Shenango: Achieving High CPU Efficiency for

Latency-sensitive Datacenter Workloads

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay,
and Hari Balakrishnan, MIT CSAIL (2019)

Presented by Neha

3 o —-= F T\ % T FE =
: = [ICDAVIS
SITITS —=- =" (WA "/ _\ A I~y

Trends : Faster Networks

2008 2018
Latency: ~100 ps 20x , Latency: ~5 ps P
Throughput: 1 Gbits/s 100x Throughput: 100 Gbits/s ' j

e But today’s operating systems add significant overheads to 1/O

The Rise of Kernel Bypass

Traditional Approach Kernel Bypass

Application ‘072" | Application

CH‘TI% 1: lcl’}e : (Kernelw & &
" EI é é é NIC packetqueuE E E E

NIC packet queues

Kernel

e Dedicatebusy-spinning cores
e Applications directly poll NIC queues
e Enables higher throughputand lower latency

Trends: Slowing of Moore’s Law

Increased demand for servers Increased demand for Energy

e CPUs only utilized 10-66% today

e CPU efficiency becomes increasingly important

Load Variation Makes Efficiency Challenging

e Load variation for datacenter workloads
o Days: diurnal cycles
o Microseconds: packet bursts, thread bursts

e Peak load requires significantly more cores than average load

Internet traffic trends for AS37451 (CongoTelecom)
Traffic volume over the selected time period

e Total Traffic ¢ HTTP em» Previous 7 days

Fri, Mar 10 Sat, Mar 11 Sun, Mar 12 Mon, Mar 13 Tue, Mar 14 Wed, Mar 15 Thu, Mar 16

Cloudflare Radar Last 7 days | Mar 16 2023 19:41 UTC

The Need for Multiplexing

» Two types of applications: latency-sensitive and batch processing

* Pack both on the same server — Bing does this on over 90,000 servers
spark® T
. b Bing

a) 9 4
- Spork

Multiplexing with Existing Approaches

- Memcached + batch processing application

‘ e

client server

Multiplexing with Existing Approaches

------- Linux = Goal —- ZygOS

400 1

300 1 ‘ = >
g poor throughput = .
100

100
751
50 1
251

Batch Ops/s 99.9% Latency (us)
o

Memcached Offered Load (million requests/s)

No existing approaches provides high network
performance and high CPU efficiency.

Goal

e Reconcile the tradeoff between high CPU efficiency and

network performance
e Reallocate cores across applications at microsecond

granularity

Challenges of Fast Reallocations
e Application-level metrics are too slow
e Multiple sources of load: packets and threads
e Overhead of reallocation: reconfiguring hardware is too slow

e Existing systems don’t address these challenges

Shenango’s Contributions

Efficient Core Allocation Algorithm

e Detects when an application needs more CPU cores
e Decision based on thread latency and packet queueing delay

IOKernel Responsibilities

e Steers incoming packets in software
e Allocates or releases cores dynamically
e Core reallocation latency: = 5 ys

Optimizations

e Cache-aware core selection - keeps related threads on nearby cores
e Load-balances TCP and other protocol handling across cores

Shenango’s Design

work stealing active
core idle core
app \‘
thread
runtime |
library
s Kernel
' queues BIC
| L~
|IOKernel

12

NIC queues

How many cores should the |IOKernel Allocate?

active
. core

7 idle core

Appl | App 2
app PP ; ‘- PP
thread

runtime | g-:]—}]
Sz

..........................

2 =
library —Hi e— £ = ' A £ att
packet

queues @ periodic
algorithm

rainS
@ packet arrival ~J |~
and no cores

IOKernel

13

NIC queues ~

Compute Congestion

Occurs when granting an additional core allows an application to finish faster.
Goal:

e Allocate the minimal number of cores required per application
e Avoid compute congestion while optimizing CPU utilization

active core

App 1

Slle] =

new thread

app thread

Congestion Detection Algorithm

Queued threads or packets indicate congestion

Any packets or threads queued since the last run (5 us ago)?
e Grant one more core

Ring-buffers enable an efficient check

e head t=n-1 > tail t=n implies congestion

, tail,,
active core
App 1
not congested
runqueue |+ éb G[I}D < tail,_,
packet i E E H E
queues head,_, head., 15

Implementation

IOKernel
e Uses DPDK 18.11
Runtime

e Supports UDP and TCP

e Provides C++ and Rust bindings
Codebase

e ~13,000 lines of code total

Evaluation Questions

e How well does Shenango reconcile the tradeoff between CPU efficiency and network
performance?

e How does Shenango respond to sudden bursts in load?

e How do Shenango’s individual mechanisms contribute to its overall performance?

Experimental Setup

e 1 server + 6 clients, 10 Gbits/s NICs

e Clients run over open-loop load generator built on Shenango
o Requests follow Poisson arrivals, use TCP

System Kernel Bypass Lightweight Balancing
Networking Threading Interval
Linux X X 4000 ps
ZygOSs (SOSP ’17) X N/A
Arachne (OSDI ’18) X 50000 ps
Shenango 5 us

CPU Efficiency and Network Performance with Memcached

 Memcached +batch processing application

al &)

client server

~ Linux --- Arachne Shenango ZygOS

cack I 1 i kernel bypass i
[@ networking M
100 4 ‘V\l

Batch Ops/s 99.9% Latency (us)

Memcached Offered Load (million requests/s)

« Shenango matches ZygOS's tail latency with high CPU efficiency

Shenango is resilient to Bursts in Load

e TCP requests with 1 ys synthetic work + batch processing

application

Increase or decrease the load every 1s

99.9% Latency (us) Offered Load

(million requests/s)

1000 A
750
500

250

o
1

--- Arachne — Shenango

O=NWHO
PR T T |

0 5 10 15
Time (s)
-
+ i @ | 1590 ms
I
CHE £ L T ~
debgpd 1,]
0 5 _ 10 15

Reallocates cores
10,000x as often

Conclusion

e Shenango reconciles the tradeoff between low tail latency
and high CPU efficiency

e Reallocates cores at microsecond granularity

o — Efficient congestion detection algorithm
o — |OKernel: allocates cores and steers packets in software

Questions?

