
MSCCL++: Rethinking GPU Communication 
Abstractions for Cutting-Edge AI Applications

Presented by Yang Zhou
Thur 10/23



Abstract

Big problem: 

● Modern cutting-edge AI applications are being developed over fast-evolving, 
heterogeneous, nascent hardware devices.

● This requires frequent reworking of the AI software stack to adopt bottom-up 
changes from new hardware, which takes time for general-purpose software 
libraries (NCCL)

MSCCL++ provides both portability and performance by essentially a reusable lib

● a primitive interface provides a minimal hardware abstraction
● higher-level portable interfaces and specialized implementations



Various communication channels: 

● CPU-GPU: PCIe, NVLink-C2C
● Intra-node: NVLink, xGMI, 
● Inter-node: RDMA (IB, RoCE)

Key challenge: people want high communication performance, but this requires 
writing custom communication code, often from scratch and taking long time.

● ML workloads move fast

Background



Motivation examples

The custom communication of TensorRT-LLM outperforms NCCL in a wide range 
of LLM scenarios, especially when the data size is relatively small, while 
TensorRTLLM still uses NCCL for larger data sizes.

What is 1-shot allreduce? 



Key idea

Separate high-level abstractions and optimizations from primitive hardware 
abstractions

● Application developers to optimize and fine-tune by enabling precise control 
of the hardware

● Library developers to support new hardware features by only providing a 
shallow layer of abstraction over it

Basically, they are building a reusable communication library with an abstraction 
for various communication channels. 



NCCL examples

Hard-coded GPU kernels

Send, recv not flexible enough

Inflexible synchronization



MSCCL++ overview

High-level APIs

+

Low-level interfaces



Communication channels

PortChannel: DMA engines on GPUs or RDMA NICs

MemoryChannel: peer-to-peer memory access over NVLink/xGMI

SwitchChannel: interconnection-switch-enabled multimem memory



Communication Primitives

All MSCCL++ primitives are defined as a method of a channel.



An example

Implementing a different 
ReduceScatter



Implementation 
deepdive



Testbed



Some results



Key takeaways

ML workloads is fast evolving, so do the system software (and so do hardware)

Communication is a cornerstone in ML workloads

We need a reusable library to develop custom communication strategies. 



What so far we have covered

Datacenter networking: 

● Microsecond and tail
● Topology design
● Congestion control
● How to use RDMA (efficiently)

Host networking: 

● RDMA for GPU comm
● Efficient host TCP
● NCCL stack



What we will cover

LLM inference: 

● Memory management
● Compute management
● Attention efficiency
● Holistic optimization

LLM training: 

● Attention efficiency
● Training parallelism
● MoE (Mixture-of-Expert)
● Failure, auto-parallelism


