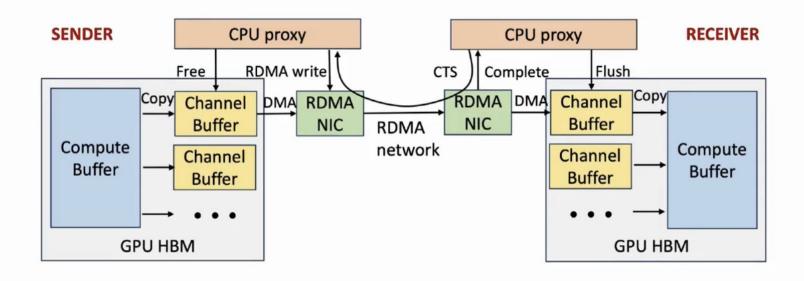


Figure 13: Tuning DCQCN for AlltoAll collective

Receiver based Congestion Control with Comms Library



ToR topology with 3 Layer Clos helps support large scale with extensibility and reliability Enhanced ECMP and TE deal with persistent congestion caused by inefficient load balancing Collective Library and Static carving of buffers to deal with momentary congestion Roofline performance can be achieved by Comms Library and Network Co-tuning

Buffers: Can we scale AI Training with shallow buffers switches without sacrificing on performance and reliability?

Meta's current deployments are with deep buffer switches scaled deployments operational ease without sacrificing performance. Routing evolution:
Can we come-up
with a generalized
load balancing
solution that is
operationally simple
?

If so will this approach with Network / Switch Centric or End-point custom transport centric or will need both?

High RTT: Can large clusters to scale gen Al models involving large network latencies support efficient training?

Is a lossless approach still feasible at this cable lengths?

Fungibility:
Can we build
common networks
to support Ranking,
GenAl and Dist.
Inference Use-cases
?

These apps and technologies have shared infrastructure for years and the teams behind them frequently work together.

THANK YOU

