
Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay,
and Hari Balakrishnan, MIT CSAIL (2019)

Presented by Neha

Trends : Faster Networks

● But today’s operating systems add significant overheads to I/O

The Rise of Kernel Bypass

● Dedicatebusy-spinning cores
● Applications directly poll NIC queues
● Enables higher throughput and lower latency

Trends: Slowing of Moore’s Law

● CPUs only utilized 10-66% today

● CPU efficiency becomes increasingly important

Increased demand for servers Increased demand for Energy

Load Variation Makes Efficiency Challenging

● Load variation for datacenter workloads
○ Days: diurnal cycles
○ Microseconds: packet bursts, thread bursts

● Peak load requires significantly more cores than average load

The Need for Multiplexing

• Two types of applications: latency-sensitive and batch processing

• Pack both on the same server – Bing does this on over 90,000 servers

Multiplexing with Existing Approaches

- Memcached + batch processing application

Multiplexing with Existing Approaches

No existing approaches provides high network
performance and high CPU efficiency.

Goal

● Reconcile the tradeoff between high CPU efficiency and
network performance

● Reallocate cores across applications at microsecond
granularity

Challenges of Fast Reallocations

● Application-level metrics are too slow

● Multiple sources of load: packets and threads

● Overhead of reallocation: reconfiguring hardware is too slow

● Existing systems don’t address these challenges

Shenango’s Contributions

Efficient Core Allocation Algorithm

● Detects when an application needs more CPU cores
● Decision based on thread latency and packet queueing delay

IOKernel Responsibilities

● Steers incoming packets in software
● Allocates or releases cores dynamically
● Core reallocation latency: ≈ 5 μs

Optimizations

● Cache-aware core selection - keeps related threads on nearby cores
● Load-balances TCP and other protocol handling across cores

Shenango’s Design

How many cores should the IOKernel Allocate?

Compute Congestion

Occurs when granting an additional core allows an application to finish faster.

Goal:

● Allocate the minimal number of cores required per application
● Avoid compute congestion while optimizing CPU utilization

Congestion Detection Algorithm

Queued threads or packets indicate congestion

Any packets or threads queued since the last run (5 μs ago)?

● Grant one more core

Ring-buffers enable an efficient check

● head_t=n-1 > tail_t=n implies congestion

Implementation

IOKernel

● Uses DPDK 18.11

Runtime

● Supports UDP and TCP

● Provides C++ and Rust bindings

Codebase

● ~13,000 lines of code total

Evaluation Questions

● How well does Shenango reconcile the tradeoff between CPU efficiency and network
performance?

● How does Shenango respond to sudden bursts in load?

● How do Shenango’s individual mechanisms contribute to its overall performance?

Experimental Setup

● 1 server + 6 clients, 10 Gbits/s NICs
● Clients run over open-loop load generator built on Shenango

○ Requests follow Poisson arrivals, use TCP

CPU Efficiency and Network Performance with Memcached

• Memcached +batch processing application

• Shenango matches ZygOS’s tail latency with high CPU efficiency

Shenango is resilient to Bursts in Load

● TCP requests with 1 μs synthetic work + batch processing
application

● Increase or decrease the load every 1s

Reallocates cores
10,000x as often

Conclusion

● Shenango reconciles the tradeoff between low tail latency
and high CPU efficiency

● Reallocates cores at microsecond granularity
○ – Efficient congestion detection algorithm
○ – IOKernel: allocates cores and steers packets in software

Questions?

