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Background: LLM serving

Serving LLMs is slow and expensive because

The sequential dependency make it difficult to fully utilize the parallelism

Batch multiple requests together to improve throughput
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Memory management for KV Cache is inefficient,

leads to limited batch_size (GPU OOM).



Preliminary: Self-Attention

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘
𝑉

Vaswani et al. “Attention Is All You Need”, 2017

Input: x.shape=(batch_size, len, hidden_dim)

proj= nn.linear(hidden_dim, num_head*head_dim) 

Q = q_proj(x), V = v_proj(x), K = k_proj(x)

View QKV as: (batch_size, len, num_head, head_dim)

Apply positional embedding (especially RoPE)

Scaled Dot-Prodcut Attention (Q,K,V)

Output: o.shape = (batch_size, len, num_head*head_dim)

Radford et al. “Improving Language Understanding by Generative Pre-Training”



Preliminary: Decoding & KV Cache 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘
𝑉

https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf

During inference, len=1

K and V can be reused (KV Cache) 

Decoding
Auto-regressively generate until
- Reaches max_seq_len 
- Generate certain tokens like <eos> or 

<|end_of_sequence|>
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Motivation: Memory Fragmentation

[1] Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

[2] Touvron et al. “Llama-2: Open Foundation and Fine-Tuned Chat models”

KV Cache can be huge!

For a 13B llama-2 model, one K cache could be

(7B/13B/70B (4096 / 5120 / 8192 hidden; 32 / 40 / 80 layers)[2]

One single token would take: num_hidden * layer * FP32 
= 40 * 5120 * 4 = 819,200 bytes ~ 0.82 MB

One full request could be several GBs: batch_size * 
prefix_len * single_token = 1 * 2048 * 819200 ~ 1.67 GB



Motivation: Memory Fragmentation

Internal Fragmentation
Pre-allocate contiguous space that may never be used
(unknown output length)

External Fragmentation
Application-level code (PyTorch) leave memory between KV Caches
(non-uniform per-request max lengths)

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023



Method: Paged Attention

Paging analogy
PagedAttention partitions the KV cache of each 
sequence into KV blocks. Each block contains the 
K and V vectors for a fixed number of tokens 
(block size 𝐵)

The PagedAttention algorithm allows the KV 
blocks to be stored in non-contiguous physical 
memory, which enables more flexible paged 
memory management.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023



Implementation: vLLM

KV Cache Manager
Analogous to the virtual memory in OS

A request’s KV cache is represented as a series of logical 
KV blocks, filled from left to right as new tokens and their 
KV cache are generated. The last KV block’s unfilled 
positions are reserved for future generations. On GPU 
workers, a block engine allocates a contiguous chunk of 
GPU DRAM and divides it into physical KV blocks

The KV block manager also
maintains block tables—the mapping between logical and
physical KV blocks of each request.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023



Running Example: vLLM

Four score and seven years ago our [fathers] [brought] …
1. vLLM reserves the necessary KV blocks for the KV cache during 

the prefill step. 
2. vLLM generates the new token with the PagedAttention algorithm, 

and the block table’s #filled record is updated
3. As the last logical block is full, vLLM stores the newly generated 

KV cache in a new logical block; vLLM allocates a new physical 
block for it and stores this mapping in the block table

Once a request finishes its generation, its KV blocks can be freed to 
store the KV cache of other requests

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023



Details: Decoding Method
Parallel Sampling LLM generates multiple sampled outputs for 
a single input prompt
• reference count for each physical block & copy-on-write

Beam Search is widely used to decode
the most probable output sequence from an LLM
• share not only the initial prompt blocks but also other blocks 

across different candidates
• Reduce memory copy!

Shared Prefix Prefix like system prompt is shared across tasks
• Reserve certain physical blocks

Mixed decoding methods

• Requests with different sampling 

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

beam width parameter 𝑘=4



Details: Scheduling, Preemption & Distributed Execution

When vLLM run out of physical blocks on GPUs

vLLM adopt the first-come-first-serve (FCFS) policy
• all-or-nothing eviction policy, since all blocks of a 

sequence are accessed together
• To recover the evicted block, we either do swapping or 

recomputation
• Swapping: copy to CPU memory and bring back
• Recomputation: recompute KV Cache

• Can be generated in one prompt iteration

Distributed Execution 
vLLM implement Megatron-LM style tensor model 
parallelism with SPMD
• Linear layer partitioned
• Attention head partitioned – Each GPU stores the 

corresponding KV Cache
Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

vLLM Talk @ CMU (Apr 2025)



Implementation: vLLM

vLLM’s goal is to build the fastest and easiest-to-use open-source LLM 
inference & serving engine

Kernel-level Optimization vLLM contains custom CUDA kernels for key 
operations like PagedAttention
• Fused reshape and block write
• Fused block read and attention
• Fused block copy

Various Decoding Algorithms vLLM creates fork, append and free to 
run algorithms like parallel sampling, beam search and prefix sharing



Experiment

Metric: Serving throughput

Input/Output Length Distribution:
- Alpaca dataset (instruction-following)
- ShareGPT datasetx (conversation)

Baselines:
- NVIDIA FastTransformer (FT)
- Orca (assume using buddy algorithm) (iteration-

level scheduling)
- Oracle: Know exact output length
- Pow2: Over-reserve by at most x2
- Max: Over-reserve to maximum possible

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023



Experiment

Basic sampling

On the ShareGPT dataset, vLLM can sustain 1.7×–2.7×
higher request rates compared to Orca (Oracle) and 2.7×–8×
compared to Orca (Max), while maintaining similar laten-
cies. Alpaca dataset follows a similar trend to the
ShareGPT dataset.

vLLM enables batching more requests 

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023



Experiment

Parallel generation, Beam search & Prefix sharing

 The improvement of vLLM over Orca (Oracle) on OPT-
13B and the Alpaca dataset goes from 1.3× in basic 
sampling to 2.3× in beam search with a width of 6.
(Beam search allows for more sharing)

vLLM achieves 1.67× higher throughput than Orca 
(Oracle) when the one-shot prefix is shared.
vLLM achieves 3.58× higher throughput than Orca 
(Oracle).

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023



Ablation

Kernel Microbenchmark
Custom kernel introduce 20-26% higher attention kernel 
latency

Block Size
Block size 16 is large enough to efficiently utilize the GPU 
and small enough to avoid significant internal fragmentation 
in most workloads. vLLM sets its default block size as 16

Swapping Vs Recomputation
Recomputation is more efficient when the block
size is small, while swapping is more efficient when the block 
size is large

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023



Overview

Problem: Inefficient KV Cache management limits LLM serving throughput 

Motivation: Current approach fails at internal fragmentation and external fragmentation

Method: Apply OS paging techniques to KV Cache, introduce PagedAttention which break 
KV Cache into fix-sized blocks that can be stored in memory more flexibly

Experiment: vLLM improves throughput by 2-4x over SOTA, especially benefiting from 
complex decoding



Credits & Resources
Some content is borrowed from:

[1] SOSP ‘23 Presentation| Efficient Memory Management for Large Language Model Serving with 

PagedAttention (https://www.youtube.com/watch?v=UdNocRPQS3Y)

[2] https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf

[3]vLLM Talk @ CMU (Apr 2025)(https://llmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-

vLLM_woosuk_kwon-1f34697dbb1a1fb5b798daf6eff14b67.pdf)

To better understand  KV Cache and PagedAttention:

[4] nano-vllm(https://github.com/GeeeekExplorer/nano-vllm)
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