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Background: LLM serving

Serving LLMs is slow and expensive because

The sequential dependency make it difficult to fully utilize the parallelism

Batch multiple requests together to improve throughput

the — | future — of

OUtlet [ a } computer | - sclientist
Memory management for KV Cache is inefficient, LUM i LM
leads to limited batch_size (GPU OOM). —u_-r- —u-r- Bl
Input | Artificial flmelhgenceI is . . the b— future |
M | Tumg | s a_| _computer

\\ -

Better utilize the parallel hardware
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Preliminary: Self-Attention

. QK"
Attention(Q,K,V) = softmax |74

Jax

} Input: x.shape=(batch_size, len, hidden_dim)
Lmtear proj= nn.linear(hidden_dim, num_head*head_dim)
Concat . . . Text Task
Q = g proj(x), V =v proj(x), K =k proj(x p :
p , q_proj(x) proj(x) proj(x) oo [
Scaled Dot-Product .]J&, View QKV as: (batch size, len, num head, head dim) T
Attention 2 Layer Norm
JJ LEEE 1 AN 11 Apply positional embedding (especially RoPE) @~
—— Scaled Dot-Prodcut Attention (Q,K,V) 120
Layer Norm
r r r Output: o.shape = (batch_size, len, num_head*head_dim) A3
% K Q Wasked Mull
Vaswani et al. “Attention Is All You Need”, 2017 Selt Attention

Radford et al. “Improving Language Understanding by Generative Pre-Training’
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Preliminary: Decoding & KV Cache

. QK"
Attention(Q,K,V) = softmax \/d— |74
k

O ( . X-) X . During inference, len=1

K and V can be reused (KV Cache)

https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vlm.pdf

Decoding
Output % ] Wore—— 0 Auto-regressively generate until
- =_a - - Reaches max_seq len
- - s - Generate certain tokens like <eos> or
ot [ ,T | e - <|end _of sequence|>
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Motivation: Memory Fragmentation

i rnal frag.
M Token states Reservation # Internal frag. Extamal frag

& Others KV Cache can be huge!

100

8.9
g % For a 13B llama-2 model, one K cache could be
% 60 - (7B/13B/70B (4096 / 5120 / 8192 hidden; 32 / 40 / 80 layers)!2
2 . One single token would take: num_hidden * layer * FP32
§ =40 * 5120 * 4 = 819,200 bytes ~ 0.82 MB
¥ 201
o ot ors oo i One full request could be several GBs: batch_size *
ax w racle)

prefix len * single token=1%*2048 * 819200 ~ 1.67 GB

Figure 2. Average percentage of memory wastes in different
LLM serving systems during the experiment in §6.2. Tokthor 250 e e

1 slot future used
generated token (reserved) External fragmentation

(reserved)

e
T KV cache states for

N
2038 slots never used 3 KV cache states for 507 slots never used
request A's prompt

(infermal fragmentation) request B's prompt (Intemal fragmentation)
Request B
current iteration

RequestA
current iteration

Figure 3. KV cache memory management in existing systems. Three types of memory wastes - reserved, internal fragmentation,

and external fragmentation - exist that prevent other requests from fitting into the memory. The token in each memory slot
[1] Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023 . . . .
[2] Touvron et al. “Llama-2: Open Foundation and Fine-Tuned Chat models” represents its KV cache. Note the same tokens can have different KV cache when at different positions.
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Motivation: Memory Fragmentation

Internal Fragmentation
Pre-allocate contiguous space that may never be used
(unknown output length)

External Fragmentation
Application-level code (PyTorch) leave memory between KV Caches
(non-uniform per-request max lengths)

1 slot for 2 slots future used ) 1 slot future used
generated token (reserved) External fragmentation (reserved)
/‘_"A‘_‘\ —
Four | score | and | seven | years ago our |fathers |brought] i B =t - <resv-= Your only live
'l - A 'l "
T KV cache states for 2038 slots never used 3 KV cache states for 507 slots never used
request A's prompt (infernal fragmentation) request B's prompt (Internal fragmentation)
Request A Request B
current iteration current iteration

Figure 3. KV cache memory management in existing systems. Three types of memory wastes — reserved, internal fragmentation,
and external fragmentation — exist that prevent other requests from fitting into the memory. The token in each memory slot

represents its KV cache. Note the same tokens can have different KV cache when at different positions.
Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023
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Method: Paged Attention

Paging analogy
PagedAttention partitions the KV cache of each
sequence into KV blocks. Each block contains the

K and V vectors for a fixed number of tokens Bk
(block size B) /-/

Query o /— Block 2
The Paged Attention algorithm allows the KV vecer M
blocks to be stored in non-contiguous physical N

* Block 0

memory, which enables more flexible paged
memory management.

Key and value vectors

years

ago

our

T
fathers

brought

forth

Four

score

and

seven

Figure 5. Illustration of the PagedAttention algorithm,

where the attention key and values vectors are stored as
non-contiguous blocks in the memory.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023
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Implementation: vLLM

Physical KV blocks
(on GPU DRAM)

KV Cache Manager () o e
R . \\_-‘. / “, lock 1 | years ago our | fathers
Analogous to the virtual memory in OS —— | .
& o) ) @ Block Table y %ough
Block 0 ﬁffour Eﬁscwv L{r‘.and fovon l"t;; P"";:;:m = - Block 3 f
A request’s KV cache is represented as a series of logical oot | P 0 [0 MY O [0l et
. . . Block 2 | brought : .(_:J“; l:”; -'-:‘)‘-4« X Block 5
KV blocks, filled from left to right as new tokens and their . AT——
KV cache are generated. The last KV block’s unfilled | \ sk [Prour [Ceore [Cart [Cooven
positions are reserved for future generations. On GPU Blocks

workers, a block engine allocates a contiguous chunk of

o o K Figure 6. Block table translation in vLLM.
GPU DRAM and divides it into physical KV blocks

Worker 0
Scheduler CEEE— ache =
\\\\ é:ngi:e s’::?dlo i@
The KV block manager also 1 \ N\
. . . . \ N | Worker 1
maintains block tables —the mapping between logical and SUDHIPNNRON |\ — &
physical KV blocks of each request. | \ it
Block tables \
- e Ris \\.\ Waorker N -1
CPU Block | | GPU Block 3 e
Allocag; Allocat%? ‘ é:ng::le snﬁﬂdﬁ 1 i@

Figure 4. vLLM system overview.
Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023
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Running Example: vLLM

Four score and seven years ago our [fathers] [brought] ...
1. vLLM reserves the necessary KV blocks for the KV cache during

the prefill step.
2. VLLM generates the new token with the Paged Attention algorlthm Physical KV blcks
and the block table’s #filled record is updated e T T—
' R st | Prompt: “Four score and seven years ago our’
3. As the last logical block is full, vLLM stores the newly generated | * ‘ o "o~ BOIGL= s ok 1 (yoars (Cago |” our |Hatrers
KV cache in a new logical block; vLLM allocates a new physical =~ ooy soas o | ook
5 o) o ) lock Table CI )
block for it and stores this mapping in the block table mock | o | s | 't oo\ iy ¢ ok [
Block 1 | years ‘L‘ego ’ our 7a!her3 WY m:b.r om / 53‘ Block 4
0 i NTB -y
. . . . . Block 2 | brought | 18 s o ."-,}‘ Block 5
Once a request finishes its generation, its KV blocks can be freed to .., i
store the KV cache of other requests e e e e
Block 8

Figure 6. Block table translation in vLLM.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023

UCDAVIS




Details: Decoding Method

Parallel Sampling LLM generates multiple sampled outputs for

Physical KV blecks

a single input prompt &) s e

* reference count for each physical block & copy-on-write o [ i:.|: — szémm s L mmee
st [ | o | o woon ] s [ | s [ o [ o R

Beam Search is widely used to decode e

the most probable output sequence from an LLM I o e

* share not only the initial prompt blocks but also other blocks s

across different candidates

« Reduce memory copy! Figure 8. Parallel sampling example.

beam width parameter k=4

Shared Prefix Prefix like system prompt is shared across tasks

Sequence A Sequence B P28
. . o AL Beam candidate 0 ~ Block 5 ~ Block 9
* Reserve certain physical blocks Promt Proms |
Transiate Englsh 10 French Tranalate Englsh 1o French [ ]
Shasai ausd ‘300 OfNer” > Outre ; mer ::cﬁw = outre ;:« Beam candidate 1 Block 0 e Block 1 o Block3 H-+ Block6 | « Block 10
\ored profs poppenmet’ => ‘menihe poirée” peppermedt” => ‘menihe porvréde
° ° ‘Piuah grafe’ =» ‘geafe en pefiche Plush grafe” = Prafe an pakxhe” '
Mixed decoding methods T et [ i Boam candse 2 S B
. . . Sequence A Sequence B o A o A ; \
[ ] M outy M outpe >, \- \_:.‘
Requests with different sampling e W o o o e Sl oy S 3| W e

Figure 10. Shared prompt example for machine translation. Figure 9. Beam search example.
The examples are adopted from [5].

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023
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Details: Scheduling, Preemption & Distributed Execution

Option 1: Swapping Option 2: Recomputation
When vLLM run out of physical blocks on GPUs o =
vLLM adopt the first-come-first-serve (FCFS) policy o - \\ B = “\\
* all-or-nothing eviction policy, since all blocks of a ) '.
sequence are accessed together / /«"
« To recover the evicted block, we either do swapping or : W g m 'Recompute
recomputation LTk @ O (;przozs)' | ’
« Swapping: copy to CPU memory and bring back o o Sal e
* Recomputation: recompute KV Cache 20|\ =k, S0 =B
« Can be generated in one prompt iteration el \ =] Rl O
el RN
Distributed Execution L fl N
vLLM implement Megatron-LM style tensor model T e T T e © T
parallelism with SPMD (a) Microbenchmark (b) End-to-end performance
* Linear layer partitioned Figure 19. (a) Overhead of recomputation and swapping for
e Attention head p artitioned — Each GPU stores the different block sizes. (b) Performance when serving OPT-13B
correspon din g KV Ca che with the ShareGPT traces at the same request rate.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023
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Implementation: vLLM /LLM

vLLM'’s goal is to build the fastest and easiest-to-use open-source LLM
inference & serving engine

Kernel-level Optimization vLLM contains custom CUDA kernels for key
operations like Paged Attention

* Fused reshape and block write

* Fused block read and attention

* Fused block copy

Various Decoding Algorithms vLLM creates fork, append and free to
run algorithms like parallel sampling, beam search and prefix sharing
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Experiment

Table 1. Model sizes and server configurations.

Metric: Serving throughput

Model size 13B 66B 175B
o« g . . GPUs A100 4xA100 8xA100-80GB
Inpult/0u:ciput Lepgth D.IStl‘;blll.ltIO.n. Total GPU memory 40 GB 160 GB 640 GB
- A paca ataset (lnStruCtlon_ O . OWlng) Parameter size 26 GB 132 GB 346 GB
- ShareGPT datasetx (conversation)
Memory for KV cache 12GB 21 GB 264 GB
. Max. # KV cache slots  15.7K 9.7K 60.1K
Baselines:
- NVIDIA FastTransformer (FT) — =
- Orca (assume using buddy algorithn) (iteration- M| e e e
level scheduling) z | B
- Oracle: Know exact output length 5 | A
- Pow2: Over-reserve by at most x2 |
- Max: Over-reserve to maximum possible T e R TP e T N
(a) ShareGPT (b) Alpaca

Figure 11. Input and output length distributions of the (a)
ShareGPT and (b) Alpaca datasets.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023
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Experiment

Basic sampling

On the ShareGPT dataset, vLLM can sustain 1.7x-2.7 %
higher request rates compared to Orca (Oracle) and 2.7 x-8x
compared to Orca (Max), while maintaining similar laten-
cies. Alpaca dataset follows a similar trend to the

ShareGPT dataset.

-
o

30.42

NN e
o w o

13.62

-
=

9.81

# Batched requests
5

7.00

o w

Orca Orca Orca vilM

{Max) (Pow2)} (Oracle)

(a) ShareGPT

# Batched requests

Orca Orca Orca vilMm
(Max) {Pow2) (Oracle)
(b) Alpaca

Figure 13. Average number of batched requests when serv-
ing OPT-13B for the ShareGPT (2 reqs/s) and Alpaca (30

reqs/s) traces.

- FasterTransformer —=— QOrca (Max) Orca (Pow2) —a— Orca (Oracle) —e— yLLM
v
. £ 10— | 1.0 X " — 10 7 ; —

8~ | , f

vLLM enables batching more requests 2505l /| /—/J ‘ pcldLld | A vl
No 21/ A
=& o | / ; ‘ =
] by 2.7 7
E= 0.0 b by, y 0.0 %~ ./:r-'/,, - ; S Y — 4?" - v .
S 0.0 0.5 1.0 1.5 2.0 0.0 0.2 04 0.6 08 1.0 00 05 1.0 15 20 25
= Reqguest rate (req/s) Request rate (req/s) Request rate (reg/s)

(a) OPT-13B, 1 GPU, ShareGPT (b) OPT-66B, 4 GPUs, ShareGPT (¢c) OPT-1758, B GPUs, ShareGPT
>
v
g 1.0 1.0 1.0
B ' $ I ] '
= ' / / '
wx 051 / 0.5 f 0.5{/ |
NS /| | /
5% |/ ] Wi _4 ar
E~ 0.0+ = 2 0.0 i 0.0
[} 0 10 20 30 ] 5 10 15 20 5 10 15 20
= Request rate (req/s) Request rate {req/s)

Request rate (req/s)

{d) OPT-13B, 1 GPU, Alpaca

(e) OPT-66B, 4 GPUs, Alpaca

(f) OPT-1758B, 8 GPUs, Alpaca

Figure 12. Single sequence generation with OPT models on the ShareGPT and Alpaca dataset
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Experiment

Parallel generation, Beam search & Prefix sharing

% —=— Orca (Max) Orca {Pow2) —=— Orca (Oracle) —e— vlIM
%A 107 y 0 T ] 101 7 r
The improvement of vLLM over Orca (Oracle) on OPT- B oot | [ ] o] L[] o5 {1
. . 3% | X f Sl g7 d ¥ S X i =
13B and the Alpaca dataset goes from 1.3x in basic S R T e TR TR v T A TR SR TR
eguest rate (req/s) Request rate {req/s) Request rate (req/s)

Sampling tO 2.3 x in beam SearCh With a Width Of 6. (&) parallel generation (parallel size = 2) (b) parallel generation (parallel size = 4) (¢) parallel generation {parallel size = 6)

(Beam search allows for more sharing) £ 1o Moo Mo |
g% 05 ..'I / | o5 1‘ It {l )I' 051 ,"‘ )
é = 00 ,.-:" B = | pof—s—u2a :!," =" 3 06 E},-,HTT Y SRS L |
VLLM aChieveS ]_ .67 X higher throughput than Orca § ‘ :oque'.t ralt?’ (reqis} - ¢ ? Request ra!e.slmqf-:ha 4 " fu‘quc:r r:n‘ lrveq,",l6
(¢} beam search (beam width = 2) (e) beam search (beam width = 4) {f) beam search (beam width = 6}

(Oracle) when the one-shot prefix is shared.
. . Figure 14. Parallel generation and beam search with OPT-13B on the Alpaca dataset.
vLLM achieves 3.58 x higher throughput than Orca k o Oiea B b LN

)
F 127 2 2 1.0 1.0
(OI'&Cle) . £ 9.79 =60 5
£ £ s
3 3 » ‘ £% 05 0.5
g 520 =5
£ £ L et
@ e e
S S S o0 *— 0.0 "
2 4 6 2 4 o 0 20 40 0 20 40
# Output sequences Beam width Request rate (req/s) Request rate (req/s)
(a) Parallel sampling (b) Beam search (a) 1-shot prefix prompt  (b) 5-shot prefix prompt

Figure 15. Average amount of memory saving from shdnng Figure 16. Translation workload where the input prompts

KV blocks. when serving OPT-13B for the Alpaca trace share a common prefix. The prefix includes (a) 1 example
’ ' with 80 tokens or (b) 5 examples with 341 tokens.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023
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Ablation

—+— VLLM (bs 8) —— WwLLM (bs 32)

. 559+ FT (bs 8) - FT (bs 32) Emli — ShareGPT
Kernel Microbenchmark g, § 1m0{~+ Apsca
Custom kernel introduce 20-26% higher attention kernel Z1s0, g ol
2100{ —~ D ’L
latency § = § Bl o
0% 128 256 2 t—0— .‘h : S

Context length Block size

Block Size

Block size 16 is large enough to efficiently utilize the GPU
and small enough to avoid significant internal fragmentation
in most workloads. vLLM sets its default block size as 16

(a) Latency of attention kernels. (b) End-to-end latency with dif-
ferent block sizes.

Figure 18. Ablation experiments.

140 .\ ~=— Recompute 525 —=— Recompute
1204 \ == Swapin §'20- «— Swap
gmo ‘ - zwnz out ‘ — 2
° ° A - wap in + out | §1_5 -
Swapping Vs Recomputation il \_\ i
Recomputation is more efficient when the block RIS . \\
.. : .. .. e————— | . y
size is small, while swapping is more efficient when the block e i i L . — . i
. . Block size Block size
ize is large
5 5 & (a) Microbenchmark (b) End-to-end performance

Figure 19. (a) Overhead of recomputation and swapping for
different block sizes. (b) Performance when serving OPT-13B
with the ShareGPT traces at the same request rate.

Kwon et al. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023
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Overview
Problem: Inefficient KV Cache management limits LLM serving throughput
Motivation: Current approach fails at internal fragmentation and external fragmentation

Method: Apply OS paging techniques to KV Cache, introduce Paged Attention which break
KV Cache into fix-sized blocks that can be stored in memory more flexibly

Experiment: vLLM improves throughput by 2-4x over SOTA, especially benefiting from
complex decoding
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Credits & Resources

Some content is borrowed from:
[1] SOSP ‘23 Presentation| Efficient Memory Management for Large Language Model Serving with
Paged Attention (https://www.youtube.com/watch?v=UdNocRPOS3Y)

[2] https://pages.cs.wisc.edu/~shivaram/cs744-sp24-slides/cs744-vllm.pdf

[3]JvLLM Talk @ CMU (Apr 2025)(https://Ilmsystem.github.io/llmsystem2025spring/assets/files/llmsys-22-
vLLM woosuk kwon-1£34697dbblalfb5b798dat6etf14b67.pdf)

To better understand KV Cache and Paged Attention:

[4] nano-vllm(https://github.com/GeeeekExplorer/nano-vlim)
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