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Abstract

Big problem:

e Modern cutting-edge Al applications are being developed over fast-evolving,
heterogeneous, nascent hardware devices.

e This requires frequent reworking of the Al software stack to adopt bottom-up
changes from new hardware, which takes time for general-purpose software

libraries (NCCL)

MSCCL++ provides both portability and performance by essentially a reusable lib

e a primitive interface provides a minimal hardware abstraction
e higher-level portable interfaces and specialized implementations



Background

Various communication channels:

e CPU-GPU: PCle, NVLink-C2C
e Intra-node: NVLink, xGMI,
e Inter-node: RDMA (IB, RoCE)

Key challenge: people want high communication performance, but this requires
writing custom communication code, often from scratch and taking long time.

e ML workloads move fast



Motivation examples

The custom communication of TensorRT-LLM outperforms NCCL in a wide range
of LLM scenarios, especially when the data size is relatively small, while
TensorRTLLM still uses NCCL for larger data sizes.

What is 1-shot allreduce?



Key idea

Separate high-level abstractions and optimizations from primitive hardware
abstractions

e Application developers to optimize and fine-tune by enabling precise control

of the hardware
e Library developers to support new hardware features by only providing a

shallow layer of abstraction over it

Basically, they are building a reusable communication library with an abstraction
for various communication channels.



NCCL examples

Hard-coded GPU kernels
Send, recv not flexible enough

Inflexible synchronization
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global ringRS(in, nelem, ring)
send = ring.sendbuff; recv = ring.recvbuff;

= ring.buffSz;

prim = Primitives<half>

(tid, ring.buffSz, ring.prev, ring.next);

for (off = 0; off < nelem; off += sz)

//step ©@: push data to the next GPU

idx = off + ring.ranks[ring.ranks-1]*sz;
prims.copy(in+idx, send, sz);
prims.send();

//k-2 steps: reduce and copy to next GPU
for (j = 2; j < ring.ranks; ++j)
rankDest = ring.ranks[ring.ranks-j];
idx = off + rankDest x buffSz;
prims.recv();
prim.reduce(in+idx, recv, send, sz, "+");
prims.send();

//step k-1: write the result for this rank
idx = off + ring.rank * buffSz;
prims.recv();

prims.reduce(recv, in+idx, sz, "+");

Figure 1. Ring ReduceScatter (simplified) in NCCL.
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Figure 3. Overview of the MSCCL++ stack.



Communication channels

PortChannel: DMA engines on GPUs or RDMA NICs
MemoryChannel: peer-to-peer memory access over NVLink/xGMI

SwitchChannel: interconnection-switch-enabled multimem memory



Communication Primitives

All MSCCL++ primitives are defined as a method of a channel.
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//async

put(srce, dstl, size)
//unsafe to reuse src@
signal() //async
flush() //sync

//safe to reuse srco

(a) GPU-0

//unsafe to read dsti1
wait() //sync
//safe to read dst1

(b) GPU-1

Figure 4. MSCCL++ data transfer abstractions. put asyn-
chronously transfers data from one GPU to another. signal
and wait synchronize data transfer between GPUs. flush
ensures the completion of preceded data transfer.




An example

Implementing a different
ReduceScatter
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global allPairsRS(count, gpus, channels[gpus])
sz = channel.scratchSz/gpus.num
count = count/gpus.num

for (off = 0; off < count; off += sz)
//Send 1/Nth data to each GPU
for (g = 0; g < gpus.num; g++)
idx = off + g * count;
channels[g].put(idx, szxg, sz)
channels[g].signal ()

//Reduce every pair of GPU

for (g = 0; g < gpus.num-1; g++)
channels[g].wait ()
reduce(in + off, channels[g].scratch)

//barrier on all gpus
multiDeviceBarrier ();

Figure 5. All-pairs ReduceScatter kernel in MSCCL++. Chan-
nels are initialized with source as input and destination as
scratch buffer.
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Figure 7. PortChannel workflow for IB from (0) when GPU
0 calls put primitive to (8) when GPU 1 receives the data.



Testbed

Env. Name GPU Intra-node Link Network
A100-40G | NVIDIA A100 (40G) (8x/node) NVLink 3.0 Mellanox HDR InfiniBand (200 Gb/s, 1x NIC/GPU)
A100-80G | NVIDIA A100 (80G) (8x/node) NVLink 3.0 Mellanox HDR InfiniBand (200 Gb/s, 1x NIC/GPU)
H100 NVIDIA H100 (8x/node) NVLink 4.0 Quantum-2 CX7 InfiniBand (400 Gb/s, 1x NIC/GPU)
MI300x AMD MI300x (8x/node) Infinity Fabric Gen 4 | Quantum-2 CX7 InfiniBand (400 Gb/s, 1x NIC/GPU)

Table 1. List of environments used for evaluation.
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Figure 8. AllReduce, A100-40G. MnNg means M nodes and
N GPUs. X-axis is message size (at the bottom of the figure).



Key takeaways

ML workloads is fast evolving, so do the system software (and so do hardware)
Communication is a cornerstone in ML workloads

We need a reusable library to develop custom communication strategies.



What so far we have covered

Datacenter networking:

Microsecond and tail
Topology design

Congestion control

How to use RDMA (efficiently)

Host networking:

e RDMA for GPU comm
e Efficient host TCP
e NCCL stack



What we will cover

LLM inference:

e Memory management
e Compute management
e Attention efficiency

e Holistic optimization

LLM training:

Attention efficiency
Training parallelism
MoE (Mixture-of-Expert)
Failure, auto-parallelism



