
UCCL: AN
EXTENSIBLE

SOFTWARE
TRANSPORT

LAYER FOR
GPU NETWORKING

By: Lekhit Nitin

Borole

CREDITS: Yang Zhou

Zhongjie Chen

Ziming Mao

ChonLam Lao

Shuo Yang

Pravein Govindan Kannan

Jiaqi Gao

Yilong Zhao

Yongji Wu

Kaichao You

Fengyuan Ren

Zhiying Xu

Costin Raiciu

Ion Stoica

Gemini: for clearing my doubts

Microsoft power point for amazing design suggestions

Check-out:

https://github.com/uccl-

project/uccl

QUESTIONS TO POUNDER UPON

"Control Coalescing," where decisions are made on 32KB chunks to save CPU cycles. While this improves
efficiency, how does this coarser granularity affect the system's ability to react to very rapid, sub-chunk-level

network congestion?

Design relies on the host CPU for the control plane. As NIC speeds increase to 800 Gbps or 1.6 Tbps, how
does the CPU requirement for UCCL scale? Is there a risk that the host CPU could become the new

bottleneck in the system?

Highlight that UCCL can solve the incast problem for workloads like Mixture-of-Experts (MoE) using
receiver-driven congestion control. Could you elaborate on how UCCL's software approach provides a

more effective or tunable solution for this compared to hardware-based congestion control mechanisms?

BACK GROUND:

TYPES OF

CONNECTIONS

Reliable Connection (RC): Too rigid to
evolve and hard to control with software
methods.

Unreliable Connection (UC): Just the
right amount of flexibility. The hardware
handles the data transfer part. Where as
software is free to explore control plane.

Unreliable Datagram (UD): Best to avoid
unless UC is not available. (comes with a
lot of complications!!)

THE CORE IDEA?

• You know your application requirements better than

‘one-size-fit’ solution that NIC offers.

• Hardware evolves slowly compared to software.

KNOWN

LIMITATIONS:

MOTIVATIONS!!

RECEIVER

DRIVEN CC FOR

INCAST FLOW

Deepseek MOE and

average exceeding 10X

standard workload.

APPLICATION

TRANSPORT

DESIGN

Add reliability to things

that actually need it!!

INEFFICIENT

LOSS RECOVERY

The problem with go-

back-N (Limits of

SRAM)

HETEROGENEOUS

NIC

Reduces bandwidth by

up to 33X says

(alibaba ref: 2.2)

PRIOR WORK

SMART NICS Supports programming
capability

Remember: U know your
application data flow better!!

Similar to UCCL: Though
UCCL leverages CPU (better
usage of commodity hardware)

CPU-S

• Flor tried, but for 100GB flows, we are dealing with

3.2TBs

• UCCL added support for multipathing

UCCL DESIGN

IDEAS

UC → LIKE
POINTED OUT,
PREFERRED!!
WHY?

It takes care of
data transfer

Faster than
MMIO -->
GPUDirect

Splits packages
and reassemble
without CPU

cycles

UD → WHEN UC IS
NOW AVAILABLE
WHY?

MTU (memory

transfer unit) limits
size of data

Segmentation of data

managed by
application (u!!)

Consumes CPU

cycles for package
reassembly

HARNESSING MULTIPATH →
ECMP (EQUAL COST MULTI-PATH)

• UC & RC → Default 256 QP

• UD → 16

o Comes with caching problems

o Supports one to many connections

o Handling out of order packets

TOWARDS

EFFICIENT

SOFTWARE

TRANSPORT

RUN TO

COMPLETION

EXECUTION

Deficit round robin →

avoid starvation.

CONNECTION

SPLITTING

Partition 256 QP

(default) among thread

+ cores

CONTROL

COALESCING

Chunking 32KB

(default) so decision

can be taken for

larger chunks

Saving CPU cycles!!

Reducing overhead

CHAINED

POSTING → UD

SPECIFIC

MMIO is involved so

CPU cycles are

needed

Smart way to avoid,

make chain of 32

verbs!!

CONGESTION

SIGNAL

Since we can’t use NIC level

CC in control plane control.

We need to rely on other

methods.

One way is to Use RTT

(round trip time)

SOFTWARE CONTROL

Challenges??
Time in processing is high

Delayed response to congestion?

Solution??
Dedicated high priority QP for RTT

CPU polls its Completion queue.

ADDRESSING
PROBLEMS WE
STARTED WITH:
EXTENSIBILITY
CASE STUDY

PACKET SPRAYING

• We need an effective way to address flow collisions in

ML workloads

• How?

o Using multiple paths effectively

o Difficult for hardware, easily manageable for UCCL.

RECEIVER DRIVEN
CONGESTION CONTROL

• Here the problem with MOE faced by

Deepseek can be addressed.

• Where we can implement the receiver

Driven Congestion control using UCCL

EFFICIENT LOSS
RECOVERY
• Nic Default to Go back N

• Better loss recovery with software!!

THANK YOU!

QUESTIONS?

QUESTIONS!!

"Control Coalescing," where decisions are made on 32KB chunks to save CPU cycles. While this improves
efficiency, how does this coarser granularity affect the system's ability to react to very rapid, sub-chunk-level

network congestion?

Design relies on the host CPU for the control plane. As NIC speeds increase to 800 Gbps or 1.6 Tbps, how
does the CPU requirement for UCCL scale? Is there a risk that the host CPU could become the new

bottleneck in the system?

Highlight that UCCL can solve the incast problem for workloads like Mixture-of-Experts (MoE) using
receiver-driven congestion control. Could you elaborate on how UCCL's software approach provides a

more effective or tunable solution for this compared to hardware-based congestion control mechanisms?

	Default Section
	Slide 1: UCCL: An Extensible Software Transport Layer for GPU Networking
	Slide 2: Credits:
	Slide 3: Questions to pounder upon
	Slide 4: Back Ground: Types of connections
	Slide 5: The Core IDEA?
	Slide 6: Known limitations: Motivations!!
	Slide 7: Receiver driven CC for incast flow
	Slide 8: Application Transport Design
	Slide 9: Inefficient loss recovery
	Slide 10: Heterogeneous NIC
	Slide 11: Prior Work
	Slide 12: Smart NICS
	Slide 13: CPU-s
	Slide 14: UCCL Design
	Slide 15: Ideas
	Slide 16: UC → Like pointed out, preferred!! WHY?
	Slide 17: UD → When UC is now available Why?
	Slide 18: Harnessing Multipath → ECMP (equal cost multi-path)
	Slide 19: Towards Efficient Software transport
	Slide 20: Run to completion Execution
	Slide 21: Connection Splitting
	Slide 22: Control coalescing
	Slide 23: Chained posting → UD specific
	Slide 24: Congestion Signal
	Slide 25: Software control
	Slide 26: Addressing problems We started with: Extensibility case study
	Slide 27: Packet spraying
	Slide 28: Receiver Driven Congestion control
	Slide 29: Efficient loss Recovery

	Untitled Section
	Slide 30: Thank you!
	Slide 31: Questions?
	Slide 32: Questions!!

