

Snap: a Microkernel Approach to Host
Networking

Qianqian Tan

Snap: a Microkernel Approach to Host
Networking

Snap: a Microkernel Approach to Host
Networking

Authors

Michael Marty   Marc de Kruijf   Jacob
Adriaens
Christopher Alfeld   Sean Bauer   Carlo Contavalli
Mike Dalton   Nandita Dukkipati  William C. Evans
Steve Gribble   Nicholas Kidd   Roman
Kononov
Gautam Kumar   Carl Mauer   Emily Musick
Lena Olson   Mike Ryan   Erik Rubow
Kevin Springborn   Paul Turner   Valas Valancius
Xi Wang   Amin Vahdat

Authors

Michael Marty   Marc de Kruijf   Jacob
Adriaens
Christopher Alfeld   Sean Bauer   Carlo Contavalli
Mike Dalton   Nandita Dukkipati  William C. Evans
Steve Gribble   Nicholas Kidd   Roman
Kononov
Gautam Kumar   Carl Mauer   Emily Musick
Lena Olson   Mike Ryan   Erik Rubow
Kevin Springborn   Paul Turner   Valas Valancius
Xi Wang   Amin Vahdat

Slides largely borrowed from the SOSP talk
https://www.youtube.com/watch?v=S2YJY398oZk

Quick look

● Snap:Framework for packet processing in software

○ Goals: Performance and Deployment Velocity

○ Technique: Microkernel-inspired userspace approach

Quick look

● Snap:Framework for packet processing in software

○ Goals: Performance and Deployment Velocity

○ Technique: Microkernel-inspired userspace approach

● Supports multiple use cases

○ Andromeda: Network virtualization for Google Cloud Platform [NSDI 2018]

○ Espresso: Edge networking [SIGCOMM 2017]

○ Maglev: L4 load balancer [NSDI’16]

○ New: High-performance host communication with “Pony Express”

● 3x throughput efficiency (vs kernel TCP), 5MIOPS, and weekly releases

Part 1: Motivation

Motivation

● Growing performance-demanding packet processing needs at Google

● The ability to rapidly develop and deploy new features is just as important!

Monolithic (Linux) Kernel
Deployment Velocity:

● Smaller pool of software developers

● More challenging development environment

● Must drain and reboot a machine to roll out new

version

● Typically months to release new feature

Monolithic (Linux) Kernel
Deployment Velocity:

● Smaller pool of software developers

● More challenging development environment

● Must drain and reboot a machine to roll out new

version

● Typically months to release new feature

Performance:

● Overheads from system calls,fine-grained

synchronization, interrupts, and more.

LibraryOS and OS Bypass
Networking logic in application binaries

Examples: Arrakis, mTCP, IX, ZygOS, and more

Deployment Velocity:

● Difficult to release changes to the fleet

● App binaries may go months between releases

Performance:

● Can be very fast

● But typically requires spin-polling in every application

● Benefits of centralization (i.e.,scheduling) lost

● Delegates all policy to NIC

Microkernel Approach
Hoists functionality to a separate userspace process

Deployment Velocity:

● Decouples release cycles from application and kernel binaries

● Transparent upgrade with iterative state transfer

Performance:

● Fast! Leverages kernel bypass and many-core CPUs

● Maintains centralization of a kernel

○ Can implement rich scheduling/multiplexing policies

Microkernel Approach
Hoists functionality to a separate userspace process

Deployment Velocity:

● Decouples release cycles from application and kernel binaries

● Transparent upgrade with iterative state transfer

Performance:

● Fast! Leverages kernel bypass and many-core CPUs

● Maintains centralization of a kernel

○ Can implement rich scheduling/multiplexing policies

Part 2: Design

Snap Architecture

Snap Architecture Snap engine

● Key dataplane element

● Implements packet

processing piplines

● Unit of CPU scaling

Snap engines implement a

Run() menthod invoke by

Engine Threads

Principle synchronization:

● No blocking locks

Snap Engine

Snap Engine Scheduling

Snap Engine Scheduling Modes

Snap Engine Scheduling Modes
Dedicated Cores

● Static provisioning of N cores to run engines.

○ Fair share these N cores across engines.

● Simple and best for some situations.

Snap Engine Scheduling Modes
Dedicated Cores

● Static provisioning of N cores to run engines.

○ Fair share these N cores across engines.

● Simple and best for some situations.

● Provisioning for the worst-case is wasteful

● Provisioning for the average case leads to high tail latency

Snap Engine Scheduling Modes
Spreading Engines

● Bind each engine to a unique thread

● Threads scheduled on-demand based on interrupts triggered from NIC or

application

● Leverages new micro-quanta kernel scheduling class for tighter latency

Snap Engine Scheduling Modes
Spreading Engines

● Bind each engine to a unique thread

● Threads scheduled on-demand based on interrupts triggered from NIC or

application

● Leverages new micro-quanta kernel scheduling class for tighter latency

● Can provide lowest tail latency

● Scheduling pathologies and overheads

Snap Engine Scheduling Modes
Compacting Engines

● Compacts engines to as few cores as possible

● Periodic polling of queuing delays to re-balance engines to more cores

Snap Engine Scheduling Modes
Compacting Engines

● Compacts engines to as few cores as possible

● Periodic polling of queuing delays to re-balance engines to more cores

● Can provide best CPU efficiency.

● Timely detection of queue build-up.

High Performance Communication
Pony Express Communication Stack

● Implement a full-fledged reliable transport and interface

○ RDMA-like operation interface to applications

○ Two-sided operations for classic RPC

○ One-sided (pseudo RDMA) operations for avoiding invocation of

application thread scheduler

○ Custom one-sided operations to avoid shortcomings of RDMA (i.e.,

pointer chase over fabric)

○ Custom transport and delay-based congestion control (Timely/Swift)

High Performance Communication
Pony Express Communication Stack

Evaluation: Ping-pong latency

Evaluation:Throughput

Evaluation: Comparison with RDMA
● Switching to Pony Express “doubled the production

performance of the data analytics service”.

● Stringent RDMA rate limits applied to prevent NIC cache

overflow, and ensuing PFCs.

● Could be disabled with Pony Express.

Thank you!
Q & A

