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Slides largely borrowed from the SOSP talk 
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Quick look 

● Snap:Framework for packet processing in software 

○ Goals: Performance and Deployment Velocity

○ Technique: Microkernel-inspired userspace approach

● Supports multiple use cases

○ Andromeda: Network virtualization for Google Cloud Platform [NSDI 2018]

○ Espresso: Edge networking [SIGCOMM 2017]

○ Maglev: L4 load balancer [NSDI’16]

○ New: High-performance host communication with “Pony Express”

● 3x throughput efficiency (vs kernel TCP), 5MIOPS, and weekly releases



 

Part 1: Motivation



 

Motivation 

● Growing performance-demanding packet processing needs at Google

● The ability to rapidly develop and deploy new features is just as important!
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Deployment Velocity:

● Smaller pool of software developers

● More challenging development environment

● Must drain and reboot a machine to roll out new 

version

● Typically months to release new feature 



 

Monolithic (Linux) Kernel
Deployment Velocity:

● Smaller pool of software developers

● More challenging development environment

● Must drain and reboot a machine to roll out new 

version

● Typically months to release new feature 

Performance:

● Overheads from system calls,fine-grained 

synchronization, interrupts, and more.



 

LibraryOS and OS Bypass
Networking logic in application binaries 

Examples: Arrakis, mTCP, IX, ZygOS, and more

Deployment Velocity:

● Difficult to release changes to the fleet

● App binaries may go months between releases

Performance:

● Can be very fast

● But typically requires spin-polling in every application

● Benefits of centralization (i.e.,scheduling) lost

● Delegates all policy to NIC



Microkernel Approach
Hoists functionality to a separate userspace process

Deployment Velocity:

● Decouples release cycles from application and kernel binaries 

● Transparent upgrade with iterative state transfer

Performance:

● Fast! Leverages kernel bypass and many-core CPUs 

● Maintains centralization of a kernel

○ Can implement rich scheduling/multiplexing policies
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Part 2: Design



Snap Architecture



Snap Architecture Snap engine

● Key dataplane element

● Implements packet 

processing piplines

● Unit of CPU scaling

Snap engines implement a 

Run() menthod invoke by 

Engine Threads

Principle synchronization:

● No blocking locks



Snap Engine
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Snap Engine Scheduling Modes
Dedicated Cores

● Static provisioning of N cores to run engines. 

○ Fair share these N cores across engines.

● Simple and best for some situations.



Snap Engine Scheduling Modes
Dedicated Cores

● Static provisioning of N cores to run engines. 

○ Fair share these N cores across engines.

● Simple and best for some situations.

● Provisioning for the worst-case is wasteful

● Provisioning for the average case leads to high tail latency



Snap Engine Scheduling Modes
Spreading Engines

● Bind each engine to a unique thread

● Threads scheduled on-demand based on interrupts triggered from NIC or 

application

● Leverages new micro-quanta kernel scheduling class for tighter latency



Snap Engine Scheduling Modes
Spreading Engines

● Bind each engine to a unique thread

● Threads scheduled on-demand based on interrupts triggered from NIC or 

application

● Leverages new micro-quanta kernel scheduling class for tighter latency

● Can provide lowest tail latency

● Scheduling pathologies and overheads
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● Compacts engines to as few cores as possible 

● Periodic polling of queuing delays to re-balance engines to more cores



Snap Engine Scheduling Modes
Compacting Engines

● Compacts engines to as few cores as possible 

● Periodic polling of queuing delays to re-balance engines to more cores

● Can provide best CPU efficiency.

● Timely detection of queue build-up.



High Performance Communication
Pony Express Communication Stack

● Implement a full-fledged reliable transport and interface

○ RDMA-like operation interface to applications

○ Two-sided operations for classic RPC

○ One-sided (pseudo RDMA) operations for avoiding invocation of 

application thread scheduler

○ Custom one-sided operations to avoid shortcomings of RDMA (i.e., 

pointer chase over fabric)

○ Custom transport and delay-based congestion control (Timely/Swift)



High Performance Communication
Pony Express Communication Stack



Evaluation: Ping-pong latency



Evaluation:Throughput



Evaluation: Comparison with RDMA
● Switching to Pony Express “doubled the production 

performance of the data analytics service”.

● Stringent RDMA rate limits applied to prevent NIC cache 

overflow, and ensuing PFCs.

● Could be disabled with Pony Express.



Thank you!
Q & A


