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Slides largely borrowed from the SOSP talk
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Quick look

e Snap:Framework for packet processing in software
o Goals: Performance and Deployment Velocity

o Technique: Microkernel-inspired userspace approach



Quick look

e Supports multiple use cases

o Andromeda: Network virtualization for Google Cloud Platform [NSDI 2018]
o Espresso: Edge networking [SIGCOMM 2017]

o Maglev: L4 load balancer [NSDI’16]

o New: High-performance host communication with “Pony Express”

e 3x throughput efficiency (vs kernel TCP), 5SMIOPS, and weekly releases



Part 1: Motivation



Motivation

e Growing performance-demanding packet processing needs at Google

e The ability to rapidly develop and deploy new features is just as important!



Monolithic (Linux) Kernel

Deployment Velocity:
e Smaller pool of software developers

e More challenging development environment
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Monolithic (Linux) Kernel
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LibraryOS and OS Bypass

Networking logic in application binaries

Examples: Arrakis, mTCP, IX, ZygOS, and more
Deployment Velocity:

e Difficult to release changes to the fleet

e App binaries may go months between releases
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Performance:

e Can be very fast

e But typically requires spin-polling in every application
e Benefits of centralization (i.e.,scheduling) lost

Delegates all policy to NIC

NIC




Microkernel Approach

Hoists functionality to a separate userspace process
Deployment Velocity:
e Decouples release cycles from application and kernel binaries
e Transparent upgrade with iterative state transfer
Performance:
e Fast! Leverages kernel bypass and many-core CPUs
e Maintains centralization of a kernel

o Can implement rich scheduling/multiplexing policies



Microkernel Approach

Hoists functionality to a separate userspace pr:
Deployment Velocity:

e Decouples release cycles from application

e Transparent upgrade with iterative state tre
Performance:

e Fast! Leverages kernel bypass and many-¢

e Maintains centralization of a kernel
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o Can implement rich scheduling/multiplexing policies




Part 2: Design



Snap Architecture
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off-host controllers

OS-bypass NIC

Snap engine
e Key dataplane element
e Implements packet
processing piplines

e Unit of CPU scaling

Snap engines implement a
Run() menthod invoke by
Engine Threads

Principle synchronization:

e No blocking locks



Snap Engine
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Snap Engine Scheduling

engine load balancer

=

one per CPU

maps engines to threads



Snap Engine Scheduling Modes

scheduling latency

CPU CPU
scheduling mode resources median tail efficiency visualization
dedicating cores static 0-1us 0*-100+ps poor -
spreading engines dynamic 3-10us 10-30**ps good HH_ |_H
compacting engines dynamic 0-5us 50-100**us | excellent H




Snap Engine Scheduling Modes

Dedicated Cores
e Static provisioning of N cores to run engines.
o Fair share these N cores across engines.

e Simple and best for some situations.
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Snap Engine Scheduling Modes

Dedicated Cores

e Provisioning for the worst-case is wasteful

e Provisioning for the average case leads to high tail latency

Snap App Idle
;T

cO cl G o) 5 TO

4




Snap Engine Scheduling Modes

Spreading Engines
e Bind each engine to a unique thread
e Threads scheduled on-demand based on interrupts triggered from NIC or
application

e Leverages new micro-quanta kernel scheduling class for tighter latency

Snap Spreads
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Snap Engine Scheduling Modes

Spreading Engines

e Can provide lowest tail latency
e Scheduling pathologies and overheads Snap Spreads
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Snap Engine Scheduling Modes

Compacting Engines
e Compacts engines to as few cores as possible

e Periodic polling of queuing delays to re-balance engines to more cores

Snap Compacts
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Snap Engine Scheduling Modes

Compacting Engines

e Can provide best CPU efficiency.

e Timely detection of queue build-up.

Snap Compacts
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High Performance Communication

Pony Express Communication Stack

e Implement a full-fledged reliable transport and interface

©)
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RDMA-like operation interface to applications

Two-sided operations for classic RPC

One-sided (pseudo RDMA) operations for avoiding invocation of
application thread scheduler

Custom one-sided operations to avoid shortcomings of RDMA (i.e.,
pointer chase over fabric)

Custom transport and delay-based congestion control (Timely/Swift)



High Performance Communication

Pony Express Communication Stack
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Evaluation: Ping-pong latency
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Evaluation: Throughput
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Evaluation: Comparison with RDMA

e Switching to Pony Express “doubled the production
performance of the data analytics service”.

e Stringent RDMA rate limits applied to prevent NIC cache
overflow, and ensuing PFCs.

e Could be disabled with Pony Express.
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