Snap: a Microkernel Approach to Host
Networking

Qiangian Tan

Snap: a Microkernel Approach to Host

Networking

Snapchat

Snap: a Microkernel Approach to Host
Networking

* Google

Authors

Michael Marty Marc de Kruijf Jacob
Adriaens

Christopher Alfeld Sean Bauer Carlo Contavalli
Mike Dalton Nandita Dukkipati William C. Evans
Steve Gribble Nicholas Kidd Roman
Kononov

Gautam Kumar Carl Mauer Emily Musick

Lena Olson Mike Ryan Erik Rubow

Kevin Springborn Paul Turner Valas Valancius

Xi Wang Amin Vahdat

Authors

Michael Marty Marc de Kruijf
Adriaens

Christopher Alfeld Sean Bauer
Mike Dalton Nandita Dukkipati
Steve Gribble Nicholas Kidd
Kononov

Gautam Kumar Carl Mauer

Lena Olson Mike Ryan

Kevin Springborn Paul Turner

Xi Wang Amin Vahdat

Jacob

Carlo Contavalli
William C. Evans
Roman

Emily Musick
Erik Rubow
Valas Valancius

Slides largely borrowed from the SOSP talk
https://www.youtube.com/watch?v=52YJY3980Zk

Quick look

e Snap:Framework for packet processing in software
o Goals: Performance and Deployment Velocity

o Technique: Microkernel-inspired userspace approach

Quick look

e Supports multiple use cases

o Andromeda: Network virtualization for Google Cloud Platform [NSDI 2018]
o Espresso: Edge networking [SIGCOMM 2017]

o Maglev: L4 load balancer [NSDI’16]

o New: High-performance host communication with “Pony Express”

e 3x throughput efficiency (vs kernel TCP), 5SMIOPS, and weekly releases

Part 1: Motivation

Motivation

e Growing performance-demanding packet processing needs at Google

e The ability to rapidly develop and deploy new features is just as important!

Monolithic (Linux) Kernel

Deployment Velocity:
e Smaller pool of software developers

e More challenging development environment

CC
e Must drain and reboot a machine to roll out new S 7 J
. App 1 App 2
version v v
(system calls (
. Typica”y months to release neW feature ..
Kernel
\:\\\ \ /:/ /'Interrupts
softiIRQs

NIC locks

Monolithic (Linux) Kernel

S CC
J)
App 1 App 2
V4 pd
(system calls (
Performance: Kernel
e Overheads from system calls,fine-grained \‘\\\ \ /:// lsn;;et;;ugsts
synchronization, interrupts, and more. NIC locks

LibraryOS and OS Bypass

Networking logic in application binaries

Examples: Arrakis, mTCP, IX, ZygOS, and more
Deployment Velocity:

e Difficult to release changes to the fleet

e App binaries may go months between releases

J J
App 1 App 2
(fn call (fn call
Network Network
Library Library
N e

Performance:

e Can be very fast

e But typically requires spin-polling in every application
e Benefits of centralization (i.e.,scheduling) lost

Delegates all policy to NIC

NIC

Microkernel Approach

Hoists functionality to a separate userspace process
Deployment Velocity:
e Decouples release cycles from application and kernel binaries
e Transparent upgrade with iterative state transfer
Performance:
e Fast! Leverages kernel bypass and many-core CPUs
e Maintains centralization of a kernel

o Can implement rich scheduling/multiplexing policies

Microkernel Approach

Hoists functionality to a separate userspace pr:
Deployment Velocity:

e Decouples release cycles from application

e Transparent upgrade with iterative state tre
Performance:

e Fast! Leverages kernel bypass and many-¢

e Maintains centralization of a kernel

< shared memory reads/writes

J EI [TTTT4 X cCC
App 1 Snap Process)) o
<,<; Microkernel
App 2 Network Module
TTTTTT
Linux .
Kernel -

o Can implement rich scheduling/multiplexing policies

Part 2: Design

Snap Architecture

on-host

cloud VMs host applications
control | : _
stack | : [hypervisor|I/O| : | Pony Express API| host kernel
| . memory-mapped I/O &
®
Users I e .. i 3|
PR Virtualization | : [~ Virt Vi _
& QE,_ module —*| engine | engine | ©N9IN€ group A o
© |2 :
| @ P : 5 = 5]
— | & ony __L ony ony ony
= 8 module | Lengine || engine |*| engine group B =
sSia : Q
8 Shapin - 'Shapin Pon , @
o [ping % ping y
module . | |_engine engine engine group C
— Pl
Shap engine mailboxes memory-mapped I/O
Network el

Snap Architecture

on-host cloud VMs | : host applications
control | : :
stack | : [hypervisor|l/O | : | Pony Express API | host kernel
| : memory-mapped I/O %
Users] Freeeetel |]| [|] T Ty o gy .
Pep Virtualization | : [[Virt. Virt. .
% qE) 1 module —Tlengine P| engine engine group A
o|® P 3 3
S Pony ——L ony ony ony [N
2lo module [Lengine engine engine
c o :
8 Shapin # Shapin Pon :
o | X ping . ping y
module : engine engine engine group C
— P
Snap engine mailboxes L It e U
‘Network L

off-host controllers

OS-bypass NIC

Snap engine
e Key dataplane element
e Implements packet
processing piplines

e Unit of CPU scaling

Snap engines implement a
Run() menthod invoke by
Engine Threads

Principle synchronization:

e No blocking locks

Snap Engine

input <, engine mailbox
queues /

\ \output

h

queues

Snap Engine Scheduling

engine load balancer

=

one per CPU

maps engines to threads

Snap Engine Scheduling Modes

scheduling latency

CPU CPU
scheduling mode resources median tail efficiency visualization
dedicating cores static 0-1us 0*-100+ps poor -
spreading engines dynamic 3-10us 10-30**ps good HH_ |_H
compacting engines dynamic 0-5us 50-100**us | excellent H

Snap Engine Scheduling Modes

Dedicated Cores
e Static provisioning of N cores to run engines.
o Fair share these N cores across engines.

e Simple and best for some situations.

Snap App Idle
;T

cO cl G o) 5 TO

4

Snap Engine Scheduling Modes

Dedicated Cores

e Provisioning for the worst-case is wasteful

e Provisioning for the average case leads to high tail latency

Snap App Idle
;T

cO cl G o) 5 TO

4

Snap Engine Scheduling Modes

Spreading Engines
e Bind each engine to a unique thread
e Threads scheduled on-demand based on interrupts triggered from NIC or
application

e Leverages new micro-quanta kernel scheduling class for tighter latency

Snap Spreads

i =

Snap Engine Scheduling Modes

Spreading Engines

e Can provide lowest tail latency
e Scheduling pathologies and overheads Snap Spreads

i = e

Snap Engine Scheduling Modes

Compacting Engines
e Compacts engines to as few cores as possible

e Periodic polling of queuing delays to re-balance engines to more cores

Snap Compacts

=

Snap Engine Scheduling Modes

Compacting Engines

e Can provide best CPU efficiency.

e Timely detection of queue build-up.

Snap Compacts

=

High Performance Communication

Pony Express Communication Stack

e Implement a full-fledged reliable transport and interface

©)

©)

©)

RDMA-like operation interface to applications

Two-sided operations for classic RPC

One-sided (pseudo RDMA) operations for avoiding invocation of
application thread scheduler

Custom one-sided operations to avoid shortcomings of RDMA (i.e.,
pointer chase over fabric)

Custom transport and delay-based congestion control (Timely/Swift)

High Performance Communication

Pony Express Communication Stack

command & : application Unix
-- completion --q&f----------------- -----=- domain | [~
queues : op streams] socket
' <:en ine mailbox n
g’g [op scheduler op layer ¥ ; §
: g 8 sfvenssssasiensc, (shared memory\ g.
£ = [ﬂOW mapper] reliability [polic =
© layer y .
— (buffer pools, 2.
Command & \remote ACLS, '")J)
-- completion ﬁé --
queues : NIC

Evaluation: Ping-pong latency

25
20
15
10

S

Latency (usecs)

Kermel TCP Kernel TCP, Snap/Pony Snap/Pony, Snap/Pony,
busy polling (two-sided) busy polling busy polling
(two-sided) (one-sided)

Evaluation: Throughput

100
75

50

Gbps

25

Kernel TCP, Kernel TCP, Snap/Pony, 1 Snap/Pony, Snap/Pony, Snap/Pony,
1 stream 200 streams stream 200 streams +5kB MTU +I/OAT DMA

Evaluation: Comparison with RDMA

e Switching to Pony Express “doubled the production
performance of the data analytics service”.

e Stringent RDMA rate limits applied to prevent NIC cache
overflow, and ensuing PFCs.

e Could be disabled with Pony Express.

Thank youl
Q4&A

