.

Igczlzlxit;l§l

itin

VJZ
)

CREDITS:

Zhongjie Chen

Ziming Mao

ChonLam Lao

Shuo Yang

Pravein Govindan Kannan

Jiaqi Gao

Yilong Zhao

Yongji Wu

Kaichao You

Fengyuan Ren

Zhiying Xu

Costin Raiciu

Check-out: Ion Stoica

https://github.com /uccl- Gemini: for clearing my doubts

project/uccl

Microsoft power point for amazing design suggestions

QUESTIONS TO POUNDER UPON

e

%

"Control Coalescing," where decisions are made on 32K B chunks to save CPU cycles. While this improves
efficiency, how does this coarser granularity affect the system's ability to react to very rapid, sub-chunk-level
network congestion?

Design relies on the host CPU for the control plane. As NIC speeds increase to 800 Gbps or 1.6 Tbps, how
does the CPU requirement for UCCL scale? Is there a risk that the host CPU could become the new
bottleneck in the system?

Highlight that UCCL can solve the incast problem for workloads like Mixture-of-Experts (MoE) using
receiver-driven congestion control. Could you elaborate on how UCCL's software approach provides a
more effective or tunable solution for this compared to hardware-based congestion control mechanisms?

BACK GROUND:
TYPES OF
CONNECTIONS

Reliable Connection (RC): Too rigid to
evolve and hard to control with software
methods.

Unreliable Connection (UC): Just the
right amount of flexibility. The hardware
handles the data transfer part. Where as
software 1s free to explore control plane.

Unreliable Datagram (UD): Best to avoid
unless UC 1s not available. (comes with a
lot of complications!!)

THE CORE IDEA?

* You know your application requirements better than
‘one-size-fit’ solution that NIC offers.

« Hardware evolves slowly compared to software.

KNOWN
LIMITATIONS:
MOTIVATIONS!!

RECEIVER
DRIVEN CC FOR | 75
INCAST FLOW

APPLICATION
TRANSPORT | sz
DESIGN

INEFFICIENT | Teponemvine
0SS RECOVERY o

HETEROGENEOUS Cpiodkss
N | C (alibaba ref: 2.2)

PRIOR WORK

SMART NICS

Supports programming
capability

Remember: U know your
application data flow better!!

Similar to UCCL: Though
UCCL leverages CPU (better
usage of commodity hardware)

vv
‘
CPU-S

. Fa
a8 * * Flor tried, but for 100GB flows, we are dealing with

3.2TBs
« UCCL added support for multipathing

Application Tensor Buffer ML Applications
3

r 3

4. Reduce/Copy 1. Launch kernel 1. Allreduce()

[Transport Buffer] ﬁ Collective Library (e.g., NCCL)

2 DA paonc
RDMA NIC '

Figure 1. Collective communication over RDMA (receiver side).
The receiver directly receives data into the GPU memory (e.g.,
GPUDirect [27]); the sender side works similarly except that it will
additionally issue an RDMA write in step 2.

@, J

................. Controlheader [/ Datapayioad 77 Networktraffi App . Ucct engines (1, RX, Pacer)
Server ,;,”| ML Applications | connect()
= |20 g |ig]]E]
[el J | cPL2]‘\ ; | Collective Library (e.g., NCCL) | df‘egm'“(g)
- eregmr @
-LI:CIe slthch 1] [PCle SIW'tCh f.]' 'l |UCCL Layer (CC, LB, loss recovery)| Collective Library Send8 GJ Conn A: paths ﬁ ﬁ
" recv CC&LB states
([GPU1 | [_cpus D ' “[Re] [uc| [up]| [AF xOP | flush() <
e poll() Conn B
NC1 | [Nics - o , — 4 Comn Jj Jj
........... N._._._._._._._yq._._._._._. e et UCCL Plugin [* vy [QP][QP] QP] l | D
~—— Multipath Datacenter Network |

(a) UCCL architecture. (b) UCCL threading model.

Figure 2. Overview of UCCL extensible transport for GPU networking. We assume a common intra-server topology for GPU servers [22]
where individual PCle switches directly connect a few GPUs, NICs, and CPU, providing high-bandwidth data transfer among them.

IDEAS

_ o ~» Control header -* Data payload =* Network traffic
write_with_imm verb:

— —

imm_data (4B) CPU Packets CPU

| S | S

R NIC NIC
src_addr, dst_addr, len |GPU GPU

M— —

——

Figure 3. Leveraging RDMA write_with_imm to separate control
header and data payload for UC/RC.

UC — LIKE
P O I N T E D 0 U T P Faster than Splits packages
PREFERRED!! L i o MMIO --> e e
W H Y? « . ata transfer GPUDirect Wi c(;cl:les

. J) Y,

=» Control header = Data payload =* Network traffic

send verb sg_list:

Y

cpu_addr, 64B CPU

) —

gpu_addr, 8936B [GPU

—

NIC

9000B
MTU Packet

NIC

recv verb sg_list:

R

CPU

—

R

—

cpu_addr, 64B

GPU| gpu_addr, 10240B

Figure 4. Leveraging RDMA send/recv scatter-gather to separate
control header and data payload for UD.

UD — WHEN UC IS
NOW AVAILABLE
WHY?

(L0

MTU (memory

transfer unit) limits
size of data

il

Segmentation of data
managed by
application (u!!)

12

Consumes CPU
cycles for package
reassembly

HARNESSING MULTIPATH —
ECMP (EQUAL COST MULTI-PATH)

 UC & RC — Default 256 QP
« UD — 16

o Comes with caching problems
o Supports one to many connections

o Handling out of order packets

i UCIRC - - No reordering |
Dst |

tf S !
; G;»cu E GPU |
3 &1) =& |
:
__________________________ Multipath —— =7~ o e e e
ub Src QPs s Dst QPs Scattered memcpy :

TR

—lr

—{4 -, .

5 S

Figure 5. Multipathing and handling packet reordering in UCCL.

—©— 60QPs —4— 3.75KQPs —<©— 15K QPs —%— 60K QPs

Bus BW (GB/s)

T I I 1
1 4 16 64 256 1024
Data Size (MB)

(a) For RC QPs.

Line Rate

50

Bus BW (GB/s)
N
o

0 1 T I I T 1
1 4 16 64 256 1024
Data Size (MB)

(b) For UC QPs.

RUN TO
COMPLETION | efsimnime-
EXECUTION

CONNECTION | ronzsar
SPLITTING

CONTROL
COALESCING

Chunking 32K B
(default) so decision
can be taken for
larger chunks

Saving CPU cycles!!
Reducing overhead

CHAINED
POSTING — UD
SPECIFIC

MMIO 1s involved so
CPU cycles are
needed

Smart way to avoid,
make chain of 32
verbs!!

CONGESTION
SIGNAL

Since we can’t use NIC level
CC 1n control plane control.
We need to rely on other
methods.

One way is to Use RTT
(round trip time)

SOFTWARE CONTROL

A

Challenges?? Solution??

Time 1n processing 1s high Dedicated high priority QP for RTT

Delayed response to congestion? CPU polls its Completion queue.

STARTED WITH:;

“XTENSIBILITY

ASE STUDY

PACKET SPRAYING

* We need an effective way to address flow collisions in
ML workloads
 How?
o Using multiple paths effectively
o Difficult for hardware, easily manageable for UCCL.

RECEIVER DRIVEN
CONGESTION CONTROL

» Here the problem with MOE faced by
Deepseek can be addressed.

* Where we can implement the receiver
Driven Congestion control using UCCL

EFFICIENT LOSS
RECOVERY

e Nic Default to Go back N

-use
m"_-Od.use:z
"selection a .
B e 1 * Better loss recovery with software!!
jer_ob.select=1
ntext.scene.objects.actiw
M "Selected” + str(modifies -
Sirror_ob.select = 0
bpy . context. selected_obM
) .tta.objects[one.name] .seM

wrint(“please select exacthy ™

_ OPERATOR CLASSES -=~

THANK YOU!

QUESTIONS!!

e

%

"Control Coalescing," where decisions are made on 32K B chunks to save CPU cycles. While this improves
efficiency, how does this coarser granularity affect the system's ability to react to very rapid, sub-chunk-level
network congestion?

Design relies on the host CPU for the control plane. As NIC speeds increase to 800 Gbps or 1.6 Tbps, how
does the CPU requirement for UCCL scale? Is there a risk that the host CPU could become the new
bottleneck in the system?

Highlight that UCCL can solve the incast problem for workloads like Mixture-of-Experts (MoE) using
receiver-driven congestion control. Could you elaborate on how UCCL's software approach provides a
more effective or tunable solution for this compared to hardware-based congestion control mechanisms?

	Default Section
	Slide 1: UCCL: An Extensible Software Transport Layer for GPU Networking
	Slide 2: Credits:
	Slide 3: Questions to pounder upon
	Slide 4: Back Ground: Types of connections
	Slide 5: The Core IDEA?
	Slide 6: Known limitations: Motivations!!
	Slide 7: Receiver driven CC for incast flow
	Slide 8: Application Transport Design
	Slide 9: Inefficient loss recovery
	Slide 10: Heterogeneous NIC
	Slide 11: Prior Work
	Slide 12: Smart NICS
	Slide 13: CPU-s
	Slide 14: UCCL Design
	Slide 15: Ideas
	Slide 16: UC → Like pointed out, preferred!! WHY?
	Slide 17: UD → When UC is now available Why?
	Slide 18: Harnessing Multipath → ECMP (equal cost multi-path)
	Slide 19: Towards Efficient Software transport
	Slide 20: Run to completion Execution
	Slide 21: Connection Splitting
	Slide 22: Control coalescing
	Slide 23: Chained posting → UD specific
	Slide 24: Congestion Signal
	Slide 25: Software control
	Slide 26: Addressing problems We started with: Extensibility case study
	Slide 27: Packet spraying
	Slide 28: Receiver Driven Congestion control
	Slide 29: Efficient loss Recovery

	Untitled Section
	Slide 30: Thank you!
	Slide 31: Questions?
	Slide 32: Questions!!

