
Efficient Memory Management for Large

Language Model Serving with PagedAttention

Woosuk Kwon1,∗ Zhuohan Li1,∗ Siyuan Zhuang1 Ying Sheng1,2 Lianmin Zheng1 Cody Hao Yu3

Joseph E. Gonzalez1 Hao Zhang4 Ion Stoica1

1UC Berkeley 2Stanford University 3Independent Researcher 4UC San Diego

*Equal contribution

Presenter: Yuankai Li, Date: 2025/10/27

Background: LLM serving

Serving LLMs is slow and expensive because

The sequential dependency make it difficult to fully utilize the parallelism

Batch multiple requests together to improve throughput

SOSP’23 Presentation | Efficient Memory Management for Large Language Model Serving with PagedAttention

Memory management for KV Cache is inefficient,

leads to limited batch_size (GPU OOM).

Preliminary: Self-Attention

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘
𝑉

Vaswani et al. “Attention Is All You Need”, 2017

Input: x.shape=(batch_size, len, hidden_dim)

proj= nn.linear(hidden_dim, num_head*head_dim)

Q = q_proj(x), V = v_proj(x), K = k_proj(x)

View QKV as: (batch_size, len, num_head, head_dim)

Apply positional embedding (especially RoPE)

Scaled Dot-Prodcut Attention (Q,K,V)

Output: o.shape = (batch_size, len, num_head*head_dim)

Radford et al. “Improving Language Understanding by Generative Pre-Training”

Preliminary: Decoding & KV Cache

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘
𝑉

https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf

During inference, len=1

K and V can be reused (KV Cache)

Decoding
Auto-regressively generate until
- Reaches max_seq_len
- Generate certain tokens like <eos> or

<|end_of_sequence|>
 SOSP’23 Presentation | Efficient Memory Management for Large Language Model Serving with PagedAttention

Motivation: Memory Fragmentation

[1] Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

[2] Touvron et al. “Llama-2: Open Foundation and Fine-Tuned Chat models”

KV Cache can be huge!

For a 13B llama-2 model, one K cache could be

(7B/13B/70B (4096 / 5120 / 8192 hidden; 32 / 40 / 80 layers)[2]

One single token would take: num_hidden * layer * FP32
= 40 * 5120 * 4 = 819,200 bytes ~ 0.82 MB

One full request could be several GBs: batch_size *
prefix_len * single_token = 1 * 2048 * 819200 ~ 1.67 GB

Motivation: Memory Fragmentation

Internal Fragmentation
Pre-allocate contiguous space that may never be used
(unknown output length)

External Fragmentation
Application-level code (PyTorch) leave memory between KV Caches
(non-uniform per-request max lengths)

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

Method: Paged Attention

Paging analogy
PagedAttention partitions the KV cache of each
sequence into KV blocks. Each block contains the
K and V vectors for a fixed number of tokens
(block size 𝐵)

The PagedAttention algorithm allows the KV
blocks to be stored in non-contiguous physical
memory, which enables more flexible paged
memory management.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

Implementation: vLLM

KV Cache Manager
Analogous to the virtual memory in OS

A request’s KV cache is represented as a series of logical
KV blocks, filled from left to right as new tokens and their
KV cache are generated. The last KV block’s unfilled
positions are reserved for future generations. On GPU
workers, a block engine allocates a contiguous chunk of
GPU DRAM and divides it into physical KV blocks

The KV block manager also
maintains block tables—the mapping between logical and
physical KV blocks of each request.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

Running Example: vLLM

Four score and seven years ago our [fathers] [brought] …
1. vLLM reserves the necessary KV blocks for the KV cache during

the prefill step.
2. vLLM generates the new token with the PagedAttention algorithm,

and the block table’s #filled record is updated
3. As the last logical block is full, vLLM stores the newly generated

KV cache in a new logical block; vLLM allocates a new physical
block for it and stores this mapping in the block table

Once a request finishes its generation, its KV blocks can be freed to
store the KV cache of other requests

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

Details: Decoding Method
Parallel Sampling LLM generates multiple sampled outputs for
a single input prompt
• reference count for each physical block & copy-on-write

Beam Search is widely used to decode
the most probable output sequence from an LLM
• share not only the initial prompt blocks but also other blocks

across different candidates
• Reduce memory copy!

Shared Prefix Prefix like system prompt is shared across tasks
• Reserve certain physical blocks

Mixed decoding methods

• Requests with different sampling

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

beam width parameter 𝑘=4

Details: Scheduling, Preemption & Distributed Execution

When vLLM run out of physical blocks on GPUs

vLLM adopt the first-come-first-serve (FCFS) policy
• all-or-nothing eviction policy, since all blocks of a

sequence are accessed together
• To recover the evicted block, we either do swapping or

recomputation
• Swapping: copy to CPU memory and bring back
• Recomputation: recompute KV Cache

• Can be generated in one prompt iteration

Distributed Execution
vLLM implement Megatron-LM style tensor model
parallelism with SPMD
• Linear layer partitioned
• Attention head partitioned – Each GPU stores the

corresponding KV Cache
Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

vLLM Talk @ CMU (Apr 2025)

Implementation: vLLM

vLLM’s goal is to build the fastest and easiest-to-use open-source LLM
inference & serving engine

Kernel-level Optimization vLLM contains custom CUDA kernels for key
operations like PagedAttention
• Fused reshape and block write
• Fused block read and attention
• Fused block copy

Various Decoding Algorithms vLLM creates fork, append and free to
run algorithms like parallel sampling, beam search and prefix sharing

Experiment

Metric: Serving throughput

Input/Output Length Distribution:
- Alpaca dataset (instruction-following)
- ShareGPT datasetx (conversation)

Baselines:
- NVIDIA FastTransformer (FT)
- Orca (assume using buddy algorithm) (iteration-

level scheduling)
- Oracle: Know exact output length
- Pow2: Over-reserve by at most x2
- Max: Over-reserve to maximum possible

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

Experiment

Basic sampling

On the ShareGPT dataset, vLLM can sustain 1.7×–2.7×
higher request rates compared to Orca (Oracle) and 2.7×–8×
compared to Orca (Max), while maintaining similar laten-
cies. Alpaca dataset follows a similar trend to the
ShareGPT dataset.

vLLM enables batching more requests

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

Experiment

Parallel generation, Beam search & Prefix sharing

 The improvement of vLLM over Orca (Oracle) on OPT-
13B and the Alpaca dataset goes from 1.3× in basic
sampling to 2.3× in beam search with a width of 6.
(Beam search allows for more sharing)

vLLM achieves 1.67× higher throughput than Orca
(Oracle) when the one-shot prefix is shared.
vLLM achieves 3.58× higher throughput than Orca
(Oracle).

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

Ablation

Kernel Microbenchmark
Custom kernel introduce 20-26% higher attention kernel
latency

Block Size
Block size 16 is large enough to efficiently utilize the GPU
and small enough to avoid significant internal fragmentation
in most workloads. vLLM sets its default block size as 16

Swapping Vs Recomputation
Recomputation is more efficient when the block
size is small, while swapping is more efficient when the block
size is large

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

Overview

Problem: Inefficient KV Cache management limits LLM serving throughput

Motivation: Current approach fails at internal fragmentation and external fragmentation

Method: Apply OS paging techniques to KV Cache, introduce PagedAttention which break
KV Cache into fix-sized blocks that can be stored in memory more flexibly

Experiment: vLLM improves throughput by 2-4x over SOTA, especially benefiting from
complex decoding

Credits & Resources
Some content is borrowed from:

[1] SOSP ‘23 Presentation| Efficient Memory Management for Large Language Model Serving with

PagedAttention (https://www.youtube.com/watch?v=UdNocRPQS3Y)

[2] https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf

[3]vLLM Talk @ CMU (Apr 2025)(https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-

vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf)

To better understand KV Cache and PagedAttention:

[4] nano-vllm(https://github.com/GeeeekExplorer/nano-vllm)

https://www.youtube.com/watch?v=UdNocRPQS3Y
https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf
https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf
https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf
https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf
https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf
https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf
https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf
https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf
https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf
https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf
https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf
https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf
https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf
https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf
https://github.com/GeeeekExplorer/nano-vllm
https://github.com/GeeeekExplorer/nano-vllm
https://github.com/GeeeekExplorer/nano-vllm

Q & A

